Laboratorio de Previsión del Tiempo I cuatrimestre 2011 Dra. Silvina Solman

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Laboratorio de Previsión del Tiempo I cuatrimestre 2011 Dra. Silvina Solman"

Transcripción

1 La verificación de la calidad de los pronósticos Agradecimientos: este material se basa en el módulo de Intelligent use of model-derived derived products tomado del Programa COMET (www.comet.ucar.edu) y del documento Forecast verification- Issues, Methods and FAQs (WCRP/WGNE). Laboratorio de Previsión del Tiempo I cuatrimestre 2011 Dra. Silvina Solman

2 Tipos de pronósticos y su verificación Determinísticos Probabilísticos Cualitativos Visual, dicotómica, varias categorías, continuo, espacial Visual, probabilístico, ensamble. Visual, dicotómico, varias categorías

3 Qué es lo que hace que un pronóstico sea bueno? Consistencia: grado en el que el pronóstico corresponde al mejor juicio que un pronosticador pueda hacer de una situación, en base a su conocimiento Calidad: : grado con el que el pronóstico se se corresponde con lo que realmente ocurrió Valor: grado con el que el pronóstico ayuda a un tomador de decisión a concretar un beneficio económico u otro tipo de beneficio Murphy, 1993 Wea. Forecasting

4 La verificación de pronósticos se suele centrar en la calidad Bias: mide la correspondencia entre el pronóstico medio y la observación media Asociación: mide la intensidad de la relación lineal entre pronósticos y observaciones (ej. coef. de correlación) Exactitud: : mide el grado de ajuste entre el pronóstico y la verdad (las observaciones). Skill o habilidad: mide la exactitud relativa del pronóstico por encima de algún pronóstico de referencia (climatología, persistencia, azar). Confiabilidad: concordancia media entre los valores observados y pronosticados. (bias condicional) Resolución: la habilidad de un pronóstico para discriminar dentro de un conjunto de eventos un subconjunto que tenga una distribución de frecuencia distinta Agudeza: la tendencia de un pronóstico para pronosticar eventos extremos

5 Aclaración para el concepto de resolución En qué medida coinciden las distribuciones de probabilidad de los pronósticos con las distribuciones de probabilidad de las observaciones?

6 Exactitud de un pronóstico En su forma más idealizada, la evaluación de la exactitud de un pronóstico puede pensarse como una comparación simple entre el pronóstico con el modelo y la verdad atmosférica: EXACTITUD = PRONÓSTICO MODELO VERDAD ATMOSFÉRICA En realidad, esta comparación está condicionada por la limitación de los pronósticos y por la representación de la verdad atmosférica. La evaluación de los pronósticos numéricos ha sido tradicionalmente subjetiva, en la cual el pronosticador, a fuerza de experiencia, opina acerca de la exactitud de los pronósticos numéricos.

7 Medidas de la exactitud de un pronóstico Las medidas estadísticas que se generan a partir de la comparación objetiva de los pronósticos con la verdad son una manera conveniente de describir y resumir la precisión de un modelo. Qué medidas estadísticas pueden cuantificar la exactitud de un pronóstico? Considerando que tenemos N pronósticos y N observaciones

8 Medidas estadísticas de errores del pronóstico f n pronóstico o n observación Error cuadrático Medio (RMSE) Error medio absoluto (MAE) Error cuadrático medio vectorial (RMSVE) Cuantifican con el mismo peso errores negativos y positivos: Medidas del valor medio de los errores del pronóstico Desviación Standard (SD) e n : error del pronóstico (f n -o n ) e n : error medio del pronóstico (BE) Bias (BE) Los errores positivos y negativos pueden cancelarse: Medida del error sistemático del pronóstico Cuantifica la variabilidad de los errores del pronóstico: Medida del error aleatorio del pronóstico

9 Fuentes de error de un pronóstico El ERROR TOTAL de un pronóstico está compuesto por la suma del ERROR SISTEMÁTICO y el ERROR ALEATORIO

10 Correlaciones: Son una buena medida de la asociación lineal o de errores en la fase Responde a la pregunta: cuán bien se correspondieron los valores pronosticados con los observados? Correlaciones de la anomalía: se calculan empleando como referencia una climatología de base Responde a la pregunta: cuán bien se correspondieron las anomalías pronosticadas con las observadas? -1 < C < 1 C=1 correlación perfecta AC critico = 0.6

11 Medidas basadas en el ajuste espacial Threat score (TS) es una medida del acierto tanto en ubicación como en tiempo - de un pronóstico para un evento particular: Responde a la pregunta: cuán bien los pronósticos si evento correspondieron con si ocurrencia? TS=aciertos/eventos pronosticados u observados TS=1 pronóstico perfecto TS ~ 0 pronóstico pobre Ejemplo TS compara el tamaño del área de acierto con el área total en la cual el evento fue pronosticado u observado

12 Medidas basadas en el ajuste espacial Equitable threat score (Gilbert skill score) Tiene en cuenta la chance aleatoria de un pronóstico correcto. Equitable threat score C = (F x O)/N, N número de observaciones verificadas C: Medida de la chance aleatoria de acierto del pronóstico Rango: -1/3 a 1, 0 indica no skill Pronóstico perfecto: 1. Mide la fracción de eventos observados y/o pronosticados que fueron correctamente pronosticados, ajustado por los aciertos asociados al azar. (Por ejemplo, es más fácil pronosticar correctamente ocurrencia de lluvia en condiciones húmedas que en condiciones secas). El ETS permite comparar la exactitud de un pronóstico bajo diferentes regímenes. Penaliza tanto los eventos no pronosticados como las falsas alarmas de la misma forma.

13 Medida de la habilidad (skill) de un pronóstico Mide la exactitud relativa del pronóstico por encima de algún pronóstico de referencia (climatología, persistencia, azar). Skill score exactitud del pronóstico exactitud de un pronósticode referencia exactitud deun pronóstico perfecto exactitud de un pronóstico de referencia SS > 0 mejor habilidad del pronóstico sobre un pronóstico de referencia (climatología) SS =0 ó < 0 el pronóstico no tiene habilidad para superar el pronóstico de referencia Ejemplo: Si sobre un determinado período de tiempo el pronóstico se verifica 60% de las veces (aciertos) y la climatología se verifica 30 % de las veces (pronóstico de referencia) SS=(60-30)/(100-30) = 30/ o 42.8% El SS se usa para cuantificar la confiabilidad de pronósticos probabilísticos.

14 Ejemplos: Verificación de los pronósticos 1) Comparación con datos observados Los datos tienen errores de instrumental y también de representatividad 2) Comparación con análisis Los valores en punto de retícula de los modelos representan un promedio areal de la caja de retícula por lo tanto es importante tener en cuenta que la verificación puede no estar comparando el mismo tipo de información (resolución espacial).

15 1) Comparación con observaciones Ajuste del pronóstico a observaciones

16 1) Comparación con observaciones Z1000 hpa Ajuste del pronóstico en diferentes regiones

17 1) Comparación con observaciones Z500 hpa Ajuste del pronóstico en diferentes regiones

18 1) Comparación con observaciones Viento en 500 hpa Ajuste del pronóstico en diferentes regiones

19 1) Comparación con observaciones (radiosondeos) Z500 RMSE

20 1) Comparación con observaciones (radiosondeos) Z500 BIAS

21 1) Comparación con observaciones (radiosondeos) T850 RMSE

22 1) Comparación con observaciones (radiosondeos) T850 BIAS

23 2) Comparación con análisis WRF (CIMA) 12Z 01 abril a 12Z 15 abril 2007

24 2) Comparación con análisis

25

26

27

28 Evolución de la calidad de los pronósticos Plazo de pronóstico Con el correr del tiempo, a partir de qué año el AC mínimo para que un pronóstico sea aceptable (0.6) se obtuvo para pronósticos a 2 a 10 dias en el HS? Y para un AC de 0.8?

VERIFICACIÓN DEL MODELO WRF QUE OPERA IDEAM Ruiz, J.F 1, Arango, C 1, Kilpinen, J 2 RESUMEN

VERIFICACIÓN DEL MODELO WRF QUE OPERA IDEAM Ruiz, J.F 1, Arango, C 1, Kilpinen, J 2 RESUMEN VERIFICACIÓN DEL MODELO WRF QUE OPERA IDEAM Ruiz, J.F, Arango, C, Kilpinen, J IDEAM, FMI RESUMEN Se presentan los resultados de la verificación del modelo WRF para Colombia operado por el IDEAM para los

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Universidad Maimónides 2016 Clase 3. Algunos Conceptos de Probabilidad Pedro Elosegui Conceptos Probabilísticos - Probabilidad: valor entre cero y uno (inclusive) que describe la posibilidad

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

SEPTIEMBRE- OCTUBRE- NOVIEMBRE Emitido el 2 de septiembre de 2016

SEPTIEMBRE- OCTUBRE- NOVIEMBRE Emitido el 2 de septiembre de 2016 SEPTIEMBRE- OCTUBRE- NOVIEMBRE 2016 Emitido el 2 de septiembre de 2016 Resumen Las condiciones actuales son de una fase neutral del fenómeno El Niño-Oscilación del Sur (ENOS). Hay una probabilidad en torno

Más detalles

PRONÓSTICO CLIMÁTICO TRIMESTRAL OCTUBRE- NOVIEMBRE- DICIEMBRE 2014

PRONÓSTICO CLIMÁTICO TRIMESTRAL OCTUBRE- NOVIEMBRE- DICIEMBRE 2014 PRONÓSTICO CLIMÁTICO TRIMESTRAL OCTUBRE- NOVIEMBRE- DICIEMBRE 2014 La previsión de la tendencia climática trimestral presentada en este Boletín es llevada a cabo por especialistas climatólogos de diversas

Más detalles

Epidemiología. 4. Validez y confiabilidad de las pruebas diagnósticas.

Epidemiología. 4. Validez y confiabilidad de las pruebas diagnósticas. Epidemiología 4. Validez y confiabilidad de las pruebas diagnósticas. Pruebas diagnósticas. Variación biológica de la población. Variación biológica de la población. sanos enfermos resultado de la prueba

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres CLASIFICACIÓN DE LA IMAGEN TÉCNICA QUE PERMITE LA IDENTIFICACIÓN DE LOS DIFERENTES OBJETOS O GRUPOS PRESENTES EN UNA IMAGEN MULTI-ESPECTRAL. MÉTODO NO SUPERVISADO MÉTODO SUPERVISADO El Desarrollo De Las

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

Los pronósticos del clima y su interpretación. Incluye el pronóstico del Víctor Magaña

Los pronósticos del clima y su interpretación. Incluye el pronóstico del Víctor Magaña Los pronósticos del clima y su interpretación Incluye el pronóstico del 2004 Víctor Magaña Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México qué significa aprovechar la información

Más detalles

Método de Análisis del Riesgo (Estudio del Calibrador Atributos)

Método de Análisis del Riesgo (Estudio del Calibrador Atributos) Método de Análisis del Riesgo (Estudio del Calibrador Atributos) Resumen El Método de Análisis del Riesgo cuantifica la incertidumbre de un sistema de medición donde las observaciones consisten de atributos

Más detalles

Tema 2. Regresión Lineal

Tema 2. Regresión Lineal Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Aspectos más salientes del estado del Niño y su impacto actual y perspectiva para los próximos meses

Aspectos más salientes del estado del Niño y su impacto actual y perspectiva para los próximos meses Aspectos más salientes del estado del Niño y su impacto actual y perspectiva para los próximos meses Las condiciones actuales son de un Niño fuerte. Hay una probabilidad cercana al 100% de que esta fase

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

NOVIEMBRE-DICIEMBRE 2016/ ENERO Emitido el 2 de noviembre de 2016

NOVIEMBRE-DICIEMBRE 2016/ ENERO Emitido el 2 de noviembre de 2016 NOVIEMBRE-DICIEMBRE 2016/ ENERO 2017 Emitido el 2 de noviembre de 2016 Resumen Las condiciones actuales son de una fase neutral del fenómeno El Niño-Oscilación del Sur (ENOS). Hay una baja probabilidad

Más detalles

PRONÓSTICO CLIMÁTICO EVOLUCIÓN DEL FENÓMENO LA NIÑA. Setiembre Octubre Noviembre de 2010

PRONÓSTICO CLIMÁTICO EVOLUCIÓN DEL FENÓMENO LA NIÑA. Setiembre Octubre Noviembre de 2010 Setiembre Octubre Noviembre de 2010 PRONÓSTICO CLIMÁTICO GERENCIA DE CLIMATOLOGÍA E HIDROLOGÍA DEPARTAMENTO DE CLIMATOLOGÍA Visite el sitio Web de la DMH: www.meteorologia.gov.py Oficina de Vigilancia

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES CRIVISQ

FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES CRIVISQ PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES EDU DUARDO CRIVISQ RIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS SIMPLES Y MÚLTIPLES

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística

BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística BLOQUE III: SENTIDO ESTADÍSTICO COMO OBJETO DE ENSEÑANZA/APRENDIZAJE. MODULO 6: Probabilidad MODULO 7: Estadística 1 MODULO 6: Probabilidad 6.1. La probabilidad cuando se considera como contenido en Primaria

Más detalles

Medidas de posición relativa

Medidas de posición relativa Medidas de posición relativa Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 3.1-1 Medidas de posición relativa Son medidas que pueden utilizarse para comparar valores de diferentes

Más detalles

EJERCICIOS RESUELTOS TEMA 1.

EJERCICIOS RESUELTOS TEMA 1. EJERCICIOS RESUELTOS TEMA 1. 1.1. El proceso por el cual se asignan números a objetos o características según determinadas reglas se denomina: A) muestreo; B) estadística; C) medición. 1.2. Mediante la

Más detalles

Clima reciente, perspectiva diciembre 2015 abril Preparado por: Centro de Predicción Climática, SMN DGOA / MARN Diciembre 1, 2015.

Clima reciente, perspectiva diciembre 2015 abril Preparado por: Centro de Predicción Climática, SMN DGOA / MARN Diciembre 1, 2015. Clima reciente, perspectiva diciembre 2015 abril 2016 Preparado por: Centro de Predicción Climática, SMN DGOA / MARN Diciembre 1, 2015. Contenido Clima reciente Factores climáticos, evolución y pronósticos

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

CURSO: TOMA DE DECISIONES BAJO RIESGO

CURSO: TOMA DE DECISIONES BAJO RIESGO MANAGEMENT CONSULTORES CURSO: TOMA DE DECISIONES BAJO RIESGO Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-15-5468-3369 Fax: 054-11-4433-4202 Mail: mgm_consultas@mgmconsultores.com.ar

Más detalles

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña

CORRELACIÓN Y REGRESIÓN. Juan José Hernández Ocaña CORRELACIÓN Y REGRESIÓN Juan José Hernández Ocaña CORRELACIÓN Muchas veces en Estadística necesitamos saber si existe una relación entre datos apareados y tratamos de buscar una posible relación entre

Más detalles

INSTITUTO DEL MAR DEL PERÚ

INSTITUTO DEL MAR DEL PERÚ INSTITUTO DEL MAR DEL PERÚ IMARPE CONDICIONES DEL AMBIENTE MARINO AL 02 MARZO 2015 Ing. Luis Pizarro P. Instituto del Mar del Perú PROMEDIOS DE ANOMALÍAS DE LA TSM EN LAS ULTIMAS CUATRO SEMANAS Período

Más detalles

Estimación por métodos Geoestadísticos

Estimación por métodos Geoestadísticos Estimación por métodos Geoestadísticos Métodos de Estimación de Recursos Mineros Estimación global Estimación local La media aritmética Los polígonos El método del inverso de la distancia Geoestadística

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Influencia del Niño 2015/16 en el clima de Argentina

Influencia del Niño 2015/16 en el clima de Argentina Influencia del Niño 2015/16 en el clima de Argentina Carolina Vera DCAO-CIMA FCEyN/UBA-CONICET UMI-IFAECI/CNRS Alejandro Godoy Servicio Meteorológico Nacional DCAO/FCEyN/UBA Anomalías de Temp. de la sup.

Más detalles

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO PROCESO ANALÍTICO Conjunto de operaciones analíticas intercaladas que se

Más detalles

Perspectiva del clima para el período de agosto a noviembre de 2016

Perspectiva del clima para el período de agosto a noviembre de 2016 Perspectiva del clima para el período de agosto a noviembre de 2016 Se prevé una sequía meteorológica de débil a moderada entre julio y agosto, con períodos cortos secos de 5 a 10 días consecutivos, sin

Más detalles

FINANZAS CORPORATIVAS

FINANZAS CORPORATIVAS FINANZAS CORPORATIVAS RIESGO Y RENDIMIENTO JOSÉ IGNACIO A. PÉREZ HIDALGO Licenciado en Ciencias en la Administración de Empresas Universidad de Valparaíso, Chile TOMA DE DECISIONES Certeza: resultado real

Más detalles

Técnicas de Investigación Social

Técnicas de Investigación Social Licenciatura en Sociología Curso 2006/07 Técnicas de Investigación Social Medir la realidad social (4) La regresión (relación entre variables) El término REGRESIÓN fue introducido por GALTON en su libro

Más detalles

Prácticas de Ecología Curso 3 Práctica 1: Muestreo

Prácticas de Ecología Curso 3 Práctica 1: Muestreo PRÁCTICA 1: MUESTREO Introducción La investigación ecológica se basa en la medición de parámetros de los organismos y del medio en el que viven. Este proceso de toma de datos se denomina muestreo. En la

Más detalles

FASE DEL FENOMENO CONDICION ACTUAL DEL FENOMENO ENOS

FASE DEL FENOMENO CONDICION ACTUAL DEL FENOMENO ENOS BOLETIN DEL ENOS N 61 1 (setiembre, 2013) FASE DEL FENOMENO NEUTRAL CONDICION ACTUAL DEL FENOMENO ENOS En agosto y las primeras semanas se setiembre los índices de monitoreo de la componente oceánica del

Más detalles

Licenciatura en Contaduría. Tema: Teoría de las probabilidades

Licenciatura en Contaduría. Tema: Teoría de las probabilidades UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE ZIMAPÁN Licenciatura en Contaduría Tema: Teoría de las probabilidades L.C. Beatriz Caballero Máximo Julio Diciembre 2014 Tema: Conceptos generales

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

Pronósticos Automáticos

Pronósticos Automáticos Pronósticos Automáticos Resumen El procedimiento de Pronósticos Automáticos esta diseñado para pronosticar valores futuros en datos de una serie de tiempo. Una serie de tiempo consiste en un conjunto de

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

Curva de Lorenz e Indice de Gini Curva de Lorenz

Curva de Lorenz e Indice de Gini Curva de Lorenz Curva de Lorenz e Indice de Gini Curva de Lorenz La curva de Lorenz es útil para demostrar la diferencia entre dos distribuciones: por ejemplo quantiles de población contra quantiles de ingresos. También

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN

POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN POBLACIÓN Y MUESTRAS EN LA INVESTIGACIÓN Adela del Carpio Rivera Doctor en Medicina UNIVERSO Conjunto de individuos u objetos de los que se desea conocer algo en una investigación Población o universo

Más detalles

UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira

UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira UNIVERSIDAD DE COSTA RICA XS0111 Estadística Introductoria I Prof. Olman Ramírez Moreira Levin & Rubin. Estadística para Administradores Gómez Barrantes, Miguel. Elementos de estadística descriptiva 1

Más detalles

CAPÍTULO 4. ANÁLISIS DE LA INFLUENCIA DEL INTERVALO DE TIEMPO UTILIZADO EN EL SEGUIMIENTO EN LOS RESULTADOS DE LA PREVISIÓN

CAPÍTULO 4. ANÁLISIS DE LA INFLUENCIA DEL INTERVALO DE TIEMPO UTILIZADO EN EL SEGUIMIENTO EN LOS RESULTADOS DE LA PREVISIÓN CAPÍTULO 4. ANÁLISIS DE LA INFLUENCIA DEL INTERVALO DE TIEMPO UTILIZADO EN EL SEGUIMIENTO EN LOS RESULTADOS DE LA PREVISIÓN En este capítulo se analiza la influencia del intervalo de tiempo utilizado para

Más detalles

DISTRIBUCIÓN DE CONOCIMIENTOS PARA LOS COLEGIOS TECNICOS PROFESIONALES ASIGNATURA MATEMÁTICA PARA EL AÑO 2016 UNICAMENTE

DISTRIBUCIÓN DE CONOCIMIENTOS PARA LOS COLEGIOS TECNICOS PROFESIONALES ASIGNATURA MATEMÁTICA PARA EL AÑO 2016 UNICAMENTE MINISTERIO DE EDUCACIÓN PÚBLICA DESPACHO DEL VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE TERCER CICLO Y EDUCACIÓN DIVERSIFICADA TELÉFONO 22231810 APARTADO 10 087-1 000 SAN

Más detalles

RIO PARANA EN CORRIENTES

RIO PARANA EN CORRIENTES RIO PARANA EN CORRIENTES Pronóstico estacional de caudales para período Octubre 2015 Marzo 2016 Este pronóstico corresponde al volumen total acumulado en hectómetros cúbicos, a esperar en el río Paraná

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Aspectos más salientes del estado del fenómeno El Niño y su impacto actual y perspectiva para los próximos meses

Aspectos más salientes del estado del fenómeno El Niño y su impacto actual y perspectiva para los próximos meses Aspectos más salientes del estado del fenómeno El Niño y su impacto actual y perspectiva para los próximos meses Las condiciones actuales son de un Niño fuerte. Hay una probabilidad cercana al 100% de

Más detalles

Diagnóstico y Perspectivas Climáticas para Nov -Dic 2016 Ene 2017

Diagnóstico y Perspectivas Climáticas para Nov -Dic 2016 Ene 2017 Centro Regional del Clima en red para el Sur de América del Sur Centro Regional do Clima na rede para o Sul da América do Sul Diagnóstico y Perspectivas Climáticas para Nov -Dic 2016 Ene 2017 10 de noviembre

Más detalles

Análisis del evento del 15 de abril de 2016 Tornado en la ciudad de Dolores

Análisis del evento del 15 de abril de 2016 Tornado en la ciudad de Dolores Análisis del evento del 15 de abril de 2016 Tornado en la ciudad de Dolores Departamento de Ciencias de la Atmósfera Facultad de Ciencias, Universidad de la República 1 Este informe describe la situación

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

Tema 8. Análisis de dos variables Ejercicios resueltos 1

Tema 8. Análisis de dos variables Ejercicios resueltos 1 Tema 8. Análisis de dos variables Ejercicios resueltos 1 Ejercicio resuelto 8.1 La siguiente tabla muestra la distribución del gasto mensual en libros y el gasto mensual en audiovisual en euros en los

Más detalles

MÉTODOS DE PRONÓSTICO JUAN DAVID ORTEGON JUAN DAVID BENAVIDEZ

MÉTODOS DE PRONÓSTICO JUAN DAVID ORTEGON JUAN DAVID BENAVIDEZ MÉTODOS DE PRONÓSTICO JUAN DAVID ORTEGON JUAN DAVID BENAVIDEZ QUE ES UN PRONÓSTICO? En el ámbito de los negocios un PRONÓSTICO es una herramienta que permite hacer una estimación acerca de la probabilidad

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Planificación didáctica de MATEMÁTICAS 3º E.S.O.

Planificación didáctica de MATEMÁTICAS 3º E.S.O. Planificación didáctica de MATEMÁTICAS 3º E.S.O. (Orientadas a las enseñanzas aplicadas) Julio de 2016 Rev.: 0 Índice 1.- INTRODUCCIÓN... 1 2.- BLOQUE I. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS...

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

5. Los objetivos de la Calidad de los Datos (OCD) y la Evaluación de la

5. Los objetivos de la Calidad de los Datos (OCD) y la Evaluación de la 5. Los objetivos de la Calidad de los Datos (OCD) y la Evaluación de la Calidad de los Datos (ECD) en el Ciclo de Vida de los Datos de un Proyecto. Los objetivos de calidad de los datos, OCD, se mencionaron

Más detalles

WAFS_Word. 2. Menú. 2.1 Sin título. Guía de pronósticos reticulares WAFS armonizados de nubes CB, engelamiento y turbulencia

WAFS_Word. 2. Menú. 2.1 Sin título. Guía de pronósticos reticulares WAFS armonizados de nubes CB, engelamiento y turbulencia WAFS_Word 2. Menú 2.1 Sin título WAFC de Londres y WAFC de Washington Mayo de 2013 Introducción Sobre los datos Uso de los datos Publicado por by Articulate Storyline www.articulate.com 1. Introducción

Más detalles

Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos

Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos Desempeño de Medidas de Riesgo sobre Distribuciones de Valores Extremos Resumen Ejecutivo Antecedentes El riesgo es un concepto ampliamente estudiado, con diversas definiciones que dependen del contexto

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA PROYECTO CURRICULAR DE INGENIERÍA DE SISTEMAS I. IDENTIFICACIÓN DE LA ASIGNATURA ESTADÍSTICA I CÓDIGO DE LA ASIGNATURA 33102106 ÁREA CIENCIAS BASICAS DE INGENIERIA SEMESTRE SEGUNDO PLAN DE ESTUDIOS 1996 AJUSTE 2002 HORAS TOTALES POR SEMESTRE 64 HORAS

Más detalles

CURSO VIRTUAL. Acceso a fuentes de información y manejo de redes sociales. Módulo 2

CURSO VIRTUAL. Acceso a fuentes de información y manejo de redes sociales. Módulo 2 CURSO VIRTUAL Acceso a fuentes de información y manejo de redes sociales Módulo 2 OBJETIVOS Conseguir que el alumno adquiera conocimientos estadísticos que le permitan una lectura comprensiva de la metodología

Más detalles

Seminario 2013 Quiero exportar mi fruta; tengo clientes, mercados, productos y ahora qué?

Seminario 2013 Quiero exportar mi fruta; tengo clientes, mercados, productos y ahora qué? Seminario 2013 Quiero exportar mi fruta; tengo clientes, mercados, productos y ahora qué? Características Climáticas de la Región de Atacama: Actualidad y Proyección Cristóbal Juliá de la Vega Meteorólogo

Más detalles

Módulo de Estadística

Módulo de Estadística Módulo de Estadística Tema 2: Estadística descriptiva Tema 2: Estadísticos 1 Medidas La finalidad de las medidas de posición o tendencia central (centralización) es encontrar unos valores que sinteticen

Más detalles

3.1. Administración de la medición y de la información estratégica:

3.1. Administración de la medición y de la información estratégica: Unidad III Aspectos Generales Sobre la Gestión de la Calidad 3.1. Administración de la medición y de la información estratégica: Los siguientes criterios corresponden a la administración de la medición

Más detalles

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 Anexo Anexo Los números decimales en los programas de Educación Primaria Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 1 2 3 4 Introducción al estudio de las

Más detalles

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS

UNIDAD 7: SISTEMAS DE ECUACIONES. CONTENIDOS UNIDAD 7: SISTEMAS DE ECUACIONES. * Ecuaciones lineales con dos incógnitas. * Sistemas de 2 ecuaciones con 2 incógnitas. Resolución gráfica y analítica. * Sistemas equivalentes. * Tipos de sistemas de

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Medidas de posición relativa

Medidas de posición relativa Medidas de posición relativa Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 3.1-1 Medidas de posición relativa Las medidas de posición relativa son también llamadas cuantiles o

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo

Más detalles

Doc. Juan Morales Romero

Doc. Juan Morales Romero Análisis de Correlación y Regresión Lineal ANALISIS DE CORRELACION Conjunto de técnicas estadísticas empleadas para medir la intensidad de la asociación entre dos variables DIAGRAMA DE DISPERSION Gráfica

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

Nada en esta maravillosa vida es 100% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios,

Nada en esta maravillosa vida es 100% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios, Nada en esta maravillosa vida es 1% seguro. En todo lo que hacemos, siempre estamos estimando los chances de resultados exitosos: en los negocios, en la medicina, en el clima y principalmente en los juegos

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 QUIM 3003-3004 MEDIDAS: TRATAMIENTO DE LOS DATOS EXPERIMENTALES I. INTRODUCCIÓN La mayor

Más detalles

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS

TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

Precio de la gasolina regular (colones por litro, promedio anual)

Precio de la gasolina regular (colones por litro, promedio anual) CATÁLOGO MATERIALES DE APOYO PARA BACHILLERATO POR MADUREZ Educación Abierta 800 700 600 500 400 300 200 100 0 Pantallazo Precio de la gasolina regular (colones por litro, promedio anual) 2009 2010 2011

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS

INTRODUCCIÓN AL ANÁLISIS DE DATOS INTRODUCCIÓN AL ANÁLISIS DE DATOS HORARIOS: Lunes, 12:00-13:30 Martes, 8:15-9:45 Jueves, 8:15-9:45 Tema 1. Introducción. El análisis de datos dentro de la estadística. Características de los datos socioeconómicos.

Más detalles

T4. Modelos con variables cualitativas

T4. Modelos con variables cualitativas T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad

Más detalles

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN

TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN TEMA 4 ELABORACIÓN Y COMPROBACIÓN DE LAS HIPÓTESIS DE INVESTIGACIÓN 1 MODELO LINEAL GENERAL applemodelo estadístico appledescribe una combinación lineal de los efectos aditivos que forman la puntuación

Más detalles

CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES

CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES Matemáticas hasta 6º de Primaria CONTENIDOS Bloque 5. Estadística y probabilidad CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES Gráficos y parámetros estadísticos. Recogida y clasificación

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles