Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad"

Transcripción

1 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica, de poisson. Explica el procedimiento para calcular valor esperado y varianza utilizando tablas. Hacer: Calcular el valor esperado y varianza para la distribución binomial, poisson, hipergeométrica. Introducción Se requieren definir algunos elementos del presente tema, a continuación se presentan en un mapa conceptual. Los cuadros de interés en el presente tema se indican con color; los que son complementarios solo se indican con un cuadro blanco. Variable. Valor que cambia (varía), por ejemplo: una variable puede representar las ventas de un producto el cual cambia a lo largo del tiempo; el desgaste de una tubería, la concentración de una sustancia en una reacción química. Variable continua: sus valores no presentan interrupciones entre un valor entero y otro; por ejemplo: el peso de una persona, puede tomar cualquier valor entre los 60 y 61 kilogramos; es decir una persona puede pesar kilogramos. Muchos autores simplemente se limitan a decir que puede tener cualquier cantidad de cifras después del punto decimal. Variable discreta. Solo cambia su valor en números enteros, por ejemplo el número de hijos que puede tener una persona elegida al azar Constante. Se refieren a valores que no cambian, por ejemplo el número pi = es un valor que permanece igual. Variable determinística. Valor que cambia regido por ciertas leyes de forma tal que su valor puede ser determinado o predicho con exactitud; por ejemplo: la fecha cuándo ocurrirá un eclipse de sol o de luna, disminución de la concentración de un reactivo en una reacción química bajo condiciones controladas. Variable determinística discreta. Variable determinística continua. Variable aleatoria (probabilística o estocástica). Valor que cambia regido por las leyes de la probabilidad, es decir, puede tomar un valor al azar dentro de ciertos rangos de mediciones: no puede predecirse su valor; por ejemplo el número obtenido por el lanzamiento de un dado. O el porcentaje exacto de humedad relativa en un día determinado. Variable aleatoria discreta. Solo puede tomar valores enteros dentro de un rango de valores (es una cantidad finita de números). Por ejemplo el resultado de lanzar un dado solo tiene números enteros 1, 2, 3, 4, 5 y 6 Variable aleatoria continua. Toma cualquier valor posible en un rango de valores (cantidad infinita de números). Por ejemplo el porcentaje de humedad en el aire puede ser etc % Elaboró: MC. Marcel Ruiz Martínez 1

2 La distribución binomial Binomial indica solo dos resultados posibles de múltiples ensayos: éxito o fracaso. El número total de ensayos se conoce como la población n. y se debe conocer una probabilidad de éxito y de fracaso al realizar cada ensayo. Extraer un solo componente de una población y determinar si está o no defectuoso es ejemplo de un ensayo de Bernoulli. En la práctica, es posible extraer varios componentes de una gran población y contar el número de elementos defectuosos. Esto implica realizar diversos ensayos de Bernoulli independientes y contar el número de éxitos. El número de éxitos es una variable aleatoria, que tiene una distribución binomial. Es decir, para una población donde se extraen muestras con dos resultados posibles, se puede aplicar la distribución de binomial bajo las condiciones siguientes Los ensayos son independientes Cada ensayo tiene la misma probabilidad de éxito p X es el número de éxitos en los n ensayos La función de probabilidad binomial está dada por la siguiente función de densidad: Donde: n = Número total de elementos de la población x = Número de éxitos. p = Probabilidad de éxito A continuación se describe un ejemplo para la aplicación de la ecuación descrita. Ejemplo 1. Se lanza al aire ocho veces un dado. Determine la probabilidad de que el número 6 salga: a) Cero veces. b) Una vez c) Dos veces d) Menos de tres veces Solución: Los datos para todos los incisos incluyen: n = 8 (número total de veces que se lanza el dado) p = 1/6 (probabilidad de que al realizar un lanzamiento se obtenga el número 6, es decir el éxito). Para el inciso a) Se usa la siguiente sustitución con x = 0 (no se obtiene nunca el número 6 después de 8 lanzamientos). n! p(x) = p x ( 1- p) n -x x! n x! ( ) x 8-0 8! 1 1 p(x = 0) = 1-0! ( 8 0 )! 6 6 = Usando EXCEL: Datos: Usando la ecuación de la función BINOMIAL x = RESULTADO INCISO A) n = 8 FORMULA p = 1/6 =(FACT(B3)/(FACT(B2)*FACT(B3-B2)))*(B4^B2)*(1-B4)^(B3-B2) Usando la función BINOMIAL de EXCEL RESULTADO INCISO A) FORMULA: =DISTR.BINOM(B2,B3,B4,FALSO) El resto de los incisos serán resueltos por los alumnos. Puede usar el siguiente archivo de EXCEL como apoyo Elaboró: MC. Marcel Ruiz Martínez 2

3 El siguiente problema será resuelto por los alumnos en clase. Ejercicio. La probabilidad de que un basquetbolista anote un tiro de tres puntos es 0.4. Si el jugador fue invitado a un concurso de tiros de tres puntos en donde se hacen 15 lanzamientos. Determine la probabilidad de encestar: a) Cero veces. b) Una vez c) Dos veces d) Menos de tres veces e) Al menos 10 tiros Problemas de probabilidad binomial: 1. Se toma una muestra de cinco elementos de una población grande en la cual 10% de los elementos está defectuoso. Determine la probabilidad de que: a) Ninguno de los elementos de la muestra esté defectuoso. b) Sólo uno de ellos tenga defectos. c) Uno o más de los elementos estén defectuosos. d) Menos de dos elementos de la muestra tenga defectos. 2. Se lanza al aire una moneda diez veces. Cuál es la probabilidad de obtener exactamente tres veces cara? 3. En un cargamento grande de llantas de automóvil, 5% tiene cierta imperfección. Se eligen aleatoriamente cuatro llantas para instalarlas en el automóvil. Cuál es la probabilidad de que: a) Ninguna de las llantas tenga imperfección? b) Sólo una de las llantas tenga imperfección? c) Una o más de las llantas tenga imperfección? 4. En un patrón aleatorio de ocho bits utilizado para probar un microcircuito, cada bit tiene la misma probabilidad de ser 0 o 1. Suponga que los valores de los bits son independientes. a) Cuál es la probabilidad de que todos los bits sean 1? b) Cuál es la probabilidad de que exactamente tres de los bits sean 1? c) Cuál es la probabilidad de que al menos seis de los bits sean 1? d) Cuál es la probabilidad de que al menos dos de los bits sean 1? 5. Un ingeniero que supervisa el control de calidad de un proceso de producción y sabe que el 92% de las varillas fabricadas satisfacen las especificaciones. Al seleccionar 15 varillas del proceso de producción determine la probabilidad de obtener: a) 15 varillas que cumplen con las especificaciones. b) 14 varillas que cumplen con las especificaciones c) 13 varillas que cumplen con las especificaciones d) Que más de 12 varillas cumplan las especificaciones. Actividad 2.3. Probabilidad Binomial. De la lista de problemas anteriores realice los ejercicios: 1 y 4. Elabore una PRÁCTICA DE EJERCICIOS de este trabajo (INDIVIDUAL), las rúbricas se indican en la liga siguiente: Enviar el documento final por correo electrónico a las siguientes direcciones: y Colocar en ASUNTO: Actividad 2.3. Probabilidad Binomial. No olvide enviarse copia a sí mismo del correo que envía, si usa Outlook solicite confirmación de entrega y de lectura. Elaboró: MC. Marcel Ruiz Martínez 3

4 La distribución hipergeométrica Cuando una población finita contiene dos tipos de unidades, que pueden ser denominados como éxitos y fracasos, y se extrae una muestra aleatoria simple de la población, cada unidad representa un ensayo de Bernoulli. A medida que se selecciona cada unidad, la proporción de éxitos en la población restante disminuye o aumenta, dependiendo si la unidad extraída es un éxito o fracaso. Por esta razón, los ensayos no son independientes, de ahí que el número de éxitos en la muestra no siga una distribución binomial. En su lugar, la distribución que describe adecuadamente el número de éxitos en esta situación se llama distribución hipergeométrica. Suponga una población finita que contiene N unidades, de ellas R son clasificadas como éxitos y N R como fracasos. Suponga que se extrae n unidades de esta población, y sea X el número de éxitos en la muestra. Entonces X sigue la distribución hipergeométrica con los parámetros N, R y n, que se puede denotar como X H(N, R, n). La función de masa de probabilidad de X es: Donde (el alumno debe rellenar el significado de las variables): R = N = n = x = Para una combinación se usa la fórmula: Ejemplo 1. De 50 edificios en un parque industrial, 12 no cumplen el código eléctrico. Si se seleccionan aleatoriamente diez edificios para inspeccionarlos, Determine la probabilidad de que: a) Tres no cumplan el código b) Cuatro no cumplan el código c) Menos de cinco no cumplan el código Datos: Los siguientes datos son genéricos para todos los incisos, ya que sus valores se encuentran en el texto del problema: N = 50 Número de elementos en la población total n = 10 Número de elementos en la muestra tomada R = 12 Dado que estamos interesados en la cantidad de elementos que no cumplen el código, se denomina éxito encontrar elementos que no cumplan el código. Solución inciso A: x = 3 (tres no cumplan el código, es el valor indicado solo para el inciso A) R N R x n x p(x) = N n ! ( 50-12)! ! ( 12-3 )! (10-3)! ( (10-3) )! p(x 3) = = = 50 50! 10 10! ( 50-10)! p(x = 3) = o 27.03% Elaboró: MC. Marcel Ruiz Martínez 4

5 Usando EXCEL: Datos N = 50 Población total n = 10 Muestra tomada R = 12 Número de éxitos en la población x = 3 Número de éxitos en la muestra RESPUESTA INCISO A) USANDO LA FUNCIÓN DE DISTRIBUCIÓN HIPERGEOMÉTRICA DE EXCEL El siguiente ejercicio deberá ser resuelto por los alumnos en clase: Ejercicio: Lotes de 40 componentes cada uno se denominan aceptables si no contienen más de tres defectuosos. El procedimiento para muestrear el lote es la selección de cinco componentes al azar y rechazar el lote si se encuentra un componente defectuoso. Cuál es la probabilidad de que se encuentre exactamente un defectuoso en la muestra si hay tres defectuosos en todo el lote? A continuación se reporta la ayuda de EXCEL para dicha función: Elaboró: MC. Marcel Ruiz Martínez 5

6 La distribución de Poisson La distribución de Poisson se utiliza con frecuencia en el trabajo científico. Una manera de considerarla es como una aproximación de la distribución binomial cuando n es grande y p es pequeña. Esto último se muestra con un ejemplo. Una masa contiene átomos de una sustancia radiactiva. La probabilidad de que cierto átomo decaiga en un periodo de un minuto es de Sea X el número de átomos que decae en un minuto. Se puede considerar a cada átomo como un ensayo de Bernoulli, en los que el éxito ocurre si el átomo decae. Por tanto, X es el número de éxitos en ensayos de Bernoulli independientes, cada uno con probabilidad de éxito de , de tal forma que la distribución de X es Bin(10 000, ). La media de X es µx = (10 000)(0.0002) = 2. Si X Poisson(λ), entonces X es una variable aleatoria discreta, cuyos posibles valores son enteros no negativos. El parámetro λ es una constante positiva. La función de masa de probabilidad de X es Ejemplo 1. Unas partículas están suspendidas en un medio líquido con concentración de seis partículas por ml. Se agita por completo un volumen grande de la suspensión, y después se extrae 3 ml. Cuál es la probabilidad de que sólo se retiren 15 partículas? Solución: Los datos son los siguientes: λ = (6 particulas / ml) * (3 ml) = 18 particulas x = 15 partículas x λλ p(x) = e x! p(x = 15) = e = ! Ahora usando EXCEL: Lamda 18 particulas x = 15 particulas p ( x = 15 ) = RESPUESTA =POISSON(C3,C2,FALSO) Como puede notarse lo único que debe cuidarse es identificar el promedio LAMDA y la cantidad x a estudiar. El valor de x debe estar en números enteros dado que es una variable aleatoria discreta. A continuación se muestra la información de ayuda de EXCEL sobre dicha función: Elaboró: MC. Marcel Ruiz Martínez 6

7 Ejemplo 2. La abuela hornea galletas de chispas de chocolates en grupos de 100. Ella agrega 300 chispas en la masa. Cuando las galletas están hechas, le ofrece una. Determine: a) Cuál es la probabilidad de que su galleta no tenga chispas de chocolate? b) Cuál es la probabilidad de que la galleta tenga 1 chispa? c) Cuál es la probablidad de que la galleta tenga mas de 2 chispas? d) Cuál es la probabilidad de que la galleta tenga menos de 3 chispas? λ= El alumno debe identificar el promedio de chispas de chocolate esperado para una galleta. x = El alumno debe identificar cual es el número de chispas de chocolate para el cual se desea identificar la probabilidad. Usando la distribución poisson se debe llegar a la respuesta (para el inciso A es: ) x λλ p(x) = e x! EL SIGUIENTE EJEMPLO TAMBIEN DEBE SER RESUELTO POR EL ALUMNO. Ejemplo 3. Suponga que el número de visitas a cierto sitio web durante un intervalo fijo sigue una distribución de Poisson. Suponga que la media de la razón de visitas es de cinco en cada minuto. Determine la probabilidad de que haya sólo: a) 17 visitas en los siguientes tres minutos. b) Menos de 15 visitas c) Más de 5 visitas. d) Igual o más de 5 visitas Elaboró: MC. Marcel Ruiz Martínez 7

8 Problemas de la distribución poisson: 1. La concentración de partículas en una suspensión es 2 ml. Se agita por completo la concentración, y posteriormente se extraen 3 ml. Sea X el número de partículas que son retiradas. Determine a) P(X =5) b) P(X 2) c) P(X >1) d) P(X<3) 2. Suponga que 0.03% de los contenedores plásticos producidos en cierto proceso tiene pequeños agujeros que los dejan inservibles. X representa el número de contenedores en una muestra aleatoria de que tienen este defecto. Determine a) P(X = 3) b) P(X 2) c) P(1 X <4) d) P(2 X <4) 3. El número de mensajes recibidos por el tablero computado de anuncios es una variable aleatoria de Poisson con una razón media de ocho mensajes por hora. Determine la probabilidad de que se reciban: a) cinco mensajes en una hora b) diez mensajes en 1.5 horas c) menos de tres mensajes en 112 horas TIP: Debe pasarse la media de 8 mensajes/hora a el promedio de mensajes recibidos en 1.5 horas y en 112 horas; para usarlos en la ecuación de la distribución poisson. 4. Cierto tipo de tablero de circuitos contiene 300 diodos. Cada uno tiene una probabilidad p = de fallar. a) Cuál es la media del número de diodos que falla? b) Cuál es la probabilidad de que fallen exactamente dos diodos? c) Un tablero funciona si ninguno de sus diodos falla. Cuál es la probabilidad de que funcione un tablero? d) Se envían cinco tableros a un cliente. Cuál es la probabilidad de que cuatro o más de ellos funcione? Actividad 2.4. Probabilidad Poisson. De la lista de problemas anteriores realice los ejercicios: 1 y 2. Elabore una PRÁCTICA DE EJERCICIOS de este trabajo (INDIVIDUAL), las rúbricas se indican en la liga siguiente: Enviar el documento final por correo electrónico a las siguientes direcciones: y Colocar en ASUNTO: Actividad 2.4. Probabilidad Poisson. No olvide enviarse copia a sí mismo del correo que envía, si usa Outlook solicite confirmación de entrega y de lectura. Elaboró: MC. Marcel Ruiz Martínez 8

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería NND). a)

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Modelos de distribuciones discretas y continuas Discretas En la versión actual de Rcdmr podemos encontrar las distribuciones discretas estudiadas en este curso y para cada una de ellas están disponibles

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0)

6. Sea X una v.a. con distribución N(0,1). Calcular p(x=0) 1. La rueda de una ruleta se divide en 25 sectores de igual área que se enumeran del 1 al 25. Encuentra una fórmula para la distribución de probabilidades de la v.a. X que representa el número obtenido

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

Explicación de la tarea 3 Felipe Guerra

Explicación de la tarea 3 Felipe Guerra Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

CARTAS DE CONTROL. FeGoSa

CARTAS DE CONTROL. FeGoSa Las empresas en general, ante la apertura comercial han venido reaccionando ante los cambios y situaciones adversas, reaccionan por ejemplo ante: Disminución de ventas Cancelación de pedidos Deterioro

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125.

MATEMÁTICAS 1º BACH CCSS - DISTRIBUCIÓN BINOMIAL = 0 3125. MATEMÁTICAS º BACH CCSS - DISTRIBUCIÓN BINOMIAL ˆ EJERCICIO En una ciudad se han elegido al azar 7 habitantes. ¾Cuál es la probabilidad de que cuatro de ellos hayan nacido el 7 de mayo? p = P (haber nacido

Más detalles

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS .. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Y DISTRIBUCIONES DE PROBABILIDAD Plan Común de Ingeniería 1.

Más detalles

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p

2) Un establecimiento comercial dispone a la venta dos artículos en una de sus secciones, de precios p Universidad de Sevilla Facultad de Ciencias Económicas y Empresariales Licenciatura de Economía Universidad de Sevilla ESTADÍSTICA I RELACIÓN 5 MODELOS Y DATOS ESTADÍSTICOS DEPARTAMENTO DE ECONOMÍA APLICADA

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

Ejercicios distribuciones discretas probabilidad

Ejercicios distribuciones discretas probabilidad Ejercicios distribuciones discretas probabilidad 1. Una máquina que produce cierta clase de piezas no está bien ajustada. Un porcentaje del 4.2% de las piezas están fuera de tolerancias, por lo que resultan

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o Profesor: Hugo S. Salinas. Segundo Semestre. RESOLVER. 3

Más detalles

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria

Tema 3: Variable aleatoria 9. Tema 3: Variable aleatoria Tema 3: Variable aleatoria 9 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Tema 3: Variable aleatoria 1. Probar si las siguientes funciones pueden definir funciones

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente

Más detalles

Relación de Problemas. Modelos de Probabilidad

Relación de Problemas. Modelos de Probabilidad Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Este método posibilita la traducción de pedidos reales y proyectados en órdenes de producción específicas. Unidad VII. PLAN MAESTRO DE PRODUCCION

Este método posibilita la traducción de pedidos reales y proyectados en órdenes de producción específicas. Unidad VII. PLAN MAESTRO DE PRODUCCION Unidad VII. PLAN MAESTRO DE PRODUCCION 7.1. Plan maestro de producción Para el desarrollo del programa maestro de producción, se requiere tener tanto el pronóstico de ventas como un registro de los pedidos

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7

Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Unidad Temática 1: Unidad 3 Probabilidad Temas 6 y 7 Definiciones: 1- La probabilidad estudia la verosimilitud de que determinados sucesos o eventos ocurran o no, con respecto a otros sucesos o eventos

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en

1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en 1. Simule estas situaciones y concluya: a) Se tira una moneda equilibrada 10 veces y se observa qué proporción de veces salió cara en las sucesivas tiradas, se repite el experimento en condiciones similares

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

Distribuciones discretas. Distribución Binomial

Distribuciones discretas. Distribución Binomial Boletín: Distribuciones de Probabilidad IES de MOS Métodos estadísticos y numéricos Distribuciones discretas. Distribución Binomial 1. Una urna contiene 3 bolas blancas, 1 bola negra y 2 bolas azules.

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Algunas Distribuciones de Probabilidad

Algunas Distribuciones de Probabilidad Relación de problemas 7 Algunas Distribuciones de Probabilidad 1. En un hospital se ha comprobado que la aplicación de un tratamiento en enfermos de cirrosis produce una cierta mejoría en el 80 % de los

Más detalles

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1

Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel 1 Estimación de las principales distribuciones de probabilidad mediante Microsoft Excel Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento

Más detalles

TALLER N 5 DE ESTADÍSTICA

TALLER N 5 DE ESTADÍSTICA UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 5 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo

Más detalles

Tema 1 con soluciones de los ejercicios. María Araceli Garín

Tema 1 con soluciones de los ejercicios. María Araceli Garín Tema 1 con soluciones de los ejercicios María Araceli Garín Capítulo 1 Introducción. Probabilidad en los modelos estocásticos actuariales Se describe a continuación la Tarea 1, en la que se enumeran un

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Resolver los siguientes

Más detalles

ESTIMACION POR INTERVALOS

ESTIMACION POR INTERVALOS ESTIMACION POR INTERVALOS En muchas situaciones, una estimación puntual no proporciona información suficiente sobre el parámetro. Por esta razón se construyen intervalos de confianza en donde el parámetro

Más detalles

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas

Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente

Más detalles

Tema 6 Algunos modelos de distribuciones discretas.

Tema 6 Algunos modelos de distribuciones discretas. Tema 6 Algunos modelos de distribuciones discretas. Una vez epuesta la teoría general sobre variables aleatorias y sus distribuciones de probabilidad, vamos a describir algunas distribuciones particulares

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD

DISTRIBUCIONES DISCRETAS DE PROBABILIDAD www.siresistemas.com/clases Ing. Oscar Restrepo DISTRIBUCIONES DISCRETAS DE PROBABILIDAD 1. Debido a las elevadas tasas de interés, una empresa reporta que el 30% de sus cuentas por cobrar de otras empresas

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

12 Las distribuciones binomial y normal

12 Las distribuciones binomial y normal Las distribuciones binomial y normal ACTIVIDADES INICIALES.I. Calcula la media, la varianza y la desviación típica de la variable X, cuya distribución de frecuencias viene dada por la siguiente tabla:

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

Elementos de Combinatoria

Elementos de Combinatoria Elementos de Combinatoria 1 Introducción Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

PRACTICA 2: Distribuciones de probabilidad discretas

PRACTICA 2: Distribuciones de probabilidad discretas Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 1 0 1 2 3 4 5 x PRACTICA 2: Distribuciones de probabilidad discretas 1. Clasi que las siguientes variables como discretas o continuas: (a) Número de crías (b) Peso del contenido

Más detalles

❷ Aritmética Binaria Entera

❷ Aritmética Binaria Entera ❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas

Más detalles

PRINCIPALES DISTRIBUCIONES DISCRETAS

PRINCIPALES DISTRIBUCIONES DISCRETAS PRINCIPALES DISTRIBUCIONES DISCRETAS Objetivos generales del tema En este tema definiremos y discutiremos diversas e imortantes distribuciones discretas, es decir, funciones masa de robabilidad o funciones

Más detalles

Unidad 16. Depreciación

Unidad 16. Depreciación Unidad 16 Depreciación INTRODUCCIÓN Desde el momento mismo en que se adquiere un bien, éste empieza a perder valor. Esta pérdida de valor es conocida como depreciación. La depreciación se define como la

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

El azar y la probabilidad. Un enfoque elemental

El azar y la probabilidad. Un enfoque elemental El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación.

5.4 Una flecha será ensamblada en un cojinete como se muestra a continuación. PROBLEMAS 5.1. El famoso juego 7-11, requiere que el jugador lance dos dados una v. más veces hasta tomar la decisión de que se gana o se pierde el juego. El juego se gana si en el primer lanzamiento los

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES

Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES Tema 3 VARIABLE ALEATORIA DISCRETA. PRINCIPALES DISTRIBUCIONES 1.- Definición de variable aleatoria discreta. Normalmente, los resultados posibles (espacio muestral Ω) de un experimento aleatorio no son

Más detalles

LOS INSTRUMENTOS DE MEDIDA

LOS INSTRUMENTOS DE MEDIDA LOS INSTRUMENTOS DE MEDIDA Los instrumentos de medida pueden introducir un error sistemático en el proceso de medida por un defecto de construcción o de calibración. Sólo se elimina el error cambiando

Más detalles

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera:

El valor esperado de una variable aleatoria discreta se representa de la siguiente manera: INTRODUCCIÓN AL VALOR ESPERADO Y VARIANZA (5 MINUTOS) Cuando nos hablan del promedio de que ocurra un evento, cómo sabemos con certeza qué tan cerca estamos de alcanzar ese promedio? Esta pregunta nos

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

EJERCICIOS DE PROBABILIDAD

EJERCICIOS DE PROBABILIDAD EJERCICIOS DE PROBABILIDAD 1. Se extrae una carta de una baraja española, calcula la probabilidad de que: a) Sea un rey; b) Sea un oro; c) Sea el rey de oros; d) Sea un rey o un oros; e) Sea un rey o una

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO.

PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMAS DE SIMULACIÓN PARA RESOLVER POR EL MÉTODO DE MONTECARLO. PROBLEMA 1 A un puerto de carga y descarga de material, llegan durante la noche los barcos, que serán descargados durante el día siguiente.

Más detalles

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor 1. Generalidades 2. Qué se necesita para comenzar? 3. Qué hacer para sistemas opacos y translúcidos? 4. Qué hacer

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013

EJERCICIOS RESUMEN. Aplicación: INFERENCIA ESTADÍSTICA. Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Aplicación: INFERENCIA ESTADÍSTICA EJERCICIOS RESUMEN Nota técnica preparada por: Mayte Zaragoza Benítez Fecha: 13 de mayo de 2013 Página1 DESCRIP Ejercicio 1 Los siguientes son los números de cambios

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA El análisis de Weibull es la técnica mayormente elegida para estimar una probabilidad, basada en datos medidos o asumidos. La distribución

Más detalles

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito,

1.4 Cálculo de Probabilidades con Métodos de Conteo. Considerere un espacio muestral finito, 1 1.4 Cálculo de Probabilidades con Métodos de Conteo Considerere un espacio muestral finito, y defina, Luego, Ω = {ω 1,..., ω n }, P ({ω i }) = p i, i = 1,..., n P (A) = ω i A p i, A Ω Ω se dice equiprobable

Más detalles

Protocolo de la Estación Meteorológica Davis

Protocolo de la Estación Meteorológica Davis Protocolo de la Estación Meteorológica Davis Objetivo General Tomar los datos de atmósfera utilizando una Estación Meteorológica Davis Visión General Se instala una estación meteorológica para realizar

Más detalles

TALLER No. 3. Prueba No. 1 - Importar y cargar datos en IDEA

TALLER No. 3. Prueba No. 1 - Importar y cargar datos en IDEA TALLER No. 3 AUDITORÍA AL PROCESO DE NOMINA PROGRAMA DE AUDITORÍA Objetivo de la Auditoria: Prueba No. 1 - Importar y cargar datos en IDEA Desarrollar habilidades para importar datos a IDEA y crear la

Más detalles

Modelos univariantes

Modelos univariantes Modelos univariantes 1.- 10.000 personas de la misma edad y grupo social tienen suscritas pólizas de seguros de vida con una compañía. Se estima que la probabilidad de que cada asegurado muera durante

Más detalles

TEMA 5. MUESTREO PARA LA ACEPTACIÓN.

TEMA 5. MUESTREO PARA LA ACEPTACIÓN. TEMA 5. MUESTREO PARA LA ACEPTACIÓN. Introducción. Planes de muestreo por atributos simple, doble, múltiple y rectificativos Dodge-Romig, Norma militar 1000STD-105D. Pautas a seguir para el cambio de rigor

Más detalles

Tema 3. La elección en condiciones de incertidumbre

Tema 3. La elección en condiciones de incertidumbre Tema 3 La elección en condiciones de incertidumbre Epígrafes El valor esperado La hipótesis de la utilidad esperada La aversión al riesgo La compra de un seguro Cap. 5 P-R 2 Introducción Cómo escogemos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

Modelos de distribuciones discretas

Modelos de distribuciones discretas Tema 4 Modelos de distribuciones discretas En este capítulo estudiaremos las distribuciones discretas más importantes. importancia es doble, por las aplicaciones y por su relevancia conceptual. De nuevo,

Más detalles

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS

GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS GRÁFICAS DE CONTROL DE LA CALIDAD EMPLEANDO EXCEL Y WINSTATS 1) INTRODUCCIÓN Tanto la administración de calidad como la administración Seis Sigma utilizan una gran colección de herramientas estadísticas.

Más detalles