PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA"

Transcripción

1 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N DGP-DRSET/GOB.REG.TACNA PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA PRIMERA EVALUACIÓN DATOS DEL ESTUDIANTE: APELLIDOS: NOMBRES: SECCIÓN: FECHA: INSTITUCIÓN EDUCATIVA:

2 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 2 Lee y piens ntes de mrr tus respuests. Ahor puedes empezr. 1 Mr on un X el reudro del diujo que represent 214 nuevos soles. 2 Cuál de ls siguientes desomposiiones no orresponde l número 455? Mr l lterntiv orret:

3 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 3 3 Cuánts moneds de ino soles gregrís est ntidd pr que esté entre 505 y 515 nuevos soles? Ahor mr tu respuest. 2 moneds de S/.5 1 moneds de S/.5 3 moneds de S/.5 4 Resuelve Ahor mr tu respuest

4 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 4 5 Lee y resuelve: Andrés, Jun y Pedro juegn en un tlero on ddos L rrer de los números. Durnte el juego Jun lnz el ddo y vnz su fih hst el número 37. Y en ese sillero die retroede 15 silleros. En qué número estrá uido hor Jun? Ahor mr tu respuest Señl quien tiene el número menor: Jesús Sndr Lizeth 3U 8C 2UM 4D 9U 5C 2D 3UM Dos mil ohoientos urent Sndr Jesús Lizeth

5 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 5 7 Oserv los vlores: = 50 = 100 = 20 d = 90 Reemplz d letr por su vlor, resuelve ls operiones indids y ompr los resultdos olondo el signo <, >, = según orrespond y leyendo de izquierd dereh: x d x Myor Menor Igul 8 Edgr es un niño que le gust leer después de her sus tres: De lunes viernes lee ½ hor diri, los sádos y domingos lee ¾ de hor l dí. Cuánto tiempo lee sus liros preferidos en un semn? 2 ½ hor 3 hors 4 hors

6 9 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 6 Oserv l siguiente seueni de figurs heh on flehs: Primer Segund Terer Curt figur. figur. figur. figur. Cuánto será el dole de ls flehs de l urt figur? 13 flehs 20 flehs 26 flehs 10 Oserv el gráfio y los dtos. Cuánto pes el pollo? kg 1 ½ kg 2 ½ kg

7 11 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 7 Reemplz d íono por el vlor indido y señl si ls expresiones son flss (F) o verdders (V) = 5 = 15 = 6 = 4 ) + = - ) + = - F F F V V V 12 Compro un televisor en S/ En uánto deo venderlo pr gnr S/ S/ S/ S/

8 13 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 8 Cuál es el áre de l región somred, siendo que el ldo del udrdo mide 4 m.? 16 m2 8 m2 32 m2 14 Pol ompr lgunos metros de int pr her un trjo, si después de prestrle 500 m. su hermn le qued 300 m. Identifi l pregunt que se hrí pr que el prolem esté ompleto. Cuántos entímetros de int le qued Pol? Cuánto le ostó l int de Pol? Cuántos metros de int ompró Pol?

9 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 9 15 Lee on tenión: Los estudintes enerrán el piso del slón. Pr ello oservn udrdos de 1 metro por ldo en el piso del slón. Si se dese ser uál es el áre por enerr Qué dtos se neesit ser? Anho y lrgo del piso Solo nho del piso Solo lrgo del piso 16 En el gráfio de rrs se oserv el número de niños que sistieron un desfile. Responde: Cuántos niños de 6 sistieron más que los niños de 4? 35 niños 15 55

10 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS Lee on muh tenión: A un zoológio sistieron en ferero 3459 persons y, en mrzo 500 persons más que en ferero. Cuánts persons sistieron en mrzo? persons persons 500 persons 18 Rirdo ompró un televisor en S/ y un refrigerdor en S/ Cuántos soles más ostó l refrigerdor que el televisor? S/. 560 S/. 460 S/. 440

11 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS Em emols mnzns y ls distriuye ls tiends de su rrio. Ell dee preprr 50 olss on 10 mnzns en d un. Cd ols tiene un preio de S/. 12. Cuál será el osto totl por ls olss? 500 soles soles 600 soles 20 Luis ompró 9 glones de petróleo pr su mionet. Si gstó S/. 99. Cuánto pgó por d glón? S/. 99 S/. 891 S/. 11 Feliitiones. Hs termindo!

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA C III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA - 2014 M POR LOS NIÑOS Y NIÑAS DE AMAZONAS MATEMÁTICA INSTITUCIÓN EDUCATIVA NOMBRES Y APELLIDOS INDICACIONES - Lee d pregunt on muh tenión. -

Más detalles

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA C III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA - 2014 M POR LOS NIÑOS Y NIÑAS DE AMAZONAS MATEMÁTICA INSTITUCIÓN EDUCATIVA NOMBRES Y APELLIDOS INDICACIONES - Lee d pregunt on muh tenión. -

Más detalles

DIRECCIÓN REGIONAL EDUCACIÓN. Medición de Logro de Capacidades en Comprensión Lectora y Matemática. Primer Grado de Educación Primaria

DIRECCIÓN REGIONAL EDUCACIÓN. Medición de Logro de Capacidades en Comprensión Lectora y Matemática. Primer Grado de Educación Primaria DIRECCIÓN REGIONAL EDUCACIÓN Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Primer Grdo de Eduión Primri - 2014 Diretiv Nº 18-2014-DGP-DRSET/GOB.REG.TACNA Comprensión Letor PRIMER GRADO SEGUNDA

Más detalles

ECEV Evaluación Censal a Estudiantes de Ventanilla

ECEV Evaluación Censal a Estudiantes de Ventanilla CUARTO GRADO DE PRIMARIA ECEV Evluión Censl Estudintes de Ventnill MATEMÁTICA 2014 INDICACIONES Lee d texto y d pregunt on muh tenión. Si lo neesits puedes volver leer. Luego, resuelve l pregunt y mr on

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Matemática Primer Grado - Primaria

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Matemática Primer Grado - Primaria DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Mtriz Evluión Dignósti Mtemáti Primer Grdo - Primri Estándr prendizje l ompeteni: MATEMÁTICAMENTE EN DE CANTIDAD. Intifi referids gregr

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden:

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden: Demostrndo lo que prendimos Terer Trimestre LECTURA 2. grdo de primri Mi nomre: Mi numero de orden: Seión: LECTURA 3 Cómo responder ls pregunts? Primero, lee el texto on muh tenión. Luego, lee ls pregunts

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 1 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: Seguno gro e seunri 3 1 L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino

Más detalles

Matemática Demostrando

Matemática Demostrando Mtemáti Demostrno lo que prenimos 2. seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1. L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino Vuelos Cuzo

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria D IR CCIÓN R ION A L CTOR IA L TAC N A Mediión de Logro de Cpiddes en Comprensión Letor y Resoluión de Prolems en estudintes de Segundo Grdo de Eduión Primri Diretiv Nº 010-2012-DGP-DRSET/GOB.REG.TACNA

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE

PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE Nomres: Apellidos: Pterno Grdo Mterno Seión : MATEMÁTICA (Todos podemos prender, ndie se qued trás) Mtemáti 2º Grdo Todos podemos

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

Comprensión. Lectora DATOS DEL ESTUDIANTE

Comprensión. Lectora DATOS DEL ESTUDIANTE D IR CCIÓN R IONA L CTOR IA L Progrm Presupuestl Logros de Aprendizje l finlizr l E.B.R. - PELA Prue de proeso pr instituiones edutivs on Aompñmiento Pedgógio T A C N A Comprensión Letor SEGUNDO GRADO

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Examen de Admisión 2006

Examen de Admisión 2006 Exmen de Admisión 006 Instrucciones: i) Mrc clrmente sólo un de ls opciones como respuest cd pregunt y escrie l respuest en l hoj de respuests nex. ii) Contest solmente quells pregunts en ls que estés

Más detalles

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática?

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática? 2014 INFORME PARA EL DOCENTE Cómo mejorr el prendizje de nuestros estudintes en Mtemáti? 2.º GRADO de PRIMARIA Contenido Pág. 1. L prue de Mtemáti 2 2. Cómo se presentn los resultdos de l ECE? 3 3. Cuáles

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

FICHA 1: OPERACIONES CON FRACCIONES Sumas y restas con el mismo denominador = 2 3 =

FICHA 1: OPERACIONES CON FRACCIONES Sumas y restas con el mismo denominador = 2 3 = REFUERZO DE VERANO. º ESO FICHA OPERACIONES CON FRACCIONES Sums y rests on el mismo denomindor ± ± ) Sums y rests on distinto denomindor Igul, pero primero se redue denomindor omún simplifio simplifio.

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

MATEMÁTICA CERTIFICADOS DE PROFESIONALIDADE CERTIFICADOS DE PROFESIONALIDAD. competencias clave NIVEL. Obxectivo: Duración: Estrutura da proba:

MATEMÁTICA CERTIFICADOS DE PROFESIONALIDADE CERTIFICADOS DE PROFESIONALIDAD. competencias clave NIVEL. Obxectivo: Duración: Estrutura da proba: UNIÓN EUROPE MTEMÁTI competencias clave ERTIFIDOS DE PROFESIONLIDDE ERTIFIDOS DE PROFESIONLIDD NIVEL 2 Obxectivo: Objetivo: valiar as capacidades vinculadas á competencia matemática Evaluar las capacidades

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

E. E. T. N 6 (Escuela de Educación Técnica N 6)

E. E. T. N 6 (Escuela de Educación Técnica N 6) E. E. T. N 6 (Esuel de Eduión Téni N 6) Resoluión N 96/9 CAPITULO RAZONES Y PROPORCIONES Rzones y proporiones. Propieddes de ls proporiones. Proporionlidd diret. Proporionlidd invers. Reprtiión proporionl.

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

EVALUACIÓN REGIONAL DE APRENDIZAJES 2015 COMUNICACIÓN SEGUNDA PRUEBA. Nombres y Apellidos: Sección: N Orden: Institución Educativa: Lugar:

EVALUACIÓN REGIONAL DE APRENDIZAJES 2015 COMUNICACIÓN SEGUNDA PRUEBA. Nombres y Apellidos: Sección: N Orden: Institución Educativa: Lugar: EVALUACIÓN REGIONAL DE APRENDIZAJES 2015 COMUNICACIÓN 2 do grdo Primri SEGUNDA PRUEBA Nomres y Apellidos: Seión: N Orden: Instituión Edutiv: Lugr: Distrito: Provini: Aplidor (): APURÍMAC, Región Emergente

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos

PSU Matemática NM-4 Guía 22: Congruencia de Triángulos Centro Educcionl Sn Crlos de Argón. Dpto. Mtemátic. Nivel: NM 4 Prof. Ximen Gllegos H. PSU Mtemátic NM-4 Guí : Congruenci de Triángulos Nombre: Curso: Fech: - Contenido: Congruenci. Aprendizje Esperdo:

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 2 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1 Un lñil está olono myólis en el ño e un s uiánols en el oren que se ini. Oserv: 1. 2. 3. 4. 5. 6.......

Más detalles

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b) Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos

Más detalles

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b MsMtes.om Coleiones de tividdes Expresiones lgebris Complet l siguiente tbl, referid los monomios que se indin. -5y x 6 x y x x 5 Coefiiente Grdo. Coefiiente Grdo Prte literl Prte literl bx x x b -x x

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

a b y se lee a es a b ; a se denomina antecedente y b consecuente.

a b y se lee a es a b ; a se denomina antecedente y b consecuente. 1 Centro Educcionl Sn Crlos de Argón. Dpto. de Mtemátic. Prof.: Ximen Gllegos H. Guí Nº 5 PSU NM 4: Proporcionlidd Nombre: Curso: Fech: Aprendizje Esperdo: Plnte y resuelve problems que requieren plicr

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo

Más detalles

MATEMÁTICA CERTIFICADOS DE PROFESIONALIDADE CERTIFICADOS DE PROFESIONALIDAD. competencias clave NIVEL. Obxectivo: Duración: Estrutura da proba:

MATEMÁTICA CERTIFICADOS DE PROFESIONALIDADE CERTIFICADOS DE PROFESIONALIDAD. competencias clave NIVEL. Obxectivo: Duración: Estrutura da proba: UNIÓN EUROPE MTEMÁTI competencias clave ERTIFIDOS DE PROFESIONLIDDE ERTIFIDOS DE PROFESIONLIDD NIVEL 3 Obxectivo: Objetivo: valiar as capacidades vinculadas á competencia matemática Evaluar las capacidades

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

UNIVERSIDAD DE SAN ANDRES MBA

UNIVERSIDAD DE SAN ANDRES MBA UNIVERSIDAD DE SAN ANDRES MBA EXAMEN ADMISIÓN 2012 Tema 1 Apellido y Nombre: Fecha: Instrucciones: Dispone de 1 hora para realizar este examen Firme y ponga su nombre en cada hoja Indique en forma clara

Más detalles

SEP ENCUESTA NACIONAL SOBRE PRÁCTICAS DE LECTURA CUADERNILLO PARA 4 A 6 DE PRIMARIA 1. IDENTIFICACIÓN GEOGRÁFICA 2. CONTROL DE CUADERNILLO FOLIO...

SEP ENCUESTA NACIONAL SOBRE PRÁCTICAS DE LECTURA CUADERNILLO PARA 4 A 6 DE PRIMARIA 1. IDENTIFICACIÓN GEOGRÁFICA 2. CONTROL DE CUADERNILLO FOLIO... ENCUEST NCIONL SOBRE PRÁCTICS DE LECTUR CUDERNILLO PR 4 6 DE PRIMRI DE EDUCCIÓN PÚBLIC SEP 1. IDENTIFICCIÓN GEOGRÁFIC 2. CONTROL DE CUDERNILLO ENTIDD FEDERTIV MUNICIPIO O DELEGCIÓN FOLIO... ENTIDD TIPO

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA EJERCICIOS DE LA ASIGNATURA DE ALGEBRA 1 INTRODUCCION Estimdo estudinte, el prendizje de est rm de l mtemátic, requiere que se dominen completmente los siguientes conocimientos y procedimientos prendidos

Más detalles

Prueba Matemática Coef. 1: Logaritmos A

Prueba Matemática Coef. 1: Logaritmos A Centro Educcionl Sn Crlos de Argón. Sector: Mtemátic. Prof.: Ximen Gllegos H. Nivel: NM - 4 Prueb Mtemátic Coef. : Logritmos A Nombre: Curso: Fech. Porcentje de Logro Idel: 00% Porcentje Logrdo: Not: Unidd:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:.

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:. Seleividd ndluí. emáis plids ls ienis Soiles. loque ries. www.useleividd.om Págin EJEROS E EÁENES E SELETV NLUÍ.LOQUE TRES.. JUNO. OPÓN. Sen ls mries siendo un número rel ulquier.. ( puno) Oeng l mriz..

Más detalles

ECEV Evaluación Censal a Estudiantes de Ventanilla

ECEV Evaluación Censal a Estudiantes de Ventanilla SEXTO GRADO DE PRIMARIA MATEMÁTICA ECEV Evaluaión Censal a Estudiantes de Ventanilla 2014 INDICACIONES Lee ada texto y ada pregunta on muha atenión. Si lo neesitas puedes volver a leer. Luego, resuelve

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0,

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0, Logritmos y eponenciles de otrs ses L función Leer con cuiddo el [S, 8] o ien [S, 4] y = Pr >, ln = e Definición: (Tp474) Pr R y > se define ln = e d AL- Deducir l fórmul de ( ) d d v AL- Si u y v son

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Comunicación 5to Grado - Primaria

DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Matriz de Evaluación Diagnóstica Comunicación 5to Grado - Primaria DIRECCIÓN REGIONAL DE EDUCACIÓN DE LIMA METROPOLITANA OGPEBTP 2017 Mtriz de Evluión Dignósti Comuniión 5to Grdo - Primri Estándr de prendizje: Lee diversos tipos de textos que presentn estrutur simple

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Identificación de propiedades de triángulos

Identificación de propiedades de triángulos Grdo 10 Mtemtics - Unidd 2 L trigonometrí, un estudio de l medid del ángulo trvés de ls funciones Tem Identificción de propieddes de triángulos Nombre: Curso: Ls ctividdes propuests continución se centrn

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

Apoyo compartido. Matemática Período 4 CUADERNO DE TRABAJO BÁSICO

Apoyo compartido. Matemática Período 4 CUADERNO DE TRABAJO BÁSICO Apoyo comprtido Mtemátic Período 4 CUADERNO DE TRABAJO 1º BÁSICO Cuderno de trjo Mtemátic 1º Básico, Período 4 NIVEL DE EDUCACIÓN BÁSICA División de Educción Generl Ministerio de Educción Repúlic de Chile

Más detalles

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado TEMA 5 1 Procedimiento de Cuent Únic Administrtiv: e Inmovilizdo 2 - El procedimiento Administrtivo es el empledo pr el registro de l myor prte de los ctivos. INMOVILIZADO/EXISTENCIAS ENTRADAS VALORADAS

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

2016 SUMMER. Mathematic. Skills Sharpener GOING TO TWELFTH GRADE. Celebrating 34 years of building the future of our youth!

2016 SUMMER. Mathematic. Skills Sharpener GOING TO TWELFTH GRADE. Celebrating 34 years of building the future of our youth! F R O E B E L Friedrich Froebel Bilingul School 016 SUMMER Mthemtic Skills Shrpener GOING TO TWELFTH GRADE -College Bord Edition- Celebrting 34 yers of building the future of our youth! 016 SUMMER Mthemtic

Más detalles

a Los ángulos a y b suman:

a Los ángulos a y b suman: Guí 1: MEDICION DE ÁNGULOS El siste sexgesil es un siste de edición que divide l ciurcunferenci en 360 prtes igules. Cd prte corresponde un grdo sexgesil (1 ). 1. Escrie l edid de los siguientes ángulos:

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

PSU MATEMATICA 530 preguntas de facsímiles oficiales

PSU MATEMATICA 530 preguntas de facsímiles oficiales 0 PSU MATEMATICA 0 pregunts de fcsímiles oficiles Bsdo en l recopilción hech por el profesor Álvro Sánchez V. Contiene sólo los ejercicios de ese trbjo, ordendos por contenidos y con un distribución diferente

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles