Escurrimientos superficiales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Escurrimientos superficiales"

Transcripción

1 Escurrimientos superficiales El cálculo de los escurrimientos superficiales se considera para dos objetivos: 1) el escurrimiento medio, para estimar el volumen de agua por almacenar o retener, y 2) los escurrimientos máximos instantáneos para el diseño de obras de conservación. Escurrimiento medio Para calcular el escurrimiento medio en cuencas pequeñas o áreas de drenaje reducidas, es necesario conocer el valor de la precipitación media, el área de drenaje y su coeficiente de escurrimiento. La fórmula a utilizar sería la siguiente: Vm = C Pm A (4-1) Donde: Vm = Volumen medio que puede escurrir (m 3 ) A = Área de la cuenca (ha) C = Coeficiente de escurrimiento (adimensional) Pm = Precipitación media (mm) Para aplicar esta fórmula, es indispensable determinar cada uno de los factores que en ella intervienen y para lograrlo deben seguirse los pasos siguientes: 1) Se obtiene el valor del coeficiente de escurrimiento (C), del Cuadro 4.1 de acuerdo con los tipos de suelos, uso del suelo y pendiente. Cuando el área de drenaje presenta diferentes tipos de suelos, vegetación y pendiente media. El coeficiente de escurrimiento (C), se obtendrá para cada área parcial y posteriormente se calculará el promedio ponderado para aplicarlo en la ecuación (4-1). Cuadro 4.1 Valores del Coeficiente de escurrimiento (C) Uso del suelo y pendiente del Textura del suelo terreno Gruesa Media Fina Bosque Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente) Pastizales Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente) Terrenos cultivados Plano (0-5% pendiente) Ondulado (6-10% pendiente) Escarpado (11-30% pendiente)

2 2) Se obtiene el área de drenaje por medio de cartas topográficas, fotografías aéreas o por un levantamiento directo en el campo. 3) Se localiza el área en estudio en los mapas de isoyetas medias anuales de la República Mexicana, y se determina la precipitación media anual. En el caso de requerir mayor precisión en los cálculos se recurre a la estación meteorológica más cercana al área de estudio y se obtienen los registros anuales y/o mensuales de precipitación pluvial media. Con esos valores se determinan los volúmenes medios anuales escurridos. 4) Con esta información se procede a calcular los volúmenes medios escurridos mediante la ecuación (4-1). Ejemplo sobre la utilización de este procedimiento para el cálculo del volumen medio escurrido. Se trata de determinar el volumen medio que puede escurrir en una cuenca de 50 ha, donde los terrenos son planos (5%), de textura gruesa y arenosos con cultivo de maíz; la precipitación media anual es de 800 mm. El coeficiente de escurrimiento es de 0.30 para una zona de cultivo, de pendiente de 5% y con textura gruesa (Cuadro 4.1). Con los datos de precipitación media, el coeficiente de escurrimiento y el área de drenaje se obtiene el volumen medio de escurrimiento. V m = (0.30) (800) (50) (10) V m = 120,000 m 3 Escurrimiento máximo instantáneo Para estimar el escurrimiento máximo instantáneo que sirve para el diseño de obras de excedencia se puede estimar para diferentes periodos de retorno por el método racional modificado o por el método de las curvas numéricas o del SCS (USA). Método racional modificado para estimar escurrimientos máximos El método racional consiste en utilizar los valores intensidad de la lluvia para diferentes periodos de retorno y el área de drenaje para estimar los escurrimientos máximos instantáneos. La modificación propuesta por el Colegio de Postgraduados consiste en utilizar la lluvia máxima en 24 horas para diferentes períodos de retorno, en lugar de la intensidad de la lluvia, tal y como se muestra en la ecuación 4-2. CLA Qp = (4-2) 360

3 Donde: Qp = Escurrimiento máximo instantáneo (m 3 /s) C = Coeficiente de escurrimiento L = Lluvia máxima en 24 horas para un período de retorno dado (mm) A = Área de drenaje (ha) 360 = Factor de ajuste de unidades Para la utilización de esta ecuación, se siguen los pasos que a continuación se señalan: (l).- Obtener el área de la cuenca y el coeficiente de escurrimiento (Cuadro 4.1) (2).- Determinar la lluvia máxima en 24 horas para un período de retorno deseado 1 Ejemplo de utilización del método racional modificado. Determinar el escurrimiento máximo para un período de retorno de cinco años, en una cuenca de 100 ha, cercana a la ciudad de Guaymas, Sonora, donde las características de la cuenca son las siguientes: (a) 40 ha son de terreno plano, con una textura gruesa y sembrados de trigo; (b) 20 ha son de terreno ondulado (5-10%) de pasto natural y con suelos de una textura media y (c) 40 ha de terreno plano, cultivado de maíz y con suelos también de textura media. Secuela de cálculo: Con la información del Cuadro 4.1, se obtiene los coeficientes de escurrimiento para las tres condiciones; (a) 0.30; (b) =0.36 y (c) Con estos valores se obtiene el valor de C ponderado: C = ((0.30*40) (0.36*20) (0.50*40)/100) C = Estimar la lluvia máxima en 24 horas para un período de retorno de cinco años. Para la zona de Guaymas, Sonora, el valor es de 100 mm. Aplicando el método racional modificado, se calcula el escurrimiento máximo para el período deseado *100*100 Qp = 360 Qp = 10.9 m 3 /s 1 Para obras de conservación del suelo y del agua, se recomienda utilizar un periodo de retorno de cinco años y sólo en áreas donde se realizan fuertes inversiones, se pueden utilizar periodos de retorno mayores (10 o 25 años). La lluvia reportada en 24 horas, se puede presentar en una hora (mm/h) o estimarla en función del tiempo de concentración.

4 Método de las curvas numéricas o del SCS (USA) Para estimar el escurrimiento medio por evento y el máximo instantáneo se utiliza el método de las curvas numéricas, el cual utiliza los datos de precipitación por evento o la precipitación máxima para un periodo de retorno deseado y el máximo potencial de retención del agua del suelo como se presenta en la ecuación 4-3. (4-3) 2 ( P 0.2 S) Q = P + (0.8 S) Q > 0 Sí 0.2 S P si no Q = 0 Donde: Q = Escurrimiento medio (mm). P = Precipitación por evento (mm). S = Retención máxima potencial (mm). Como el potencial máximo de retención de agua del suelo (S) depende de las condiciones del suelo, vegetación y manejo del cultivo, entonces es factible relacionarlo con las curvas numéricas, las cuales son función de los factores antes mencionados. El potencial máximo de retención (S) se puede obtener de acuerdo a la siguiente relación: (4-4) S = 254 CN Donde: S = Potencial máximo de retención (mm). CN = Curvas numéricas (adimensional). Curvas numéricas (CN) Las curvas numéricas son similares al coeficiente de escurrimiento y fueron obtenidas por el Servicio de Conservación de Suelos basados en la observación de hidrogramas procedentes de varias tormentas en diferentes cuencas de los Estados Unidos. Estas curvas dependen del tipo de suelo, condición hidrológica de la cuenca, uso del suelo y manejo y la condición de humedad antecedente.

5 Grupos de suelos Utilizando las características texturales de los suelos (>3000) el Servicio de Conservación de Suelos (SCS) clasificó a aquellos en cuatro grupos de acuerdo con sus características hidrológicas para producir escurrimiento como se muestra en el Cuadro 4.2. Cuadro 4.2. Grupos hidrológicos de suelos usados por el SCS. Grupo de suelos A B C D Descripción de las características del suelo Suelo con bajo potencial de escurrimiento, incluye arenas profundas con muy poco limo y arcilla; también suelo permeable con grava en el perfil. Infiltración básica 8-12 mm/h Suelos con moderadamente bajo potencial de escurrimiento. Son suelos arenosos menos profundos y más agregados que el grupo A. Este grupo tiene una infiltración mayor que el promedio cuando húmedo. Ejemplos: suelos migajones, arenosos ligeros y migajones limosos. Infiltración básica 4-8 mm/h Suelos con moderadamente alto potencial de escurrimiento. Comprende suelos someros y suelos con considerable contenido de arcilla, pero menos que el grupo D. Este grupo tiene una infiltración menor que la promedio después de saturación. Ejemplo: suelos migajones arcillosos. Infiltración básica 1-4 mm/h Suelos con alto potencial de escurrimiento. Por ejemplo, suelos pesados, con alto contenido de arcillas expandibles y suelos someros con materiales fuertemente cementados. Infiltración básica menor 1 mm/h Condiciones hidrológicas del área de drenaje Este indicador de la cubierta vegetal y su variación depende de la densidad de la cobertura, de tal manera que se agrupan en los tres grupos indicados a continuación Condición hidrológica: Cobertura > %. Regular 50 % - %. < 50 %. Como la vegetación es clasificada de acuerdo con su porte, el tipo de vegetación influye en la condición hidrológica y ella varía con el uso del terreno como se muestra en el Cuadro 4.3. Uso del suelo La utilización de los terrenos ya sea como áreas de cultivo, pastizales y bosque tienen influencia en el escurrimiento y esto es más notorio cuando además de la cubierta vegetal se desarrollan tratamientos al suelo o se realizan sistemas de siembra en hilera, tupidos en surcos rectos o al contorno. Por esta razón, los usos del suelo de las zonas húmedas y subhúmedas de los Estados Unidos y las prácticas de cultivo y tratamiento al suelo, se obtuvieron los valores CN para diferentes condiciones hidrológicas y tipos de suelo como aparecen en el Cuadro 4.4.

6 Cuadro Caracterización hidrológica para varios usos del suelo. Uso del suelo Pastos naturales Áreas boscosas Pastizales mejorados Rotación praderas Cultivos de Condición hidrológica Pastos en condiciones malas, dispersos, fuertemente pastoreados con menos que la mitad del área total con cobertura vegetal. Pastos en condiciones regulares, moderadamente pastoreados con la mitad o las tres cuartas partes del área total con cubierta vegetal. Pastos en buenas condiciones, ligeramente pastoreados y con más de las tres cuartas partes del área total con cubierta vegetal. Áreas en condiciones malas, tienen árboles dispersos y fuertemente pastoreados sin crecimiento rastrero. Áreas de condiciones regulares, son moderadamente pastoreadas y con algo de crecimiento. Áreas buenas, están densamente pobladas y sin pastorear. Pastizales mezclados con leguminosas sujetas a un cuidadoso sistema de manejo de pastoreo. Son considerados como buenas condiciones hidrológicas. Praderas densas, moderadamente pastoreadas, usadas en una bien planeada rotación de cultivos y praderas son consideradas como que están en buenas condiciones hidrológicas. Áreas con material disperso, sobrepastoreado son consideradas como malas condiciones hidrológicas. Condiciones hidrológicas buenas se refieren a cultivos los cuales forman parte de una buena rotación de cultivos (cultivos de escarda, praderas, cultivos tupidos). Condiciones hidrológicas malas se refiere a cultivos manejados basándose en monocultivos.

7 Cuadro 4.4. Curva numérica (CN) para estimar el escurrimiento bajo diferentes complejos suelo - cobertura y manejo (condición de humedad II, y Ia = 0.2S). Cobertura Uso del suelo Tratamiento o práctica Condición hidrológica Suelo en descanso Surcos rectos Grupo de suelos A B C D Curva numérica Cultivo de escarda Surcos rectos Surcos rectos Terraza y curva a nivel Terraza y curva a nivel Cultivos tupidos Surcos rectos Surcos rectos Terraza y curva a nivel Terraza y curva a nivel Leguminosas en hilera o forraje en rotación Pastizales Pasto de corte Bosque Caminos de tierra Caminos pavimentados Surcos rectos Surcos rectos Terraza y curva a nivel Terraza y curva a nivel Sin tratamiento mecánico Sin tratamiento mecánico Sin tratamiento mecánico Regular Regular Regular Humedad antecedente Es de esperarse que el escurrimiento aumente a medida que se existe mayor humedad del suelo al momento de presentarse la tormenta. Por esa razón, en este método la condición de humedad del suelo producto de los cinco días previos a la tormenta que son considerados y agrupados en tres grupos, lo que le da un carácter dinámico a la estimación del escurrimiento (Cuadro 4.5).

8 Cuadro 4.5. Condición de humedad antecedente como función de la precipitación. Condición de humedad Precipitación acumulada de los cinco antecedente días previos al evento (mm) I II III > 38.1 Cuando se ha seleccionado el valor de CN del Cuadro 4.4, se obtiene un valor que está dado por la condición de humedad antecedente intermedia (II), por tal razón, se deben considerar los datos de precipitación de los cinco días previos al evento que se desea utilizar para la predicción del escurrimiento, y si esto es menor de 12.7 mm la condición de humedad antecedente es seca (I) y en el Cuadro 4.6, se busca el nuevo valor de CN que corresponde a esta condición. Cuando la precipitación es mayor de 38.1 mm, se busca el valor de la condición de humedad antecedente es húmeda (III). Cuadro 4-6. Curvas numéricas (CN) para condiciones de humedad antecedentes húmeda (III) y seca (I) a partir de las condiciones de humedad media (II). CN para condición II CN correspondientes a Condición I Condición III En caso de no contar con este Cuadro 4.5, los valores de CN(I) y CN(III), se pueden estimar a partir de CN(II) utilizando las ecuaciones que se presentan a continuación: 4.2CN( II ) CN( I) = (4.5) CN ( II)

9 23CN ( II) CN( III) = (4.6) CN ( II) Escurrimiento máximo instantáneo El escurrimiento máximo se puede estimar asumiendo un hidrograma triangular y utilizando el escurrimiento medio estimado con la ecuación 4.3, el área de drenaje, la duración del exceso de lluvia y el tiempo de concentración, como se muestra en la ecuación 4.7. Q P QA = (4.7) 1 D + 0.6T 2 C Donde: Q p = Escurrimiento máximo (m 3 /s) Q = Escurrimiento medio (mm) A = Area de drenaje (ha) D = Tiempo de duración del exceso de lluvia (h) T c = Tiempo de concentración (h) La duración del exceso de lluvia puede asumirse como el tiempo de duración de la tormenta y el tiempo de concentración que son los minutos que tarda el escurrimiento para moverse de la parte mas alta de la cuenca o área de drenaje a la salida; este tiempo se puede estimar de acuerdo con la ecuación L T C = 0.02 (4.8) 0.38 H Donde: T C = Tiempo de concentración (minutos). L = Longitud de la corriente principal (m). H = Diferencia en elevación entre el sitio más alejado de la cuenca y la salida (m). Cuando no sea posible obtener los datos de excesos de lluvia o duración de la tormenta, se puede utilizar la ecuación 4.9, donde el escurrimiento máximo se obtiene considerando un modelo similar al método racional modificado. αpa Qp = (4.9) 360 Donde: Qp = Escurrimiento máximo instantáneo (m 3 /s)

10 α = Coeficiente de escurrimiento (Q/P) P = Precipitación (mm) A = Área de drenaje (ha) 360 = Factor de ajuste de unidades Para que este modelo funcione, la precipitación que se utiliza debe a convertirse a intensidad de la lluvia; para lo cual, la precipitación utilizada para la obtención del escurrimiento máximo, debe dividirse entre el tiempo de concentración que se obtiene de la ecuación 4.8. Ejemplo de aplicación Estimar el escurrimiento medio y máximo de la cuenca del río Texcoco, considerando una lluvia máxima de mm, con una duración del exceso de agua de 45 minutos y con un periodo de retorno de 10 años. La cuenca del río Texcoco presenta las siguientes características: Zona Cubierta Pendiente (%) Area (ha) 1 Bosque ,0 2 Pastizales Uso agrícola Total 3,000 Los suelos de la zona 1 son someros, de textura migajón arenoso, con grava en el perfil y la vegetación es de bosque, con coberturas del 60 %. Los suelos de la zona 2 son de textura migajón arcillosa y están cubiertos con pastos fuertemente pastoreados y los terrenos agrícolas tienen pendientes que fluctúan de 5 a 20 % y los suelos tienen textura franca con cultivos anuales de escarda y una porción (20 %).con cultivo anual de escarda y terraceado. Es importante considerar que en los 5 días previos a la tormenta cayeron 50 mm de lluvia, y que la cuenca tiene una longitud en la corriente principal de 20 km. y un desnivel de 1,0 m. Estimación del escurrimiento medio Basado en las características de las zonas previamente discutidas se puede resumir en el Cuadro 4.7, las condiciones hidrológicas y los grupos de suelos de la cuenca. Cuadro 4.7. Características de las zonas de la cuenca del río Texcoco. Zona Uso del suelo Condición hidrológica Grupo de suelo 1 Bosque Regular A 2 Pastizal C 3 Agrícola B Con esos datos se obtuvieron los valores de CN del Cuadro 4.4 para las zonas 1 y 2 para las dos condiciones de la porción agrícola. Considerando la condición de humedad antecedente (CHA),

11 como llovieron 50 mm en los 5 días previos, la condición de humedad es III. Por ajuste de la condición de humedad y utilizando el Cuadro 4.6, se obtuvieron los nuevos CN (Cuadro 4.8). Con estos valores y usando la ecuación (4.4) se estimaron los valores de S que aparecen en el Cuadro 4.8. Cuadro Valores de CN y S para las diferentes zonas de la cuenca del río Texcoco. Zona Área CN 1 CHA 2 CN 3 S 4 1 1,0 36 III III III III Valor de CN del Cuadro 3. 2 Condición de humedad antecedente. 3 Curva numérica ajustada por condiciones de humedad antecedentes. 4 Calculado con la ecuación S = (25400/CN)-254. Con el valor de S y la precipitación del evento, se estimó el escurrimiento medio para cada zona y por ponderación se obtuvo el escurrimiento medio de la cuenca del río Texcoco. Cuadro 4.9. Cálculo del escurrimiento medio de la cuenca del río Texcoco. Zona Area S (mm) P (mm) Q (mm) QA Q(mm) 2 1 1, , , ,052 7, Total 3,000,066 El escurrimiento medio ponderado de la cuenca sería igual a mm que convertido a volumen total escurrido por el evento de mm seria: Q total escurrido = 26.02* 3,000ha *10,000m 1, Q total = 0,600m Estimación del escurrimiento máximo Para estimar el escurrimiento máximo instantáneo se utilizó el método del SCS. Para ello se considero el escurrimiento medio de mm, el área de drenaje de 3,000 ha y la duración del exceso de lluvia de 45 minutos (0. horas). La incógnita será T C la cual se estimo utilizando la ecuación 4.8 y el resultado se presenta a continuación: T C 20,000 = (0.02) 1, Estimado como la relación entre QA t entre A t

12 T C = minutos T C = 1.68 horas Con estos valores y utilizando la ecuación (4.7) el escurrimiento máximo instantáneo será igual a: q P * * 3000 = (0.5 * 0.) + (1.68 * 0.6) 3 q P = m / seg Con base a este ejemplo se obtuvo que el escurrimiento medio producto de una tormenta de mm sobre la cuenca del río Texcoco fue de mm ó 0,600 m 3 y que el escurrimiento máximo fue de m 3 /s. Si no se conociera la duración del exceso de lluvia, se puede utilizar la ecuación 4.9 y el procedimiento de aplicación se presenta a continuación. αpa Qp = α = entonces α = Resolviendo tendríamos: P = = mm/h * 44.64*3,000 Qp = 360 Qp = m 3 /s Al comparar los dos métodos, los resultados son similares y el grado de precisión que se desee depende básicamente de la información disponible. Es importante revisar la información que dan los modelos de predicción, porque estos dependen de parámetros que no han sido validados en nuestro país. Finalmente para el diseño de obras de almacenamiento o de desagüe es importante definir el periodo de retorno y la aplicación adecuada de los parámetros de los modelos de predicción, ya que estos son básicos para definir los volúmenes de escurrimiento.

Estimación de variables hidrológicas. Dr. Mario Martínez Ménez

Estimación de variables hidrológicas. Dr. Mario Martínez Ménez Estimación de variables hidrológicas Dr. Mario Martínez Ménez 2005 El calculo de las variables hidrológicas se utilizan para conocer la eficiencia técnica y el diseño de obras de conservación del suelo

Más detalles

Tinas ciegas SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN

Tinas ciegas SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN Subsecretaría de Desarrollo Rural Dirección General de Apoyos Para el Desarrollo Rural Tinas ciegas TINAS CIEGAS -Control de

Más detalles

CÁLCULO DE GASTO O CAUDAL

CÁLCULO DE GASTO O CAUDAL CÁLCULO DE GASTO O CAUDAL I. ESCURRIMIENTO SUPERFICIAL La estimación de indicadores de escurrimiento superficial en condiciones naturales es demasiado compleja, debido a que intervienen diversos factores

Más detalles

SWMM 5.0. Características Hidrológicas

SWMM 5.0. Características Hidrológicas SWMM 5.0 Modelo de gestión de aguas pluviales Desarrollado por la agencia de protección del medioambiente (EPA), de los estados unidos. Modelo numérico que permite simular el comportamiento hidráulico

Más detalles

Ciencia de la crecida repentina

Ciencia de la crecida repentina Capítulo 2 Ciencia de la crecida repentina Una crecida repentina generalmente se define como una inundación de corta duración que alcanza un caudal máximo relativamente alto (Organización Meteorológica

Más detalles

Terrazas SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN

Terrazas SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN Subsecretaría de Desarrollo Rural Dirección General de Apoyos Para el Desarrollo Rural Terrazas Definición. TERRAZAS Las terrazas

Más detalles

DIMENSIONAMIENTO DE LAS ESTRUCTURAS PARA LA TRAVESÍA VIAL DE UN CURSO DE AGUA POR MODELACIÓN HIDRODINÁMICA. Pedro Enrique Gaete Arroyo 1

DIMENSIONAMIENTO DE LAS ESTRUCTURAS PARA LA TRAVESÍA VIAL DE UN CURSO DE AGUA POR MODELACIÓN HIDRODINÁMICA. Pedro Enrique Gaete Arroyo 1 _ DIMENSIONAMIENTO DE LAS ESTRUCTURAS PARA LA TRAVESÍA VIAL DE UN CURSO DE AGUA POR MODELACIÓN HIDRODINÁMICA Pedro Enrique Gaete Arroyo 1 Palabras Clave: Hidrología vial hidráulica alcantarilla modelo

Más detalles

SEDIMENTOS. Laura Ibáñez Castillo

SEDIMENTOS. Laura Ibáñez Castillo SEDIMENTOS Laura Ibáñez Castillo SEDIMENTOS Se da el nombre genérico de sedimentos a las partículas procedentes de las rocas o suelos y que son acarreadas por las aguas que escurren. Todos estos materiales,

Más detalles

OBRAS DE RECUPERACIÓN DE SUELOS Y RECARGA DE ACUÍFEROS F. ALBERTO LLERENA V.- BENJAMÍN SÁNCHEZ B. Dimensión del problema La solución de éstos graves problemas de degradación y erosión, por su magnitud

Más detalles

Drenaje Superficial en Terrenos Agrícolas

Drenaje Superficial en Terrenos Agrícolas SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN Subsecretaría de Desarrollo Rural Dirección General de Apoyos para el Desarrollo Rural Drenaje Superficial en Terrenos Agrícolas

Más detalles

PROPIEDADES FÍSICAS DEL SUELO

PROPIEDADES FÍSICAS DEL SUELO capítulo m PROPIEDADES FÍSICAS DEL SUELO ~ Textura Es el tamaño de las partículas que componen el suelo. De manera más específica, textura es la proporción de arcilla, limo y arena en un suelo. Arena gruesa

Más detalles

6.0 CONCLUSIONES Y RECOMENDACIONES

6.0 CONCLUSIONES Y RECOMENDACIONES 6.0 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES El sistema de abastecimiento de agua potable que opera actualmente en la ciudad de Jocoro lo hace a través de 3 tanques, pero con el objeto de que las

Más detalles

III.3. INFILTRACION. III.3.1. Definición.

III.3. INFILTRACION. III.3.1. Definición. III.3. INFILTRACION El análisis de la infiltración en el ciclo hidrológico es de importancia básica en la relación entre la precipitación y el escurrimiento, por lo que a continuación se introducen los

Más detalles

CLASES DE CAPACIDAD DE USO DEL USDA

CLASES DE CAPACIDAD DE USO DEL USDA CLASES DE CAPACIDAD DE USO DEL USDA KLINGEBIEL Y MONTGOMERY, 1961 A continuación se presentan las Clases de Capacidad, tales como las definieran sus autores. Clases de capacidad Clase I. Terrenos adecuados

Más detalles

CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA

CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA 3 CAPITULO 1: CICLO HIDROLÓGICO Y CUENCA HIDROGRÁFICA 1.1 INTRODUCCIÓN El agua es el principal constituyente de los seres vivos, es la sustancia más abundante en la Tierra y es una fuerza importante que

Más detalles

Tema 2. Propiedades físicas del suelo.

Tema 2. Propiedades físicas del suelo. Tema 2. Propiedades físicas del suelo. Las propiedades físicas del suelo son: La textura La estructura La densidad La porosidad 1. La textura del suelo Se consideran partículas del suelo a las partículas

Más detalles

Calculo de la Precipitación Neta mediante el método del S.C.S. 1

Calculo de la Precipitación Neta mediante el método del S.C.S. 1 Introducción. Objetivos Calculo de la Precipitación Neta mediante el método del S.C.S. 1 Supongamos que disponemos de un hietograma que refleja la precipitación total caída, obtenido directamente de un

Más detalles

APLICACIÓN DE TÉCNICAS DE CAPTACIÓN DE AGUAS LLUVIA EN PREDIOS DE SECANO PARA FORESTACIÓN

APLICACIÓN DE TÉCNICAS DE CAPTACIÓN DE AGUAS LLUVIA EN PREDIOS DE SECANO PARA FORESTACIÓN APLICACIÓN DE TÉCNICAS DE CAPTACIÓN DE AGUAS LLUVIA EN PREDIOS DE SECANO PARA FORESTACIÓN Perret, S., Wrann, J, y Andrade, F. Manual N 25 Proyecto de Desarrollo de las Comunas Pobres de la Zona de Secano

Más detalles

CURSO MANEJO Y CONSERVACION DE SUELOS Y AGUAS OPCION PLANIFICACION DEL USO DE LA TIERRA A NIVEL PREDIAL TEMA 10 CAPACIDAD DE USO

CURSO MANEJO Y CONSERVACION DE SUELOS Y AGUAS OPCION PLANIFICACION DEL USO DE LA TIERRA A NIVEL PREDIAL TEMA 10 CAPACIDAD DE USO CURSO MANEJO Y CONSERVACION DE SUELOS Y AGUAS OPCION PLANIFICACION DEL USO DE LA TIERRA A NIVEL PREDIAL TEMA 10 CAPACIDAD DE USO Ing.Agr. CARLOS CLERICI Bibliografía Hudson N., capítulo 9 Kaplán. A.,1986

Más detalles

Las más frecuentes y que más daños producen son las relacionadas con los torrentes y ríos denominadas comúnmente crecidas o avenidas.

Las más frecuentes y que más daños producen son las relacionadas con los torrentes y ríos denominadas comúnmente crecidas o avenidas. INUNDACIONES Las inundaciones constituyen el riesgo geológico más destructivo y que más víctimas produce, tanto a escala nacional como mundial. Constituyen un fenómeno que forma parte de la dinámica natural

Más detalles

Terrazas de Base Ancha.

Terrazas de Base Ancha. SECRETARÍA DE AGRICULTURA, GANADERÍA, DESARROLLO RURAL, PESCA Y ALIMENTACIÓN Subsecretaría de Desarrollo Rural Dirección General de Apoyos para el Desarrollo Rural Terrazas de Base Ancha. Terrazas de base

Más detalles

ESTUDIOS BASICOS PARA DISEÑO DE PUENTES. Ing. José Renán Espinoza Arias, MSc

ESTUDIOS BASICOS PARA DISEÑO DE PUENTES. Ing. José Renán Espinoza Arias, MSc ESTUDIOS BASICOS PARA DISEÑO DE PUENTES Ing. José Renán Espinoza Arias, MSc Especialista en Estructuras y Geotecnia CFIA Octubre 2014 ESTUDIOS BASICOS PUENTES 1) ESTUDIO TOPOGRAFICO 2) ESTUDIOS HIDROLOGICOS

Más detalles

Capítulo 2 DRENAJE URBANO DE AGUAS LLUVIAS. Técnicas Alternativas para Soluciones de Aguas Lluvias en Sectores Urbanos 1

Capítulo 2 DRENAJE URBANO DE AGUAS LLUVIAS. Técnicas Alternativas para Soluciones de Aguas Lluvias en Sectores Urbanos 1 Capítulo 2 DRENAJE URBANO DE AGUAS LLUVIAS Técnicas Alternativas para Soluciones de Aguas Lluvias en Sectores Urbanos 1 2.1. GESTIÓN DEL DRENAJE URBANO Las acciones que se desarrollan para enfrentar los

Más detalles

La evapotranspiración: concepto y métodos para su determinación. Capítulo I

La evapotranspiración: concepto y métodos para su determinación. Capítulo I La evapotranspiración: concepto y métodos para su determinación Capítulo I I. La evapotranspiración: concepto y métodos para su determinación I.1 Evapotranspiración La evaporación es el proceso por el

Más detalles

2. METODOLOGÍA DE ANÁLISIS

2. METODOLOGÍA DE ANÁLISIS 1. INTRODUCCIÓN Entre los estudios para el análisis del régimen de lluvias de un país, se encuentra el régimen de intensidades de lluvia. Entre las aplicaciones más sobresalientes de este tipo de análisis

Más detalles

UNIVERSIDAD AUTÓNOMA DE CIUDAD JUÁREZ DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL CARTA DESCRIPTIVA PROGRAMA DE INGENIERÍA CIVIL

UNIVERSIDAD AUTÓNOMA DE CIUDAD JUÁREZ DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL CARTA DESCRIPTIVA PROGRAMA DE INGENIERÍA CIVIL UNIVERSIDAD AUTÓNOMA DE CIUDAD JUÁREZ DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL CARTA DESCRIPTIVA PROGRAMA DE INGENIERÍA CIVIL I. Identificadores de la asignatura Clave: ICA-2404-09 Créditos: 8 Materia:

Más detalles

DE LA UNIDAD DE APRENDIZAJE / EXPERIENCIA EDUCATIVA. EXPERIENCIA EDUCATIVA: OPTATIVA I: Estrategias sobre Conservación del Suelo y el agua.

DE LA UNIDAD DE APRENDIZAJE / EXPERIENCIA EDUCATIVA. EXPERIENCIA EDUCATIVA: OPTATIVA I: Estrategias sobre Conservación del Suelo y el agua. UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS AGRICOLAS Academia de Suelos PROYECTO AULA PROPUESTA DE DISEÑO INSTITUCIONAL DE LA UNIDAD DE APRENDIZAJE / EXPERIENCIA EDUCATIVA ACADEMICO: Dr. Romeo Ruiz Bello

Más detalles

Suelos. Qué son? Cómo se forman? Su importancia. De qué está compuesto? Capítulo 1. EL SUELO: de la superficie hacia abajo.

Suelos. Qué son? Cómo se forman? Su importancia. De qué está compuesto? Capítulo 1. EL SUELO: de la superficie hacia abajo. Capítulo 1 EL SUELO: de la superficie hacia abajo Suelos Objetivos: 1. Conocer que son los suelos, 2. Entender cual es su importancia, y 3. Enumerar (3) componentes del suelo y poder identificarlos. Hay

Más detalles

MÓDULO 3 CURVAS DE INFILTRACIÓN

MÓDULO 3 CURVAS DE INFILTRACIÓN MÓDULO 3 CURVAS DE INFILTRACIÓN Autores: Dr. Ing. Roberto Pizarro T. Ing. Juan Pablo Flores V. Ing. Claudia Sangüesa P. Ing. Enzo Martínez A. 1. INTRODUCCIÓN La infiltración el agua posee un rol fundamental

Más detalles

CURSO DE CONSERVACIÓN DE SUELO Y AGUA EN EL SECANO: CONSTRUCCIÓN DE SISTEMAS KEYLINE

CURSO DE CONSERVACIÓN DE SUELO Y AGUA EN EL SECANO: CONSTRUCCIÓN DE SISTEMAS KEYLINE CURSO DE CONSERVACIÓN DE SUELO Y AGUA EN EL SECANO: CONSTRUCCIÓN DE SISTEMAS KEYLINE 5 al 9 de Abril 2011 1. Antecedentes y justificación Uno de los aspectos fundamentales en el desarrollo de cualquier

Más detalles

C O B E R T U R A V E G E TA L L L U V I A S U E L O S T O P O G R A F Í A FACTORES EN LA EROSION. Lluvia. Cobertura Vegetal.

C O B E R T U R A V E G E TA L L L U V I A S U E L O S T O P O G R A F Í A FACTORES EN LA EROSION. Lluvia. Cobertura Vegetal. FACTORES EN LA EROSION Lluvia Cobertura Vegetal Topografia Prof. Dr. César Goso Aguilar Curso Geología Ambiental Dpto. Evolución de Cuencas Sección Geología Regional y Ambiental Suelos y substrato rocoso

Más detalles

MINISTERIO DE VIVIENDA Y URBANISMO GUIA DE DISEÑO Y ESPECIFICACIONES DE ELEMENTOS URBANOS DE INFRAESTRUCTURA DE AGUAS LLUVIAS

MINISTERIO DE VIVIENDA Y URBANISMO GUIA DE DISEÑO Y ESPECIFICACIONES DE ELEMENTOS URBANOS DE INFRAESTRUCTURA DE AGUAS LLUVIAS MINISTERIO DE VIVIENDA Y URBANISMO GUIA DE DISEÑO Y ESPECIFICACIONES DE ELEMENTOS URBANOS DE INFRAESTRUCTURA DE AGUAS LLUVIAS 2005 Ministerio de Vivienda y Urbanismo La presente Guía, se ha preparado con

Más detalles

Una vez que se ha decidido elaborar un Proyecto de Alcantarillado Pluvial, es conveniente recabar la información siguiente:

Una vez que se ha decidido elaborar un Proyecto de Alcantarillado Pluvial, es conveniente recabar la información siguiente: 1 4.6. Datos de Proyecto de una Red de Alcantarillado Pluvial Una vez que se ha decidido elaborar un Proyecto de Alcantarillado Pluvial, es conveniente recabar la información siguiente: 4.6.1. Generalidades

Más detalles

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS La caracterización de las propiedades físicas, mecánicas e hidráulicas del suelo es de suma importancia en la determinación de la capacidad de soporte

Más detalles

Colección DIVULGACIÓN MANEJO DEL RIEGO

Colección DIVULGACIÓN MANEJO DEL RIEGO Colección DIVULGACIÓN MANEJO DEL RIEGO Publicado en Instituto Nacional de Tecnología Agropecuaria Centro Regional Patagonia Norte Estación Experimental Agropecuaria Alto Valle Ruta Nac. 22, km 1190, Allen,

Más detalles

Capítulo 6 INFILTRACIÓN

Capítulo 6 INFILTRACIÓN Capítulo 6 INFILTRACIÓN INTRODUCCIÓN Tanto la Infiltración como el movimiento en la zona no saturada obedece a procesos físicos similares que están ligados por las condiciones hidrodinámicas del terreno,

Más detalles

GOBIERNO DE COMISIÓN NACIONAL DE RIEGO. www.sepor.cl

GOBIERNO DE COMISIÓN NACIONAL DE RIEGO. www.sepor.cl GOBIERNO DE COMISIÓN NACIONAL DE RIEGO www.sepor.cl Qué es la humedad del suelo? Es una forma de indicar la cantidad de agua presente en el perfil del suelo, a una cierta profundidad, en un momento determinado.

Más detalles

EL AGUA Y SU INTERACCION CON EL SUELO

EL AGUA Y SU INTERACCION CON EL SUELO EL AGUA Y SU INTERACCION CON EL SUELO Por el Ing. Sebastián Beláustegui Introducción El suelo es una estructura porosa más o menos suelta dependiendo de sus componentes que cumple tres funciones básicas

Más detalles

Trabajo Práctico Nº 4: Balance Hídrico

Trabajo Práctico Nº 4: Balance Hídrico Trabajo Práctico Nº 4: Balance Hídrico EVAPORACION EVAPOTRANSPIRACION El agua es evaporada desde las superficies libres de agua o incorporada a la atmósfera por la transpiración de suelos y las plantas

Más detalles

PROCESOS MORFODINÁMICOS A LO LARGO DEL TRAZADO DE LA VIA OCCIDENTAL A CIELO ABIERTO

PROCESOS MORFODINÁMICOS A LO LARGO DEL TRAZADO DE LA VIA OCCIDENTAL A CIELO ABIERTO PROCESOS MORFODINÁMICOS A LO LARGO DEL TRAZADO DE LA VIA OCCIDENTAL A CIELO ABIERTO A lo largo del trazado de lo que será la vía se encuentran algunos procesos de diferentes características en cuanto a

Más detalles

DISPONIBILIDAD DEL RECURSO HÍDRICO EN LA MICROCUENCA DEL RÍO SEGUNDO. REGIÓN CENTRAL DE COSTA RICA. 1

DISPONIBILIDAD DEL RECURSO HÍDRICO EN LA MICROCUENCA DEL RÍO SEGUNDO. REGIÓN CENTRAL DE COSTA RICA. 1 DISPONIBILIDAD DEL RECURSO HÍDRICO EN LA MICROCUENCA DEL RÍO SEGUNDO. REGIÓN CENTRAL DE COSTA RICA. 1 RESUMEN La microcuenca del río Segundo como parte de la principal zona de explotación hídrica, en la

Más detalles

FUENTES DE INFORMACION, PARAMETROS Y METODOLOGÍA DE DIAGNOSTICO DE AREAS POTENCIALES

FUENTES DE INFORMACION, PARAMETROS Y METODOLOGÍA DE DIAGNOSTICO DE AREAS POTENCIALES FUENTES DE INFORMACION, PARAMETROS Y METODOLOGÍA DE DIAGNOSTICO DE AREAS POTENCIALES 138 FUENTES DE INFORMACION Con excepción de la variable tipo climático, la cual requirió un proceso de digitalización

Más detalles

Eduardo Martínez H. Evaluación de suelos

Eduardo Martínez H. Evaluación de suelos Eduardo Martínez H. Evaluación de suelos Uso actual del suelo Es el estudio y clasificación del uso actual del suelo dado por el agricultor o usuario. Importante del punto de vista de la conservación.

Más detalles

PROYECTO: FORTALECIMIENTO DE CAPACIDADES LOCALES DE RESPUESTA ANTE DESASTRES NATURALES EN EL ALTIPLANO SUD DE POTOSI ECHO/DIP/BUD/2005/03015

PROYECTO: FORTALECIMIENTO DE CAPACIDADES LOCALES DE RESPUESTA ANTE DESASTRES NATURALES EN EL ALTIPLANO SUD DE POTOSI ECHO/DIP/BUD/2005/03015 PROYECTO: FORTALECIMIENTO DE CAPACIDADES LOCALES DE RESPUESTA ANTE DESASTRES NATURALES EN EL ALTIPLANO SUD DE POTOSI ECHO/DIP/BUD/2005/03015 Rotafolio CARTILLA DE CAPACITACION PRACTICAS AGROECOLOGICAS

Más detalles

Ficha de sistematización de Tecnologías.

Ficha de sistematización de Tecnologías. Título. Ficha de sistematización de Tecnologías. Zanjas de infiltración para el manejo de praderas Resumen. Las zanjas son canales de sección rectangular o trapezoidal, generalmente asimétricos que son

Más detalles

El Lahar del 16 de Junio del 2,006. Ladera Sur Volcán San Cristóbal. Chinandega

El Lahar del 16 de Junio del 2,006. Ladera Sur Volcán San Cristóbal. Chinandega El Lahar del 16 de Junio del 2,006. Ladera Sur Volcán San Cristóbal. Chinandega POR: TUPAK OBANDO R. Ingeniero en Geología. Master y Doctorado en Geología y Gestión Ambiental de los Recursos Mineros por

Más detalles

Estudio y Análisis del Suelo

Estudio y Análisis del Suelo Estudio y Análisis del Suelo QUÉ ES EL SUELO? Es la capa superior de la corteza terrestre, situada entre el lecho rocoso y la superficie, compuesto por partículas minerales, materia orgánica, agua, aire

Más detalles

Riego por superficie

Riego por superficie Riego por superficie Bibliografía Walker, W.R. and Skogerboe, G.V. 1987. Surface irrigation. Theory and practice. Prentice-Hall. 386p. Pascual, B. 1993. El riego; principios y prácticas. Universidad Politécnica

Más detalles

GRAL. AGUSTIN OLACHEA AVILES (SANTA INES) Municipio de La Paz, Baja California Sur.

GRAL. AGUSTIN OLACHEA AVILES (SANTA INES) Municipio de La Paz, Baja California Sur. GRAL. AGUSTIN OLACHEA AVILES (SANTA INES) Municipio de La Paz, Baja California Sur. 1. INFORME GENERAL a). LOCALIZACION GEOGRAFICA. Está ubicada a 72 km al sur de la ciudad de La Paz, B.C.S., sobre el

Más detalles

Evaporación, Transpiración n y Evapotranspiración

Evaporación, Transpiración n y Evapotranspiración Evaporación, Transpiración n y Evapotranspiración Curso de Hidrología Departamento de Ingeniería a Civil y Minas División n de Ingeniería Universidad de Sonora Mayo de 2007 Introducción La presencia de

Más detalles

González Bernaldez, 1992. Los paisajes del agua: Terminología popular de los humedales. J. Reyero (Ed), Madrid, 215 p.

González Bernaldez, 1992. Los paisajes del agua: Terminología popular de los humedales. J. Reyero (Ed), Madrid, 215 p. III. COMPONENTE HÍDRICO 1. HIDROLOGÍA, HIDROGRAFÍA e HIDRÁULICA. Esteban Chirino Miranda Departamento de Ecología, Universidad de Alicante. Fuentes: González Bernaldez, 1992. Los paisajes del agua: Terminología

Más detalles

Empleo de técnicas de percepción remota en modelos hidrológicos

Empleo de técnicas de percepción remota en modelos hidrológicos Empleo de técnicas de percepción remota en modelos hidrológicos Baldemar Méndez Antonio Universidad Nacional Autónoma de México RESUMEN Se tratará brevemente el uso de las técnicas de Percepción Remota

Más detalles

Fertilización del Cultivo de Trigo - Campaña 2009-2010

Fertilización del Cultivo de Trigo - Campaña 2009-2010 Fertilización del Cultivo de Trigo - Campaña 2009-2010 TecnoAgro S.R.L. 1. Introducción Como el año anterior, el trigo enfrenta el inicio de campaña con un nivel de incertidumbre muy grande debido a: bajo

Más detalles

En la naturaleza se conocen 3 isótopos del Hidrógeno, dos estables y uno radioactivo:

En la naturaleza se conocen 3 isótopos del Hidrógeno, dos estables y uno radioactivo: ISÓTOPOS DE LA MOLÉCULA DEL AGUA Soler, A.; Otero, N; Rosell, M.; Carrey, R.; Domènech, C. Grup de Mineralogia Aplicada i Geoquímica de Fluids Dep. Cristal lografia, Mineralogia i Dipòsits Minerals, Facultat

Más detalles

los recursos hídricos

los recursos hídricos Efecto del cambio climático en los recursos hídricos Grupo de Cambio Climático Instituto Mexicano de Tecnología del Agua Antecedentes De los resultados de los modelos climáticos reportados por el IPCC

Más detalles

MANUAL DE HIDROLOGÍA, HIDRÁULICA Y DRENAJE ÍNDICE

MANUAL DE HIDROLOGÍA, HIDRÁULICA Y DRENAJE ÍNDICE 1 MANUAL DE HIDROLOGÍA, HIDRÁULICA Y DRENAJE ÍNDICE I. INTRODUCCIÓN II. OBJETIVOS Y ALCANCES 2.1 Objetivos 2.2 Antecedentes oik. HIDROLOGÍA 3.1. Alcances 3.2. Factores Hidrológicos y Geológicos que inciden

Más detalles

OBRAS DE PROTECCION CONTRA INUNDACIONES ZONA OESTE ESPERANZA SANTA FE. Ing. Daniela Girolimetto TE: 03496 15546294

OBRAS DE PROTECCION CONTRA INUNDACIONES ZONA OESTE ESPERANZA SANTA FE. Ing. Daniela Girolimetto TE: 03496 15546294 INFORME TECNICO OBRA: CANAL PERIMETRAL Y ALTEO DE CAMINO ISABEL HEER ESPERANZA DEPARTAMENTO: LAS COLONIAS INDICE TEMATICO I MEMORIA DESCRIPTIVA I 1. Introducción I 2. Características Generales I 3. Componentes

Más detalles

Adaptación Limitaciones Ventajas Todos los cultivos en hileras y frutales. Todos los suelos regados. Pendiente hasta el 2%; óptima 0,2%.

Adaptación Limitaciones Ventajas Todos los cultivos en hileras y frutales. Todos los suelos regados. Pendiente hasta el 2%; óptima 0,2%. Surcos Bordes Adaptación Limitaciones Ventajas Todos los cultivos en hileras y frutales. Todos los suelos regados. Pendiente hasta el 2%; óptima 0,2%. Cultivos de siembra densa (pastos y cereales). Todos

Más detalles

Nombre científico: PERSEA AMERICANA

Nombre científico: PERSEA AMERICANA Nombre científico: PERSEA AMERICANA Se trata de fruto de elevado valor nutritivo debido a la gran cantidad de grasas y aceites que hay en su pulpa, lo que es sumado a los ácidos grasos insaturados que

Más detalles

1 INTRODUCCIÓN...12. 2 MATERIALES y MÉTODOS...18 3 RESULTADOS...57

1 INTRODUCCIÓN...12. 2 MATERIALES y MÉTODOS...18 3 RESULTADOS...57 V.- TABLA DE CONTENIDOS 1 INTRODUCCIÓN...12 1.1 PLANTEO DEL PROBLEMA...13 1.2 OBJETIVOS. ALCANCES DEL TRABAJO...15 1.3 ENFOQUE ECOHIDROLÓGICO...17 2 MATERIALES y MÉTODOS...18 2.1 ÁREA DE ESTUDIO...18 2.1.1

Más detalles

Los suelos de Uruguay

Los suelos de Uruguay Ficha temática 6 Los suelos de Uruguay El suelo: constitución e importancia El suelo es la capa superficial de la corteza terrestre, resultante de la transformación de los materiales geológicos subyacentes

Más detalles

Estimación de la Erosión del Suelo. Dr. Mario Martínez Ménez

Estimación de la Erosión del Suelo. Dr. Mario Martínez Ménez Estimación de la Erosión del Suelo Dr. Mario Martínez Ménez 2005 Para conocer la degradación de los suelos, es necesario estimar las pérdidas de suelo de los terrenos de uso agropecuario y forestal. Las

Más detalles

Revisión de Bases Técnicas

Revisión de Bases Técnicas 6 Revisión de Bases Técnicas Revisión de Bases Técnicas René van Veenhuizen, Oficial Profesional Asociado en Suelos, FAO INTRODUCCIÓN En este texto se denomina captación de agua, sea de lluvia o de nieblas,

Más detalles

Gráfico 1: Distribución porcentual del agua a nivel mundial. en la posición 106 de entre 122 países considerados.

Gráfico 1: Distribución porcentual del agua a nivel mundial. en la posición 106 de entre 122 países considerados. Gráfico 1: Distribución porcentual del agua a nivel mundial Gráfico 2: Distribución porcentual del agua dulce en el planeta en la posición 106 de entre 122 países considerados. La gestión del agua en México

Más detalles

Canal principal Distrito RUT. Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera:

Canal principal Distrito RUT. Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera: 9 2.1 CLASIFICACIOI\J DE LOS CANALES PARA RIEGO Canal principal Distrito RUT Los canales del sistema de distribución de agua para riego se clasifican de la siguiente manera: Canales principales. Canales

Más detalles

Guía de estudio Nº 7

Guía de estudio Nº 7 Descubriendo la Ciencia por medio de la relación Suelo Agua Planta Instituto de Educación Rural - Liceo Técnico Profesional Paulino y Margarita Callejas Universidad de Chile - EXPLORA CONICYT Guía de estudio

Más detalles

FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO

FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO FACTORES QUE INFLUENCIAN EL REGIMEN DE RIEGO A)FACTOR SUELO FACTORES QUE INFLUENCIAN EN EL REGIMEN DE RIEGO FACTORES DEL SUELO. FACTORES DEL SISTEMA DE RIEGO. FACTORES DEL CULTIVO. FACTORES DEL CLIMA.

Más detalles

Melbourne Total Watermark La ciudad como una cuenca. Cynnamon Dobbs Urban Landscapes- City Design City of Melbourne cdobbsbr@gmail.

Melbourne Total Watermark La ciudad como una cuenca. Cynnamon Dobbs Urban Landscapes- City Design City of Melbourne cdobbsbr@gmail. Melbourne Total Watermark La ciudad como una cuenca Cynnamon Dobbs Urban Landscapes- City Design City of Melbourne cdobbsbr@gmail.com Población: 4.347.955 Densidad: 430/km 2 Área: 9.990,5 km 2 LGA: 31

Más detalles

MEXTICACÁN EN EL ESTADO DE JALISCO

MEXTICACÁN EN EL ESTADO DE JALISCO ESTUDIO HIDROLÓGICO PARA LA DELIMITACIÓN Y DEMARCACIÓN DE LA ZONA FEDERAL DE LOS RÍOS: VERDE, ANCHO, IPALCO, LA LAJA, LAGOS Y AFLUENTES, EN LA ZONA DEL EMBALSE DE LA PRESA DE ALMACENAMIENTO EL ZAPOTILLO,

Más detalles

SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO

SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO SISTEMA PERSONALIZADO DE ESTIMACIÓN DE AGUA EN EL SUELO INTRODUCCIÓN Este sistema de estimación de agua en el suelo, desarrollado por la Unidad GRAS del INIA, tiene como finalidad contribuir en la toma

Más detalles

PLAN DE GESTION INTEGRAL DEL RECURSO HIDRICO FICHA TÉCNICA PARA EL LEVANTAMIENTO DE DATOS

PLAN DE GESTION INTEGRAL DEL RECURSO HIDRICO FICHA TÉCNICA PARA EL LEVANTAMIENTO DE DATOS PLAN DE GESTION INTEGRAL DEL RECURSO HIDRICO FICHA TÉCNICA PARA EL LEVANTAMIENTO DE DATOS DATOS GENERALES DE LA COMUNIDAD. NOMBRE: 1. INTERLOCUTORES Entrevistado: Nombre Cargo Teléfono Fecha de entrevista

Más detalles

Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. San Martín de las Pirámides, México Clave geoestadística 15075

Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. San Martín de las Pirámides, México Clave geoestadística 15075 Clave geoestadística 15075 2009 Ubicación geográfica Coordenadas Entre los paralelos 19 39 y 19 47 de latitud norte; los meridianos 98 45 y 98 38 de longitud oeste; altitud entre 2 200 y 3 100 m. Colindancias

Más detalles

RIESGO DE INCENDIO EN ÁREAS FORESTALES. METODOLOGÍA DEL MODELO.

RIESGO DE INCENDIO EN ÁREAS FORESTALES. METODOLOGÍA DEL MODELO. RIESGO DE INCENDIO EN ÁREAS FORESTALES. METODOLOGÍA DEL MODELO. INTRODUCCIÓN Los incendios forestales constituyen una de las más serias amenazas para el medio ambiente. El Municipio de Vitoria-Gasteiz,

Más detalles

Capítulo 3 Explotación dinámica: Control en tiempo real para redes de drenaje urbanas

Capítulo 3 Explotación dinámica: Control en tiempo real para redes de drenaje urbanas Capítulo 3. Explotación dinámica: Control en tiempo real para redes de drenaje urbanas 15 Capítulo 3 Explotación dinámica: Control en tiempo real para redes de drenaje urbanas 3.1. Gestión del drenaje

Más detalles

INFORME POSIBLES CAUSAS Y RECOMENDACIONES ACERCA DE LAS INUNDACIONES REGISTRADAS EN LA CIUDAD DE PANAMÀ RESUMEN:

INFORME POSIBLES CAUSAS Y RECOMENDACIONES ACERCA DE LAS INUNDACIONES REGISTRADAS EN LA CIUDAD DE PANAMÀ RESUMEN: INFORME POSIBLES CAUSAS Y RECOMENDACIONES ACERCA DE LAS INUNDACIONES REGISTRADAS EN LA CIUDAD DE PANAMÀ RESUMEN: Se analiza la problemática de inundaciones producidas en la ciudad de Panamá con información

Más detalles

ESTUDIO DE LA RED DE ALCANTARILLADO DE LA CUENCA URBANA DE LA RIERETA, SANT BOI DE LLOBREGAT, ESPAÑA

ESTUDIO DE LA RED DE ALCANTARILLADO DE LA CUENCA URBANA DE LA RIERETA, SANT BOI DE LLOBREGAT, ESPAÑA ESTUDIO DE LA RED DE ALCANTARILLADO DE LA CUENCA URBANA DE LA RIERETA, SANT BOI DE LLOBREGAT, ESPAÑA INTRODUCCIÓN El proyecto a desarrollar consiste en la implementación de medidas de rehabilitación, análisis

Más detalles

Bases de datos hidrológicas. Javier Aparicio

Bases de datos hidrológicas. Javier Aparicio Bases de datos hidrológicas Javier Aparicio Contenido Eric III Bandas Modelos de datos y de gestión ERIC III (Extractor Rápido de Información Climatológica versión 3) Introducción El Extractor Rápido de

Más detalles

ENSAYOS DE AGREGADOS PARA HORMIGONES

ENSAYOS DE AGREGADOS PARA HORMIGONES Estudio de Materiales II ENSAYOS DE AGREGADOS PARA HORMIGONES ENSAYOS DE AGREGADOS PARA HORMIGONES Considerando que el hormigón está formado por dos fases: la pasta de cemento hidratado y el agregado;

Más detalles

Investigación. La sequía edáfica en la cuenca del Duero

Investigación. La sequía edáfica en la cuenca del Duero Investigación La sequía edáfica en la cuenca del Duero Las sequías, y sobre todo las más prolongadas, tienen su incidencia más directa en los recursos hídricos, ya que la precipitación es la fuente de

Más detalles

Aplicación estratégica de un SIG para la evaluación preliminar del potencial hidroeléctrico del Perú

Aplicación estratégica de un SIG para la evaluación preliminar del potencial hidroeléctrico del Perú Aplicación estratégica de un SIG para la evaluación preliminar del potencial hidroeléctrico del Perú Octubre 2012, Buenos Aires - Argentina Arq. Sofía Pasman Sofia.pasman@ch2m.com Geog. Valeria Medina

Más detalles

EL DRENAJE DE SU JARDÍN

EL DRENAJE DE SU JARDÍN 2 nivel dificultad IDEAS Y SUGERENCIAS PA-IS02 CÓMO MEJORAR? EL DRENAJE DE SU JARDÍN Si tras una lluvia o después de regar abundantemente el jardín, se aprecian charcos que permanecen por más tiempo del

Más detalles

TEMA 3: Precipitaciones

TEMA 3: Precipitaciones TEMA 3: Precipitaciones MARTA GONZÁLEZ DEL TÁNAGO UNIDAD DOCENTE DE HIDRÁULICA E HIDROLOGÍA DEPARTAMENTO DE INGENIERÍA FORESTAL E.T.S. DE INGENIEROS DE MONTES UNIVERSIDAD POLITÉCNICA DE MADRID CONTENIDO

Más detalles

Desarrollo sostenible? Qué es eso?

Desarrollo sostenible? Qué es eso? Desarrollo sostenible? Qué es eso? La verdad es que a mí esas palabras me confunden, pero a nosotros los apurimeños nos toca saber qué quiere decir desarrollo sostenible. Vamos a descubrirlo con nuestra

Más detalles

El agua es necesaria para la vida del hombre, de los animales y de las plantas.

El agua es necesaria para la vida del hombre, de los animales y de las plantas. 2 Cosecha de Agua El agua es vida El agua es necesaria para la vida del hombre, de los animales y de las plantas. Sin ella, todos morirían en pocos días. Es parte importante de la riqueza del país; por

Más detalles

ESTUDIO DE LAS CONDICIONES EDÁFICAS Y FITOPATÓLOGICAS QUE DETERMINAN EL DESARROLLO DEL VETIVER

ESTUDIO DE LAS CONDICIONES EDÁFICAS Y FITOPATÓLOGICAS QUE DETERMINAN EL DESARROLLO DEL VETIVER ESTUDIO DE LAS CONDICIONES EDÁFICAS Y FITOPATÓLOGICAS QUE DETERMINAN EL DESARROLLO DEL VETIVER (Chrysopogon zizanioides) EN UN TALUD EN FRAIJANES, ALAJUELA. Objetivo: Determinar las condiciones nutricionales

Más detalles

MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA

MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA MEDIDAS DE CONSERVACIÓN DE SUELOS FRENTE A LA EROSIÓN HÍDRICA Apellidos, nombre Departamento Centro Gisbert Blanquer, Juan Manuel (jgisbert@prv.upv.es)) Ibáñez Asensio, Sara (sibanez@prv.upv.es Moreno

Más detalles

ANEXO 5- LEYENDA DE CLASIFICACIÓN FINAL LEYENDA DE COBERTURAS

ANEXO 5- LEYENDA DE CLASIFICACIÓN FINAL LEYENDA DE COBERTURAS ANEXO 5- LEYENDA DE CLASIFICACIÓN FINAL LEYENDA DE COBERTURAS CLASE 2: BOSQUE PRIMARIO Y SELVA Pertenecen a esta categoría los bosques naturales que se caracterizan principalmente por su heterogeneidad

Más detalles

Dirección General Adjunta de Recursos Naturales

Dirección General Adjunta de Recursos Naturales Dirección General Adjunta de Recursos Naturales CARTOGRAFÍA DE HUMEDALES POTENCIALES Introducción Grupo de trabajo Objetivos Definición de humedal Metodología Tipos de Humedales Componentes del humedal

Más detalles

SIG aplicados al análisis y cartografía de riesgos climáticos

SIG aplicados al análisis y cartografía de riesgos climáticos SIG aplicados al análisis y cartografía de riesgos climáticos Dpto. Geografía Física, Humana y Análisis Geográfico Regional Universidad de Murcia URL: http://www.um.es/~geograf/sigmur CORREO-E: alonsarp@um.es

Más detalles

f. Siembra en contorno o en curvas a nivel:

f. Siembra en contorno o en curvas a nivel: f. Siembra en contorno o en curvas a nivel: Las siembras en contorno consisten en orientar las hileras del cultivo siguiendo las curvas a nivel. Esta práctica contribuye a disminuir la escorrentía del

Más detalles

PLAN DE ORDENACIÓN Y MANEJO AMBIENTAL DE LA MICROCUENCA DE LAS QUEBRADAS LAS PANELAS Y LA BALSA

PLAN DE ORDENACIÓN Y MANEJO AMBIENTAL DE LA MICROCUENCA DE LAS QUEBRADAS LAS PANELAS Y LA BALSA 2.3 CLIMATOLOGÍA 2.3.1 Generalidades Debido a la localización geográfica de la zona de estudio, ubicada en una zona de bajas latitudes, entre los 4º 35 y 3º 44 al norte del Ecuador, sobre la vertiente

Más detalles

Drenajes. El drenaje agrícola se define como la evacuación del exceso de agua en el suelo. Introducción. Introducción

Drenajes. El drenaje agrícola se define como la evacuación del exceso de agua en el suelo. Introducción. Introducción Introducción Drenajes Drenajes Ricardo Cruz V.* Introducción El drenaje agrícola se define como la evacuación del exceso de agua en el suelo. En el cultivo de la caña de azúcar, el drenaje es tan importante

Más detalles

FORO IMPACTO DEL CAMBIO CLIMÁTICO EN EL SECTOR RURAL

FORO IMPACTO DEL CAMBIO CLIMÁTICO EN EL SECTOR RURAL FORO IMPACTO DEL CAMBIO CLIMÁTICO EN EL SECTOR RURAL PANEL 1.- El Cambio Climático y la Correcta Administración de los Recursos Naturales: Sustentabilidad y Siniestralidad / La Tecnología como Instrumento

Más detalles

PROPIEDADES FISICAS DE LOS SUELOS

PROPIEDADES FISICAS DE LOS SUELOS PROPIEDADES FISICAS DE LOS SUELOS (1) Densidad aparente Símbolo Db o ρ b Db = masa de suelo seco volumen total de suelo Unidades: : g cm -3 o Mg m -3 1 Métodos de medición Cilindro Excavación Aspersor

Más detalles

DEPARTAMENTO DE IRRIGACIÓN CONSERVACIÓN DE SUELOS (T y P)

DEPARTAMENTO DE IRRIGACIÓN CONSERVACIÓN DE SUELOS (T y P) DEPARTAMENTO DE IRRIGACIÓN CONSERVACIÓN DE SUELOS (T y P) FICHA CURRICULAR DATOS GENERALES Unidad Académica: Departamento de Irrigación Programa Educativo: Ingeniero en Irrigación Nivel educativo: Licenciatura

Más detalles

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. FASES GASEOSA Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. Porosidad del suelo Se denomina porosidad del suelo al espacio no ocupado

Más detalles

III. FACTORES QUE SE DEBEN CONSIDERAR PARA SELECCIONAR EL SISTEMA DE RIEGO MÁS ADECUADO

III. FACTORES QUE SE DEBEN CONSIDERAR PARA SELECCIONAR EL SISTEMA DE RIEGO MÁS ADECUADO III. FACTORES QUE SE DEBEN CONSIDERAR PARA SELECCIONAR EL SISTEMA DE RIEGO MÁS ADECUADO CAPITULO 27 EL DESARROLLO DEL MICRORRIEGO EN AMÉRICA CENTRAL 28 FACTORES QUE SE DEBEN CONSIDERAR PARA SELECCIONAR

Más detalles

5. CLASIFICACIÓN DE SUELOS. Resolver un problema de geotecnia supone conocer y determinar las propiedades del suelo; por ejemplo:

5. CLASIFICACIÓN DE SUELOS. Resolver un problema de geotecnia supone conocer y determinar las propiedades del suelo; por ejemplo: 5. CLASIFICACIÓN DE SUELOS. Resolver un problema de geotecnia supone conocer y determinar las propiedades del suelo; por ejemplo: 1) Para determinar la velocidad de circulación de un acuífero, se mide

Más detalles

Geología. Tema 9. Procesos hídricos superficiales

Geología. Tema 9. Procesos hídricos superficiales Tema 9. Procesos hídricos superficiales El agua en la Tierra Geología El agua es fundamental para los seres vivos y el hombre. Además el agua de escorrentía es el agente dominante en la alteración del

Más detalles

ASPECTOS DEL MANEJO DEL CULTIVO Y DE LA FERTILIZACIÓN NITROGENADA PARA EL SORGO GRANÍFERO.

ASPECTOS DEL MANEJO DEL CULTIVO Y DE LA FERTILIZACIÓN NITROGENADA PARA EL SORGO GRANÍFERO. ASPECTOS DEL MANEJO DEL CULTIVO Y DE LA FERTILIZACIÓN NITROGENADA PARA EL SORGO GRANÍFERO. Ings. Agrs. Hugo Fontanetto ; Oscar Keller ; Julio Albrecht ; Dino Giailevra ; Carlos Negro y Leandro Belotti

Más detalles