PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA"

Transcripción

1 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 1 Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Curto Grdo de Eduión Primri-2014 Diretiv N DGP-DRSET/GOB.REG.TACNA PRUEBA DE MATEMÁTICA 2014 CUARTO GRADO DE PRIMARIA PRIMERA EVALUACIÓN DATOS DEL ESTUDIANTE: APELLIDOS: NOMBRES: SECCIÓN: FECHA: INSTITUCIÓN EDUCATIVA:

2 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 2 Lee y piens ntes de mrr tus respuests. Ahor puedes empezr. 1 Mr on un X el reudro del diujo que represent 214 nuevos soles. 2 Cuál de ls siguientes desomposiiones no orresponde l número 455? Mr l lterntiv orret:

3 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 3 3 Cuánts moneds de ino soles gregrís est ntidd pr que esté entre 505 y 515 nuevos soles? Ahor mr tu respuest. 2 moneds de S/.5 1 moneds de S/.5 3 moneds de S/.5 4 Resuelve Ahor mr tu respuest

4 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 4 5 Lee y resuelve: Andrés, Jun y Pedro juegn en un tlero on ddos L rrer de los números. Durnte el juego Jun lnz el ddo y vnz su fih hst el número 37. Y en ese sillero die retroede 15 silleros. En qué número estrá uido hor Jun? Ahor mr tu respuest Señl quien tiene el número menor: Jesús Sndr Lizeth 3U 8C 2UM 4D 9U 5C 2D 3UM Dos mil ohoientos urent Sndr Jesús Lizeth

5 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 5 7 Oserv los vlores: = 50 = 100 = 20 d = 90 Reemplz d letr por su vlor, resuelve ls operiones indids y ompr los resultdos olondo el signo <, >, = según orrespond y leyendo de izquierd dereh: x d x Myor Menor Igul 8 Edgr es un niño que le gust leer después de her sus tres: De lunes viernes lee ½ hor diri, los sádos y domingos lee ¾ de hor l dí. Cuánto tiempo lee sus liros preferidos en un semn? 2 ½ hor 3 hors 4 hors

6 9 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 6 Oserv l siguiente seueni de figurs heh on flehs: Primer Segund Terer Curt figur. figur. figur. figur. Cuánto será el dole de ls flehs de l urt figur? 13 flehs 20 flehs 26 flehs 10 Oserv el gráfio y los dtos. Cuánto pes el pollo? kg 1 ½ kg 2 ½ kg

7 11 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 7 Reemplz d íono por el vlor indido y señl si ls expresiones son flss (F) o verdders (V) = 5 = 15 = 6 = 4 ) + = - ) + = - F F F V V V 12 Compro un televisor en S/ En uánto deo venderlo pr gnr S/ S/ S/ S/

8 13 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 8 Cuál es el áre de l región somred, siendo que el ldo del udrdo mide 4 m.? 16 m2 8 m2 32 m2 14 Pol ompr lgunos metros de int pr her un trjo, si después de prestrle 500 m. su hermn le qued 300 m. Identifi l pregunt que se hrí pr que el prolem esté ompleto. Cuántos entímetros de int le qued Pol? Cuánto le ostó l int de Pol? Cuántos metros de int ompró Pol?

9 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS 9 15 Lee on tenión: Los estudintes enerrán el piso del slón. Pr ello oservn udrdos de 1 metro por ldo en el piso del slón. Si se dese ser uál es el áre por enerr Qué dtos se neesit ser? Anho y lrgo del piso Solo nho del piso Solo lrgo del piso 16 En el gráfio de rrs se oserv el número de niños que sistieron un desfile. Responde: Cuántos niños de 6 sistieron más que los niños de 4? 35 niños 15 55

10 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS Lee on muh tenión: A un zoológio sistieron en ferero 3459 persons y, en mrzo 500 persons más que en ferero. Cuánts persons sistieron en mrzo? persons persons 500 persons 18 Rirdo ompró un televisor en S/ y un refrigerdor en S/ Cuántos soles más ostó l refrigerdor que el televisor? S/. 560 S/. 460 S/. 440

11 ELABORACIÓN: PROF. MANUEL LUQUE LLANQUI-FORMADOR DE ACOMPAÑANTES PEDAGÓGICOS Em emols mnzns y ls distriuye ls tiends de su rrio. Ell dee preprr 50 olss on 10 mnzns en d un. Cd ols tiene un preio de S/. 12. Cuál será el osto totl por ls olss? 500 soles soles 600 soles 20 Luis ompró 9 glones de petróleo pr su mionet. Si gstó S/. 99. Cuánto pgó por d glón? S/. 99 S/. 891 S/. 11 Feliitiones. Hs termindo!

DIRECCIÓN REGIONAL EDUCACIÓN. Medición de Logro de Capacidades en Comprensión Lectora y Matemática. Primer Grado de Educación Primaria

DIRECCIÓN REGIONAL EDUCACIÓN. Medición de Logro de Capacidades en Comprensión Lectora y Matemática. Primer Grado de Educación Primaria DIRECCIÓN REGIONAL EDUCACIÓN Mediión de Logro de Cpiddes en Comprensión Letor y Mtemáti Primer Grdo de Eduión Primri - 2014 Diretiv Nº 18-2014-DGP-DRSET/GOB.REG.TACNA Comprensión Letor PRIMER GRADO SEGUNDA

Más detalles

ECEV Evaluación Censal a Estudiantes de Ventanilla

ECEV Evaluación Censal a Estudiantes de Ventanilla CUARTO GRADO DE PRIMARIA ECEV Evluión Censl Estudintes de Ventnill MATEMÁTICA 2014 INDICACIONES Lee d texto y d pregunt on muh tenión. Si lo neesits puedes volver leer. Luego, resuelve l pregunt y mr on

Más detalles

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden:

LECTURA. Mi nombre: 2. grado de primaria. Sección: Mi numero de orden: Demostrndo lo que prendimos Terer Trimestre LECTURA 2. grdo de primri Mi nomre: Mi numero de orden: Seión: LECTURA 3 Cómo responder ls pregunts? Primero, lee el texto on muh tenión. Luego, lee ls pregunts

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo.

INDICACIONES. En estas preguntas tienes que unir con una línea las palabras o las oraciones con su dibujo. Une con una línea la palabra con su dibujo. 1 2 En ests pregunts tienes que unir on un líne ls plrs o ls oriones on su diujo. Ejemplo: INDICACIONES Une on un líne l plr on su diujo... gllo. Une on un líne l orión on su diujo.. Julio orre... 3 AHORA

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria

Medición de Logro de Capacidades en Comprensión Lectora y Resolución de Problemas en estudiantes de Segundo Grado de Educación Primaria D IR CCIÓN R ION A L CTOR IA L TAC N A Mediión de Logro de Cpiddes en Comprensión Letor y Resoluión de Prolems en estudintes de Segundo Grdo de Eduión Primri Diretiv Nº 010-2012-DGP-DRSET/GOB.REG.TACNA

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE

PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE PRUEBA DE DIAGNÓSTICO DE MATEMÁTICA 2º GRADO DE PRIMARIA DATOS DEL ESTUDIANTE Nomres: Apellidos: Pterno Grdo Mterno Seión : MATEMÁTICA (Todos podemos prender, ndie se qued trás) Mtemáti 2º Grdo Todos podemos

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

Comprensión. Lectora DATOS DEL ESTUDIANTE

Comprensión. Lectora DATOS DEL ESTUDIANTE D IR CCIÓN R IONA L CTOR IA L Progrm Presupuestl Logros de Aprendizje l finlizr l E.B.R. - PELA Prue de proeso pr instituiones edutivs on Aompñmiento Pedgógio T A C N A Comprensión Letor SEGUNDO GRADO

Más detalles

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática?

Cómo mejorar el aprendizaje de nuestros estudiantes en Matemática? 2014 INFORME PARA EL DOCENTE Cómo mejorr el prendizje de nuestros estudintes en Mtemáti? 2.º GRADO de PRIMARIA Contenido Pág. 1. L prue de Mtemáti 2 2. Cómo se presentn los resultdos de l ECE? 3 3. Cuáles

Más detalles

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw

Sinopsis. Caracterización de ángulos en su entorno. Se recomienda recurso interactivo. Adobe Edge Animator. Para dibujos: Adobe Illustrator Corel Draw AN_M_G08_U04_L02_03_04 Se reomiend reurso intertivo Sinopsis Un vtr similr Ninj expli el tem ángulos lternos internos y externos, olterles, orrespondientes y opuestos l vértie. Adoe Edge Animtor Pr diujos:

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

E. E. T. N 6 (Escuela de Educación Técnica N 6)

E. E. T. N 6 (Escuela de Educación Técnica N 6) E. E. T. N 6 (Esuel de Eduión Téni N 6) Resoluión N 96/9 CAPITULO RAZONES Y PROPORCIONES Rzones y proporiones. Propieddes de ls proporiones. Proporionlidd diret. Proporionlidd invers. Reprtiión proporionl.

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números

Guía de Trabajo n 1 Octavo año básico Refuerzo Contenido y Aprendizaje N. Cero (restitución de aprendizajes) Números Colegio Antil Mwid Deprtmento de Mtemátic Profesor: Nthlie Sepúlved Guí de Trjo n Octvo ño ásico Refuerzo Contenido y Aprendizje N Fech Tiempo 2 Hors Nomre del/l lumno/ Unidd Nº Núcleos temáticos de l

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA FINANCIERA II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos MATEMÁTICA FINANCIERA II 27 de Myo de 2009,0 hors Durión: 2 hors ) Teorí: Préstmos hipoterios. Explir rzondmente

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos. 2. Empréstitos Fultd de Cienis Eonómis Convotori de Junio Primer emn Mteril Auxilir: Cluldor finnier 1. Préstmos MATEMÁTICA DE LA OPERACIONE FINANCIERA II 27 de Myo de 2009 16.00 hors Durión: 2 hors ) Teorí: Préstmos

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 2 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: 2 Kit e evluión 1 Un lñil está olono myólis en el ño e un s uiánols en el oren que se ini. Oserv: 1. 2. 3. 4. 5. 6.......

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing):

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II. 1. Préstamos: 2. Empréstitos: 3. Arrendamiento financiero (leasing): Fultd de Cienis Eonómis Convotori de Junio Primer Semn Mteril Auxilir: Cluldor finnier. Préstmos: MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II 2 de Myo de 2008 Durión: 2 hors ) Teorí. Préstmos on períodos

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes

Propuesta sobre la enseñanza de los números racionales Geovany Sanabria Brenes Geovny Snri B. Propuest sore l enseñnz de los números rionles Geovny Snri Brenes Un mner de ordr los números rionles es trvés del onoimiento previo de rzones. En l tulidd, ls friones en primri no son vists

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

SEP ENCUESTA NACIONAL SOBRE PRÁCTICAS DE LECTURA CUADERNILLO PARA 4 A 6 DE PRIMARIA 1. IDENTIFICACIÓN GEOGRÁFICA 2. CONTROL DE CUADERNILLO FOLIO...

SEP ENCUESTA NACIONAL SOBRE PRÁCTICAS DE LECTURA CUADERNILLO PARA 4 A 6 DE PRIMARIA 1. IDENTIFICACIÓN GEOGRÁFICA 2. CONTROL DE CUADERNILLO FOLIO... ENCUEST NCIONL SOBRE PRÁCTICS DE LECTUR CUDERNILLO PR 4 6 DE PRIMRI DE EDUCCIÓN PÚBLIC SEP 1. IDENTIFICCIÓN GEOGRÁFIC 2. CONTROL DE CUDERNILLO ENTIDD FEDERTIV MUNICIPIO O DELEGCIÓN FOLIO... ENTIDD TIPO

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

UNIVERSIDAD DE SAN ANDRES MBA

UNIVERSIDAD DE SAN ANDRES MBA UNIVERSIDAD DE SAN ANDRES MBA EXAMEN ADMISIÓN 2012 Tema 1 Apellido y Nombre: Fecha: Instrucciones: Dispone de 1 hora para realizar este examen Firme y ponga su nombre en cada hoja Indique en forma clara

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular

m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo

Más detalles

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow

Tema IV Elección Social. El Análisis Positivo, Votación, Teorema de May, Teorema de Imposibilidad de Arrow Tem IV Eleión Soil El Análisis Positivo, Votión, Teorem de My, Teorem de Imposiilidd de Arrow 1 Qué hiimos en el tem nterior? Repso Estudimos ul deerí ser l ominión de reursos (en un eonomí de intermio)

Más detalles

no te puedes conectar? resuélvelo tú mismo en solo 5 pasos

no te puedes conectar? resuélvelo tú mismo en solo 5 pasos no te puedes onetr? resuélvelo tú mismo en solo 5 psos ontinuión enontrrás los 5 psos ásios que dees seguir en so que presentes lgún prolem on tu onexión. us l versión imprimile l finl del instrutivo y

Más detalles

Figura 1. Teoría y prática de vectores

Figura 1. Teoría y prática de vectores UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio UDB Físi Cátedr FÍSICA I VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo

Más detalles

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado TEMA 5 1 Procedimiento de Cuent Únic Administrtiv: e Inmovilizdo 2 - El procedimiento Administrtivo es el empledo pr el registro de l myor prte de los ctivos. INMOVILIZADO/EXISTENCIAS ENTRADAS VALORADAS

Más detalles

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales

Apéndice V. Ing. José Cruz Toledo M. Vectores tridimensionales Apéndie V Ing. José Cruz Toledo M. Vetores tridimensionles En este péndie se present un resúmen de ls reliones vetoriles que son referenidos en este liro. y(j) (x,y,z) y Simologí (Ver Fig. V-1): ( x i

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV.

IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. IES. MARIA MOLINER - (SEGOVIA) EXAMEN 3ª EV. FECHA: 2/6/2009 CICLO FORMATIVO: DESARROLLO DE PRODUCTOS ELECTRONICOS CURSO: 1º MODULO: CALIDAD (TEORIA) ALUMNO/A: 1.- El digrm de finiddes: A. Es un téni de

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1

Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1 Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...

Más detalles

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA EMPRESA CRECESA Ejercicios Contbilidd Tem 4 CRECESA es un empres dedicd l comercilizción de plnts de interior. Se h constituido principios de 20XX y su Blnce finles de ese ño (expresdo en uniddes monetris)

Más detalles

Profr. Efraín Soto Apolinar. Ley de senos

Profr. Efraín Soto Apolinar. Ley de senos Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos

Más detalles

PSU MATEMATICA 530 preguntas de facsímiles oficiales

PSU MATEMATICA 530 preguntas de facsímiles oficiales 0 PSU MATEMATICA 0 pregunts de fcsímiles oficiles Bsdo en l recopilción hech por el profesor Álvro Sánchez V. Contiene sólo los ejercicios de ese trbjo, ordendos por contenidos y con un distribución diferente

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Guía de trabajos Teórico- Práctico Nº 3

Guía de trabajos Teórico- Práctico Nº 3 Mtemáti pr C.P.N. Unidd Nº - Espio vetoril de Mtries Guí de trjos Teório- Prátio Nº UNIDD III:.. Cuerpo de los números reles... Espio vetoril. Vetores en R n.operiones en R n. Propieddes del espio vetoril.

Más detalles

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2.

Solución: Coloreando el tablero con casillas de dos colores al estilo del tablero de coronas (damas) como se muestra en la figura 2. Algunos prolems. L olorión en ls mtemátis L olorión en ls mtemátis no es más que provehr lguns iferenis que estleemos entre los entes empleos en un prolem prtiulr, similr l utili e ls nemotenis en l progrmión,

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

Actividades que corregiremos los primeros días de clase

Actividades que corregiremos los primeros días de clase ACTIVIDADES DE MATEMÁTICAS º ESO Actividdes que corregiremos los primeros dís de clse BLOQUE I: NÚMEROS I (Nº NATURAL POTENCIAS Y RAÍCES DIVISIBILIDAD Nº ENTEROS). Oserv ls siguientes plrs: BICICLETA (

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1.- El ldo de un udrdo mide 10 m. Cuánto mide su digonl? (Aproxim el resultdo hst ls déims)..- Ls digonles de un romo miden 15 m y 17 m, respetivmente. Cuánto miden sus ldos? (Aproxim

Más detalles

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL 2º ESPA! I.E.S Slmedin (Chipion) RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL N=No t/tr tiempo trnscurrido/tiempo

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1.

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1. CASOS TEMA 3 CASO PRÁCTICO Nº 1 El ptrimonio de l empres individul "ALFA", cuy ctividd es l comercilizción de los rtículos A, B y C, está integrdo por el siguiente conjunto de bienes derechos y obligciones,

Más detalles

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010

VECTORES Magnitudes escalares y vectoriales Vectores Figura 1.1 Figura 1-1 vector. Año: 2010 UNIVERSIDAD TECNOLÓGICA NACIONAL Fultd Regionl Rosrio --- UDB Físi Cátedr VECTORES Mgnitudes eslres vetoriles Ls mgnitudes eslres son quells que quedn determinds dndo un solo número rel, resultdo de su

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUIONES LS TIVIES E EPÍGRFE Pág. 1 PÁGIN 7 REFLEXION En el periódico mural de la asa de la ultura se encuentra esta información. La primera gráfica señala la evolución del número de libros prestados

Más detalles

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD

TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD UNICIENCIA 22 UNICIENCIA 22, 2008 pp. 5-9 2008 TEMPERATURA Y HUMEDAD RELATIVAS EN UN SECA- DOR SOLAR DE PLANTAS PARA LA SALUD Diego Chverri y Roerto J. Moy Deprtmento de Físi, Universidd Nionl RESUMEN

Más detalles

PROGRAMA DE MATEMÁTICAS PRE Y POST PRUEBA TERCER GRADO: MATE TABLA DE ESPECIFICACIONES. asignados indicadores por estándar ÁLGEBRA

PROGRAMA DE MATEMÁTICAS PRE Y POST PRUEBA TERCER GRADO: MATE TABLA DE ESPECIFICACIONES. asignados indicadores por estándar ÁLGEBRA PROGRM DE MTEMÁTIS PRE Y POST PRUE TERER GRDO: MTE -03 Estándar TL DE ESPEIFIIONES % de ejercicios antidad de asignados indicadores por estándar antidad de ejercicios Punto de Ejecución Mínima NUMERIÓN

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

UNIDAD 3 Números reales

UNIDAD 3 Números reales . Curiosiddes sobre lgunos Pág. 1 de 4 Hy tres números de grn importnci en mtemátics y que, prdójicmente, nombrmos con un letr: El número designdo con l letr grieg π = 3,14159 (pi) relcion l longitud de

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra clases.microeconomia.

Competencia Monopolística EJERCICIOS. Profesor Guillermo Pereyra  clases.microeconomia. Competeni Monopolísti EJERCICIOS Profesor Guillermo Pereyr guillermopereyr@miroeonomi.org www.miroeonomi.org lses.miroeonomi.org 1. Cuál e ls siguientes lterntivs no es rterísti e l ompeteni monopolísti?

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles