MECHANICS OF MATERIALS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MECHANICS OF MATERIALS"

Transcripción

1 hird E CHAPER 3 orsión MECHANICS OF MAERIALS Ferdinand P. Beer E. Russell ohnston, r. ohn. DeWolf Leture Notes:. Walt Oler exas eh University

2 Contents Introduion Cargas de orsión en Ejes Cirulares orque Neto debido a Esfuerzos Internos Componentes axiales del esfuerzo ortante Deformaiones del eje Deformaión por ortante Esfuerzos en el Rango Elástio Esfuerzos Normales Formas de Falla por torsión Ejemplo Problema 3.1 Ángulo de giro en el Rango Elástio Ejes Estátiamente Indeterminados Ejemplo Problema 3.4 Diseño de ransmisión por ejes Conentradores de esfuerzos Deformaiones Plástias Materiales Elastoplástios Esfuerzos Residuales Ejemplo 3.08/3.09 orsión en elementos no irulares Ejes Hueos de Pared Delgada Ejemplo

3 Cargas de orsión en Ejes Cirulares Interés en los esfuerzos y tensiones de los ejes irulares sujetos a pares de torsión o torques urbina ejere torque en el eje Eje transmite el torque desde el generador Generador rea un torque igual y opuesto 3-3

4 orque Neto debido a Esfuerzos Internos El esfuerzo ortante interno neto es un torque interno, igual y opuesto al torque apliado, ( ) ρ df ρ da Aunque el torque neto debido al esfuerzo ortante es onoido, la distribuión de esfuerzos no lo es La distribuión de los esfuerzos ortantes es estátiamente indeterminados se onsideran las deformaiones del eje A diferenia de los esfuerzos normales debido a argas axiales, la distribuión de los esfuerzos ortantes no se pueden asumir uniformes. 3-4

5 Componentes axiales del esfuerzo ortante El torque apliado a un eje prodee esfuerzos ortantes en las aras perpendiulares al eje. La ondiión de equilibrio requiere la existenia de esfuerzos iguales en las aras de los dos planos que ontienen el eje del elemento (eje). La existenia de las omponentes axiales del esfuerzo ortante es demostrada onsiderandi un eje formado por listones axiales. Los listones se deslizan uno respeto a otro uando torques iguales y opuestos se aplian en los extremos del eje. 3-5

6 Deformaiones del eje De la observaión, el angulo de giro del eje es proporional al torque apliado y a la longitud del eje. φ φ Cuando se somete a torsión, todas las seiones transversales de un eje irular permaneen planas y sin distorsiones. Las seiones transversales de un eje solido y un eje hueo permaneen planas y sin distorsíón porque los ejes irulares son simétrios. Las seiones transversales de ejes no irulares (no simétrios) se distorsionan uando se someten a torsión. L 3-6

7 Deformaión por ortante Considerando una seión interior del eje. Como una arga de torsión es apliada, un elemento en el interior del ilindro se deforma en un rombo. Dado que los extremos del elemento permaneen planos, la deformaión por esfuerzo ortantes es igual al angulo de giro. Entones, se tiene que, Lγ ρφ or γ La deformaión por ortante es proporional al angulo de giro y al radio. γ max φ L ρφ L and γ ρ γ max 3-7

8 Esfuerzos en un rango elástio 1 4 π 4 4 ( ) 1 1 π da max ρ ρ da Multipliando la anterior euaión por el modulo de rigidez, ρ G γ Gγ max Por la ley de Hooke, Gγ, entones, ρ max El esfuerzo ortante varia linealmente on la posiión radial en la seión. Reordar que la suma de los momentos de la distribuión interna de esfuerzos es igual al torque en el eje de la seión, ρ max and max Los resultados se onoen omo las fórmulas elástias de torsión, 3-8

9 Esfuerzos Normales Elementos on aras paralelas y perpendiulares al eje de simetría se someten sólo a esfuerzos ortantes. Esfuerzos normales, esfuerzos ortantes o una ombinaión de los dos se pueden enontrar en otras orientaiones. Considerando un elemento a 45 o del eje entral, F ( A ) os45 A σ 45 o max F A 0 max A 0 A 0 max 0 max Elemento a está en ortante puro. Elemento es sometido a esfuerzo de tensión en dos aras y esfuerzo de ompresión en las otras dos. Notese que todos los esfuerzos de los elementos a y tienen la misma magnitud. 3-9

10 Modos de Fallas por torsión Generalmente los materiales dutiles fallan en ortante. Los materiales frágiles son más débiles en el esfuerzo de tensión. Cuando se sujeta a torsión, un espeimen dútil se rompe a lo largo del plano de ortante máximo, i.e., un plano perpendiular al eje. Cuando se sujeta a torsión, un espeimen frágil a lo largo de planos perpendiulares a la direión donde la tension es máxima, i.e., a lo largo de superfiies de 45 o del eje. 3-10

11 Ejemplo Problema 3.1 SOLUCIÓN: Eje BC es hueo on diametros interno y externo de 90 mm y 10 mm, respetivamente. Ejes AB y CD son sólidos de diámetro d. Para la arga mostrada, determine (a) el mínimo y máximo del esfuerzo ortante en el eje BC, (b) el diámetro d requerido para los ejes AB y CD si el esfuerzo ortante admisible en estos ejes es 65 MPa. Cortar las seiones a traves de los ejes AB y BC y realizar analísis de equilibrio estátio para enontrar los toques apliados. Apliar las formulas de torsión elástia para enontrar los esfuerzos minimos y máximos en el eje BC. Dado el esfuerzo ortante admisible y el torque apliado, despejar de la formula de torsión elastia para enontrar el diámetro requerido. 3-11

12 Ejemplo Problema 3.1 SOLUION: Cortar seiones a través de los ejes AB y BC y realizar el analísis de equilibrio estátio para enontrar los torques apliados. M AB x 0 ( 6kN m) M 0 ( 6kN m) + ( 14kN m) 6kN m CD AB BC x 0kN m BC 3-1

13 Ejemplo Problema 3.1 Apliar las formulas de torsión elástia para enontrar el esfuerzo minimo y máximo en el eje BC. Dado el esfuerzo ortante admisible y el torque apliado, despejar de la formula de torsión elastia para enontrar el diámetro requerido π 4 4 π ( ) [ 4 4 ( ) ( ) ] max 6 m BC 4 ( 0kN m)( 0.060m) m 4 max π 3 4 m 6kN m 65MPa π 3 d 77.8mm 86.MPa min max 1 min 86. MPa 45mm 60mm max 86. MPa min 64.7 MPa min 64.7 MPa 3-13

14 Angulo de giro en un Rango Elástio Reordar que el ángulo de giro y la maxima deformaión por ortante se relaionan, φ γ max L En el rango elástio, el esfuerzo y deformaión ortante por ley de Hooke, max γ max G G Igualando las expresiones de deformaión por ortante y resolver para el ángulo de giro, φ L G Si la arga torsional o la seión transversal del eje ambia a lo largo de la longitud, el ángulo de rotaión se enuentra omo la suma de la rotaión de los segmentos. il φ i G i i i 3-14

15 Ejes estátiamente indeterminados Dadas las dimensiones del eje y el torque apliado, nos gustaría enontrar el torque de reaión en A y B. De un analísis de uerpo libre del eje, A + B 90lb ft que no es sufuiente para enontrar los torques terminales. El problema es estátiamente indeterminado. Dividir el eje en dos omponentes que debe tener deformaiones ompatibles, φ φ φ A 1 B B 1G G Sustituyendo en la euaión de equilibrio original, L L L 1 90lb ft L A + A 1 L1 L 1 A 3-15

16 Ejemplo Problema 3.4 SOLUCIÓN: Apliar un analísis de equilibrio estátio en los dos ejes para enontrar una ralaión entre CD y 0 Apliar un analisis inemátiopara relaionar la rotaión angular de los engranajes Dos ejes de aero sólido estan onetadoa por engranajes. Sabiendo que para estos ejes G 11. x 10 6 psi y el esfuerzo admisible ortante es 8 ksi, determine (a) el mayor torque 0 que puede apliarse en el extremo final del eje AB, (b) el orrespondiente angulo de deformaión que termina en A de la rotaión del eje AB. Enontrar el maximo torque admisible en ada eje - esoger el mas pequeño Enontrar el orrespondiente angulo de giro para ada eje y el angulo neto de rotaión al final de A 3-16

17 Ejemplo Problema 3.4 SOLUCIÓN: Apliar un analísis de equilibrio elástio en los dos ejes para enontrar la relaión entre CD y 0 Apliar un analísis inemátio para relaionar el angulo de rotaión de los engranajes M M CD B C F F ( 0.875in. ) (.45in. ) 0 CD r φ φ B φ B B B r φ r r C B C φ C.8φ C C.45in. φ 0.875in. C 3-17

18 Ejemplo Problema 3.4 Enontrar el 0 para el maximo torque admisible en ada eje esoger el más pequeño Enontrar el angulo de giro orrespondiente para ada eje en el angulo de rotaión neto al final de A max lb in. max AB CD AB CD 8000 psi 8000 psi 0 π ( 0.375in. ) 4 ( 0.375in. ).8 0 ( 0.5in. ) 4 ( 0.5in. ) π 561lb in lb in φ φ A / B C / D φ φ B A.8φ π 0.387rad. π 0.514rad.95 φ AB AB CD CD B L G L G C + φ.8 A / B ( 561lb in. )( 4in. ) 4 ( ) ( 6 ) 0.375in psi.8 o ( 561lb in. )( 4in. ) 4 ( ) ( 6 ) 0.5in psi o ( o ) o o o φ A o

19 Diseño de transmisión por ejes Las espeifiaiones de la transmisión por ejes son: - potenia - veloidad El diseñador debe seleionar material del eje y la seión transversal para umplir on las espeifiaiones de rendimiento sin exeder esfuerzo ortante permisible. Determine el torque apliado al eje la potenia y la veloidad espeifiadas, P ω πf P ω P πf Enontrar la seión transversal del eje que no exeda el esfuerzo ortante maximo, max π 3 π ( solid shafts) 4 4 ( ) ( hollow shafts) max 1 max 3-19

20 Ejes estátiamente indeterminados 3-0

21 Ejes estátiamente indeterminados 3-1

22 Ejes estátiamente indeterminados 3 -

23 Ejes estátiamente indeterminados 3-3

24 Ejes estátiamente indeterminados 3-4

25 Conentradores de esfuerzos La derivaión de la formula de torsión, max asumiendo un eje de seión transversal irular uniforme a traves de plaas extremas rigidas. El uso de aoplamientos de bridas, engranajes y poleas onetados a los ejes mediante los haveteros y seíones transversales disontinuos pueden ausar onentraiones de esfuerzos Experimentalmente o numeriamente determinando los fatores de onentraión max K 3-5

26 Deformaiones plástias Asumiendo un material linealmente elástio, max Si el límite de elastiidad es exedido o el material tiene una urva de ortante-tensión-deformaión no lineal, esta expresión no se sostiene. Deformaión por ortante varia linealmente independientemente de las propiedades del materiales. Apliaión urva de ortante-tensión-deformaión permite la determinaión de la distibuión de esfuerzos. La integral de los momentos de la distribuión de esfuerzos es igual al torque en la seíón del eje, ( πρ dρ ) π ρ ρ dρ

27 Materiales elastoplástios En el torque maximo elástio, Y A medida que aumenta el, en la región plástia ( Y ) se desarrolla alrededor del nuleo elástio ρ ( Y ) Lγ Y ρy ρy φ Y ρ π Y Y As ρ Y 0, el torque se aproxima a un valor límite, P Y π Y φ Y ρ Y Y 3 1 φ Y 4 φ 4 3 Y 1 3 L Y γ plasti torque 3-7

28 Esfuerzos residuales Región plástia se desarrolla en un eje uando es sometido a un par de torsión sufiientemente grande Cuando se elimina el torque, la reduión del esfuerzo y la tensión en ada punto tiene lugar a lo largo de una línea reta a una tensión residual generalmente distinto de ero En una urva -f, las desargas del eje a lo largo de una línea reta a un ángulo mayor que ero Esfuerzos residuales enuentran desde el prinipio de superposiión m ρ ( da) 0 3-8

29 Ejemplo 3.08/3.09 Un eje sólido irular esta sujeto a un torque 4.6kN m en el final. Asumiendo que el eje esta heho de un material elastoplastio on Y y G 77GPa determine (a) el radio del orazon elástio, (b) el angulo de giro del eje. Cuando el torque es removido, determine () el giro permanente, (d) la distribuión de esfuerzos residuales. 150MPa SOLUION: Resolver la Eq. (3.3) para r Y / y evaluar el radio del orazon elástio. Resolver la Eq. (3.36) para el angulo de giro. Evaluar la Eq. (3.16) para el angulo que el eje retifique uando el torque es removido. El giro permanente es la diferenia entre angulos de giro y retifiado. Enontrar la distribuión de la tensión residual por una superposiión de la tensión debido a la torsión y destorsión el eje 3-9

30 Ejemplo 3.08/3.09 SOLUION: Resolver la Eq. (3.3) para r Y / y evaluar el radio del orazon elástio ρ Y ρ Y ρ Y Y Y Y Y Y 4 3 π 1 π 9 3 ( 5 10 m) ( Pa)( m ) 3.68kN m m 4 Y Y m 1 3 Resolver la Eq. (3.36) para el angulo de giro φ φ Y ρy φ φ Y Y Y L G φ φ φ Y ρ 3 ( N)( 1.m) -9 4 ( m )( 77 10Pa) 3 Y rad rad o 8.50 φ o rad 8.50 ρ Y 15.8mm 3-30

31 Ejemplo 3.08/3.09 Evaluar la Eq. (3.16) para el angulo que el eje se distorsiona uando el torque es removido. El giro permanente es la diferenia entre los angulos de giro y retifiado φ φ p 3 ( N m)( 1.m) ( m )( Pa) φ φ L G 3 3 ( ) 1.81 o 3 rad φ p o 1.81 rad Enontrar la distribuión de esfuerzo residual por la superposiión del esfuerzo debido a la torsión y la distorsión del eje max 187.3MPa 3 3 ( N m)( 5 10 m) m

32 orsion en elementos no irulares La anteriores formulas de torsión son validas para ejes asimetrios o irulares Seión transversal plana de un eje no irular no permaneen planas y el esfuerzo y la distribuión de la no varia linealmente Para seiones retangulares uniformes, φ ab max 1 ab Para grandes valores de a/b, el maximo esfuerzo ortante y angulo de giro para reiones abiertas es el mismo que en una barra retangular. L 3 G 3-3

33 Ejes de pared delgada Asumiendo fuerzas en la direión x AB, F 0 ( t Δx) ( t Δx) t A x A t B B A t A q shear flow esfuerzo ortante varia inversamente on el espesor Calular el torque de la integral de los momentos debido al esfuerzo ortante dm p df p ( t ds) q( pds) q da 0 dm ta φ 0 ds t B q da qa Angulo de giro (from Chapt 11) L 4A G B 3-33

34 Ejemplo 3.10 ubos de aluminio extruido on una seión transversal retangular tiene un torque de apriete de 4 kip-in. Determinar el esfuerzo ortante en ada una de las uatro paredes on (a) espesor de pared uniforme de 0,160 pulg. Y espesores de pared de (b) en Sobre AB y CD y 0,00 pulg. En CD y BD. SOLUCIÓN: Determinar el flujo de ortante a través de las paredes de la tubería Enontrar la tensión de orte orrespondiente a ada espesor de pared 3-34

35 Ejemplo 3.10 SOLUCIÓN: Determinar el flujo de ortante a través de las paredes de la tubería Enontrar la tensión de orte orrespondiente a ada espesor de pared Con una pared de espesor uniforme, t q 1.335kip in in. 8.34ksi A ( 3.84in. )(.34in. ) q A 4kip -in. kip ( ) in in in. Con un espesor de pared variable AB AC BD CD 1.335kip in. 0.10in. AB BC 1.335kip in. 0.00in ksi BC CD 6.68ksi 3-35

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2015-1 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Resistencia de los Materiales

Resistencia de los Materiales Resistencia de los Materiales Clase 4: Torsión y Transmisión de Potencia Dr.Ing. Luis Pérez Pozo luis.perez@usm.cl Pontificia Universidad Católica de Valparaíso Escuela de Ingeniería Industrial Primer

Más detalles

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería Conreto reorzado Parte de la Normas Ténias Complementarias para Diseño Construión de Estruturas de Conreto Cálulo de Viviendas de Mampostería Elaboró: M. I. Wiliams de la Cruz Rodríguez E-Mail: albasus@avantel.net

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estruturas de aero: Problemas Pilares Dimensionar un pilar de 5 m de altura mediante un peril HEB, sabiendo que ha de soportar simultáneamente una arga axial de ompresión F de 50 unas argas horiontales

Más detalles

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

Equilibrio y cinemática de sólidos y barras (2)

Equilibrio y cinemática de sólidos y barras (2) Equilibrio y cinemática de sólidos y barras (2) Fuerzas aiales distribuidas y sección variable Índice Ejercicios de recapitulación Fuerzas aiales distribuidas Equilibrio Deformación Ejemplos Barras de

Más detalles

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS

PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS PRÁ CTICO 4: TEORI ÁS DE FÁLLÁ Y CONCENTRÁDORES DE ESFUERZOS 1. El dibujo de la figura muestra una combinación de pluma de brazo con un tensor que soporta una carga de 6kN. Ambas piezas están hechas de

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas. Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano,

Más detalles

8 Redistribución de los Momentos

8 Redistribución de los Momentos 8 Redistribuión de los Momentos TULIZIÓN PR EL ÓIGO 00 En el ódigo 00, los requisitos de diseño unifiado para redistribuión de momentos ahora se enuentran en la Seión 8.4, y los requisitos anteriores fueron

Más detalles

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada)

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada) Ejémplo de álulo estrutural utilizando el Sistema Conretek : (Preparado por: Ing. Denys Lara Lozada) Para el siguiente ejemplo se diseñará una losa de teho de dimensiones según se muestra en la figura:

Más detalles

20 Losas en dos direcciones - Método del Pórtico Equivalente

20 Losas en dos direcciones - Método del Pórtico Equivalente 0 Losas en dos direiones - Método del Pórtio Equivalente CONSIDERACIONES GENERALES El Método del Pórtio Equivalente onvierte un sistema aportiado tridimensional on losas en dos direiones en una serie de

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2

OPCIÓN PROBLEMAS 1 OPCIÓN PROBLEMAS 2 El aluno elegirá una sola de las opiones de probleas, así oo uatro de las ino uestiones propuestas. No deben resolerse probleas de opiones diferentes, ni tapoo ás de uatro uestiones. Cada problea se alifiará

Más detalles

Determinación de Módulos de Young

Determinación de Módulos de Young Determinaión de Módulos de Young Arrufat, Franiso Tomás franiso@arrufat.om Novik, Uriel Sebastián Tel: 861-15 Frigerio, María Paz mapazf@hotmail.om Sardelli, Gastón osmo80@iudad.om.ar Universidad Favaloro,

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA RESOLUCIÓN DE PROBLEMAS DE TORSION UTILIZANDO MDSOLIDS MONOGRAFIA Que para obtener el título de: INGENIERO MECÁNICO ELÉCTRICISTA PRESENTA:

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN.

CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. CÁLCULO DE LA RESISTENCIA A TRACCIÓN DEL HORMIGÓN A PARTIR DE LOS VALORES DE RESISTENCIA A COMPRESIÓN. Ing. Carlos Rodríguez Garía 1 1. Universidad de Matanzas, Vía Blana, km 3 ½, Matanzas, Cuba. CD de

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE

SECCIÓN 2: CÁLCULO DEL GOLPE DE ARIETE SECCIÓN : CÁCUO DE GOPE DE ARIETE CÁCUO DE GOPE DE ARIETE SEGÚN AIEVI El impato de la masa líquida ante una válvula no es igual si el ierre es instantáneo o gradual. a onda originada no tendrá el mismo

Más detalles

Ejercicios y Problemas de Fatiga

Ejercicios y Problemas de Fatiga UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Mecánica MC2143-Mecánica de Materiales III Ejercicios y Problemas de Fatiga Problema No. 1 En la Fig. 1a se muestra el esquema

Más detalles

2. CARGA Y DESCARGA DE UN CONDENSADOR

2. CARGA Y DESCARGA DE UN CONDENSADOR 2. ARGA Y DESARGA DE UN ONDENSADOR a. PROESO DE ARGA La manera más senilla de argar un ondensador de apaidad es apliar una diferenia de potenial V entre sus terminales mediante una fuente de.. on ello,

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO 1999-2000 10.1.- Qué longitud debe tener un redondo de hierro (G = 80.000 MPa), de 1 cm de diámetro para que pueda sufrir un ángulo de

Más detalles

ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA

ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA ANÁLISIS COMPARATIVO ENTRE EJES HUECOS Y EJES SÓLIDOS EN LA TRANSMISIÓN DE POTENCIA Jesus Diego Alberto Ramirez Nuñez a,francisco Javier Ortega Herrera b, Guillermo Tapia Tinoco b José Miguel García Guzmán

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 1.- Para las secciones mostradas en la figura 1, determine la localización de su centroide y calcule la magnitud del momento de

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de Hidráulia Ing. David Hernández Huéramo Manual de prátias Hidráulia de anales o semestre Autores: Guillermo Benjamín Pérez Morales Jesús Alberto Rodríguez Castro Jesús Martín Caballero Ulaje

Más detalles

HORMIGÓN ARMADO Y PRETENSADO (HAP1) CURSO 2011/2012

HORMIGÓN ARMADO Y PRETENSADO (HAP1) CURSO 2011/2012 HORMIGÓN ARMADO Y PRETENSADO (HAP1) URSO 011/01 EJERIIO: DIAGRAMA DE INTERAIÓN Diujar el iagrama e interaión e la seión e ormigón armao e la figura, efinieno on preisión los puntos que orresponen a las

Más detalles

Elementos Uniaxiales Sometidos a Carga Axial Pura

Elementos Uniaxiales Sometidos a Carga Axial Pura Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC ANTECEDENTES PARA CÁLCULO DE IGAS EN PANEL COINTEC Anteedente de Cálulo para iga en Panele Covinte iga Geometría: Fig. 1 Nomenlatura: h: altura total de la viga h : altura del hormigón o mortero uperior

Más detalles

Capítulo 2. El valor de la resistencia de la NTC es uno, con independencia del modelo mediante el cual se describa. Por lo tanto,

Capítulo 2. El valor de la resistencia de la NTC es uno, con independencia del modelo mediante el cual se describa. Por lo tanto, //8 Sensores resistios y sus aondiionadores Capítulo Nota: Las euaiones, figuras y problemas itados en el desarrollo de los problemas de este apítulo que no ontengan W en su referenia orresponden al libro

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

1. Propiedades de la Presión Hidrostática.

1. Propiedades de la Presión Hidrostática. Tema. Hidrostátia. Proiedades de la Presión Hidrostátia.. Euaión fundamental de la Hidrostátia.. Presión Hidrostátia en los líquidos. Euaión de equilirio de los líquidos esados. ota ieométria. 4. Suerfiie

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Potencial Eléctrico y Diferencia de Potencial

Potencial Eléctrico y Diferencia de Potencial Potenial létrio y iferenia de Potenial Potenial létrio: se llama potenial elétrio en un punto A de un ampo elétrio al trabajo () neesario para transportar la unidad de arga positiva ( ) desde fuera del

Más detalles

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores ANÁLISIS DE LOS INERAMBIADORES DE ALOR Mg. Amanio R. Rojas Flores En la prátia los interambiadores de alor son de uso omún y un ingeniero se enuentra a menudo en la posiión de: seleionar un interambiador

Más detalles

Escuela Superior Tepeji del Río

Escuela Superior Tepeji del Río Escuela Superior Tepeji del Río Área Académica: Ingenieria Industrial Asignatura: Resistencia de los Materiales Profesor(a):Miguel Ángel Hernández Garduño Periodo: Julio- Diciembre 2011 Asignatura: Resistencia

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Ecuaciones diferenciales de Equilibrio

Ecuaciones diferenciales de Equilibrio Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 5, Opión B Reserva 1, Ejeriio 6, Opión A Reserva, Ejeriio 3, Opión B Reserva, Ejeriio 6, Opión B Reserva

Más detalles

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA:

ALUMNO: CURSO: 2 MECANICA ASIGNATURA: ESTABILIDAD I FECHA: 3.1.- La viga AD soporta las dos cargas de 40 lb que se muestran en la figura. La viga se sostiene mediante un apoyo fijo en D y por medio del cable BE, el cual está conectado al contrapeso W. Determine

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS

PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS PROBLEMAS RESUELTOS EQUILIBRIO DE CUERPOS RÍGIDOS 1. Una grúa móvil levanta una carga de madera que pesa W = 25 kn. El peso del mástil ABC y El peso combinado de la camioneta y el conductor son los indicados

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

11 Efectos de la esbeltez

11 Efectos de la esbeltez 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas

Más detalles

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE

C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 3, Opión A Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión B Reserva 1, Ejeriio 6, Opión B Reserva,

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada

E.T.S.I. Caminos, Canales y Puertos I.C.C.P. Universidad de Granada E.T.S.I. aminos, anales y Puertos I...P. Universidad de Granada ONVO. SEPTIEMBRE TEORÍA DE ESTRUTURAS 16 SEPTIEMBRE 2013 TEORÍA Tiempo: 1 hora. APELLIDOS: FIRMA: NOMBRE: DNI: La Teoría representa 1/3 de

Más detalles

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C.

TAREA # 2 FISICA I FUERZAS Prof. Terenzio Soldovieri C. la presente hoja ni reescribirla en su tarea (Sólo debe entregar los problemas marcados, los restantes son para ejercitación). Puntuación: 10 puntos, los cuales serán sumados a la sumatoria de la calificación

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

MÓDULO III: MECANIZADO POR ARRANQUE DE VIRUTA. TEMA 10: Fresado TECNOLOGÍA MECÁNICA DPTO. DE INGENIERÍA MECÁNICA

MÓDULO III: MECANIZADO POR ARRANQUE DE VIRUTA. TEMA 10: Fresado TECNOLOGÍA MECÁNICA DPTO. DE INGENIERÍA MECÁNICA MÓDULO III: MECANIZADO POR ARRANQUE DE VIRUTA TEMA 10: Fresado TECNOLOGÍA MECÁNICA DPTO. DE INGENIERÍA MECÁNICA Universidad del País Vaso Euskal Herriko Unibertsitatea Tema10: Fresado 1/27 Contenidos 1.

Más detalles

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase.

Encuentre la respuesta para cada uno de los ejercicios que siguen. No se debe entregar, es solo para que usted aplique lo aprendido en clase. Taller 1 para el curso Mecánica I. Pág. 1 de 11 UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍA MECÁNICA Taller No 1 - Curso: Mecánica I Grupo: Encuentre la respuesta para cada uno de los ejercicios

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

1. Principios Generales

1. Principios Generales Física aplicada a estructuras Curso 13/14 Aquitectura Estática 1. Principios Generales P 1.1 Redondee cada una de las siguientes cantidades a tres cifras significativas: (a) 4,65735 m, (b) 55,578 s, (c)

Más detalles

TRABAJOS PRACTICOS N 8 TEMA: DISEÑO DE ELEMENTOS ESTRUCTURALES SOMETIDOS A TRACCIÓN, COMPRESION, APLASTAMIENTO Y CORTE.

TRABAJOS PRACTICOS N 8 TEMA: DISEÑO DE ELEMENTOS ESTRUCTURALES SOMETIDOS A TRACCIÓN, COMPRESION, APLASTAMIENTO Y CORTE. 8.1. Especifíquese una aleación de aluminio conveniente para una barra redonda con un diámetro de 10 mm. Sometida a una fuerza de Tracción directa estática de 8,50 kn. 8.2. Una barra rectangular con sección

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias

PROBL EMAS. *3-4. Determine la magnitud y el ángulo 8 de F necesarios Determine las magnitudes de Fl y F2 necesarias 90 CAPíTULO 3 Equilibrio de una partícula PROBL EMAS 3-1. Determine las magnitudes de l 2 necesarias para que la partícula P esté en equilibrio. 3-3. Determine la magnitud el ángulo 8 de } necesarios para

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

CALIBRACIÓN DEL PATRÓN NACIONAL DE FLUJO DE GAS TIPO PISTÓN

CALIBRACIÓN DEL PATRÓN NACIONAL DE FLUJO DE GAS TIPO PISTÓN CALIBRACIÓN DEL PATRÓN NACIONAL DE FLUJO DE GAS TIPO PISTÓN J.C. Gervaio S., J. M. Maldonado R., H. Luhsinger Centro Naional de metrología Metrología Meánia, División de Flujo y Volumen Resumen: La alibraión

Más detalles

Fernando Martínez García 1 y Sonia Navarro Gómez 2

Fernando Martínez García 1 y Sonia Navarro Gómez 2 Análisis de la Operaión Estable de los Generadores de Relutania Autoexitados, bajo Condiiones Variables en la Carga, la Capaidad de Exitaión y la Veloidad Fernando Martínez Garía y Sonia Navarro Gómez

Más detalles

Examen de MECANISMOS Junio 94 Nombre...

Examen de MECANISMOS Junio 94 Nombre... Examen de MECANISMOS Junio 94 Nombre... Sean dos ruedas talladas a cero con una cremallera de módulo m=4 mm, ángulo de presión 20 o, addendum igual al módulo y dedendum igual también al módulo. Los números

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

COMPOSICION DE FUERZAS

COMPOSICION DE FUERZAS FUERZAS La fuerza es una magnitud vectorial que modifica la condición inicial de un cuerpo o sistema, variando su estado de reposo, aumentando ó disminuyendo su velocidad y/o variando su dirección. SISTEMAS

Más detalles

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. Novena edición CAPÍTULO : ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Centroides y Centros de Gravedad 2010 The McGraw-Hill Companies, Inc. All

Más detalles

TEMA IV: PLASTICIDAD. DISLOCACIONES 4.1 PARADOJA DEL LÍMITE ELÁSTICO. CONCEPTO DE DISLOCACIÓN.

TEMA IV: PLASTICIDAD. DISLOCACIONES 4.1 PARADOJA DEL LÍMITE ELÁSTICO. CONCEPTO DE DISLOCACIÓN. TEMA IV: PLASTICIDAD. DISLOCACIONES 4. Paradoja del límite elástio. Conepto de disloaión. 4. Clasifiaión y araterizaión de las disloaiones. 4.3 Propiedades de las disloaiones. 4.4 Movimiento y multipliaión

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

UNIDAD 12. CUADRILÁTEROS

UNIDAD 12. CUADRILÁTEROS UNIDAD 12. ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... Un cuadrilátero puede ser:, si tiene dos pares de lados

Más detalles

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES VOLUMEN 4 Seguridad Estrutural Diseño de Estruturas de Conreto NORMATIVIDAD E INVESTIGACIÓN VOLUMEN 4 SEGURIDAD ESTRUCTURAL

Más detalles

SISTEMAS MECÁNICOS Septiembre 2001

SISTEMAS MECÁNICOS Septiembre 2001 SISTEMAS MECÁNICOS Septiembre 2001 Dos resortes helicoidales de compresión, ambos de hilo del mismo acero y diámetro del alambre d=1,5 cm y 7 espiras cada uno, escuadradas y rectificadas, tiene la misma

Más detalles

Ejercicios para resolver semana del 11 al 15 de febrero de 2013 EQUILIBRIO DE CUERPO RÍGIDO 3D

Ejercicios para resolver semana del 11 al 15 de febrero de 2013 EQUILIBRIO DE CUERPO RÍGIDO 3D 1.- La losa de concreto tiene un peso de 5500 lb. Determinar la tensión eistente en cada uno de los tres cables paralelos soportantes cuando la losa es mantenida en el plano horiontal, como se muestra.

Más detalles

c a p í t u l o 6 ESPECIFICACIONES, DISEÑO Y DETALLE DE REFUERZOS EN VIGAS Y COLUMNAS

c a p í t u l o 6 ESPECIFICACIONES, DISEÑO Y DETALLE DE REFUERZOS EN VIGAS Y COLUMNAS a p í t u l o 6 CAPÍTULO 6 ESPECIFICACIONES, DISEÑO Y DETALLE DE REFUERZOS EN VIGAS Y COLUMNAS Capítulo 6 Espeifiaiones, Diseño y Detalle de Refuerzos en Vigas y Columnas Nomenlatura NSR-98 = Normas olomianas

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

UNIVERSIDAD AUTONOMA DE NUEVO LEON

UNIVERSIDAD AUTONOMA DE NUEVO LEON UNIVERSIDAD AUTONOMA DE NUEVO LEON FACULTAD DE INGENIERIA MECANICA Y ELECTRICA DEPARTAMENTO DE MECANICA DE MATERIALES. PROBLEMARIO MECANICA DE MATERIALES I 200mm i Aluminio E=70GPo A=900mm 300mm Acero

Más detalles

Determine la magnitud y dirección de los ángulos directores de. . Esboce cada fuerza en un sistema de referencia x, y, z.

Determine la magnitud y dirección de los ángulos directores de. . Esboce cada fuerza en un sistema de referencia x, y, z. Determine la magnitud y dirección de los ángulos directores de y. Esboce cada fuerza en un sistema de referencia x, y, z. Resolviendo para la fuerza Su magnitud es Sus ángulos directores son z y x Resolviendo

Más detalles

2.4 Transformaciones de funciones

2.4 Transformaciones de funciones 8 CAPÍTULO Funiones.4 Transformaiones de funiones En esta seión se estudia ómo iertas transformaiones de una funión afetan su gráfia. Esto proporiona una mejor omprensión de ómo grafiar Las transformaiones

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

La viga de acero de la figura está sujeta a una carga uniformemente distribuida con un valor medio de

La viga de acero de la figura está sujeta a una carga uniformemente distribuida con un valor medio de TRABAJO PRACTICO 4 : SEGURIDAD ESTRUCTURAL Problema 1 La viga de acero de la figura está sujeta a una carga uniformemente distribuida con un valor medio de w = 29.188 KN y COV W w = 0.20. La tensión de

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Ciclones. 1.- Descripción.

Ciclones. 1.- Descripción. Cilones 1.- Desriión. Los ilones son equios meánios estaionarios, amliamente utilizados en la industria, que ermiten la searaión de artíulas de un sólido o de un líquido que se enuentran susendidos en

Más detalles

ANEJO 1: Instrumental de laboratorio utilizado en la práctica

ANEJO 1: Instrumental de laboratorio utilizado en la práctica Universidad de Aliante - Prátias de Materiales de Construión I.T.O.P Prátia Nº 2 Prátias de Materiales de Construión I.T. Obras Públias PRÁCTICA Nº 2 PROPIEDADES GENERALES II Contenido: 2.1 Toma de muestras

Más detalles

REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR

REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR REPRESENTACIÓN DEL ESTADO TENSIONAL DE UN SÓLIDO. CÍRCULOS DE MOHR Los círculos de Mohr son un método para representar gráficamente el estado tensional que padece un punto de un sólido en un instante determinado.

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

Tema 6. ELASTICIDAD.

Tema 6. ELASTICIDAD. Tema 6. LASTICIDAD. 6. Introducción. 6.2 sfuero normal. 6.3 Deformación unitaria longitudinal. 6.4 Le de Hooke. 6.5 Deformación por tracción o compresión. Módulo de Young. 6.6 Coeficiente de Poisson. 6.7

Más detalles

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre...

Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... Examen de TEORIA DE MAQUINAS Diciembre 99 Nombre... La figura muestra una leva de disco con seguidor de traslación, radial, de rodillo. La leva es un círculo de radio R=20 mm, articulado al elemento fijo

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles