Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012"

Transcripción

1 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202

2 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c pia EEUU y 4000 c Los dos gráficos muesra ua clara edecia creciee y comú durae los años 959 hasa

3 Aálisis gráfico y descripivo de ua variable (II) Esadísicos pricipales, usado las observacioes ! para la variable 'y' (37 observacioes válidas)!! Media 3940,! Mediaa 4099,! Míimo 8604,3! Máximo 8803,! Desviació ípica 3209,8! C.V. 0,23025! Asimería -0,709! Exc. de curosis -,960! Desidad 0,0004 0,0002 0,000 8e-005 6e-005 4e-005 2e EsadÌsico para el corase de ormalidad: Chi-cuadrado(2) = 4,095 [0,29] y y N( ,8) Cuao más parecidas so la media y la mediaa, más homogéea es la muesra. Como medidas de dispersió, además de la Desviació ípica (DT), se calcula el Coeficiee de Variació (C.V) como el raio ere la DT y la media. Ese coeficiee es adimesioal. 3

4 Aálisis gráfico y descripivo de ua variable (III) Esadísicos pricipales, usado las observacioes ! para la variable 'c' (37 observacioes válidas)!! Media 329,! Mediaa 48,! Míimo 7274,9! Máximo 5203,! Desviació ípica 2505,2! C.V. 0,224! Asimería -0,073928! Exc. de curosis -,295! Desidad 0,0006 0,0004 0,0002 0,000 8e-005 6e-005 4e-005 2e EsadÌsico para el corase de ormalidad: Chi-cuadrado(2) = 3,725 [0,553] c c N( ,2) Los momeos de ercer y cuaro orde so la asimería y el exceso de curosis, sabiedo que la curosis de ua Normal es res. E esos daos, hay defeco de curosis. Se dibuja el hisograma de los daos free a la ormal y 4 se calcula u esadísico para corasar ormalidad.

5 Aálisis gráfico y descripivo de dos variables (I) Daos de secció cruzada wage Y = 6,9 +,44X wage co respeco a educ (co ajuse mìimo-cuadr ico) Se represea el salario (wage) de 472 idividuos co respeco a su educació (medida e 5 iveles). El ivel es el de más baja educació y el 5 el más alo. Obsérvese que para u mismo ivel de educació, hay idividuos co salarios muy diferees. 5 0,5 2 2,5 3 3,5 4 4,5 5 educ Hay ua asociació posiiva ere salario y educació, pero o esá clara ua relació lieal 5

6 Aálisis gráfico y descripivo de dos variables (II) Esadísicos pricipales, usado las observacioes 472 para la variable 'wage' (472 observacioes válidas) Media,05 Mediaa 0,27 Míimo 2,90 Máximo 47,576 Desviació ípica 4,4505 C.V. 0,40274 Asimería,9534 Exc. de curosis 7,380 Desidad 0,4 0,2 0, 0,08 0,06 0,04 0,02 0 EsadÌsico para el corase de ormalidad: Chi-cuadrado(2) = 73,39 [0,0000] wage wage N(,05 4,4505) El hisograma de los daos de salarios muesra u elevado exceso de curosis, es decir, ua disribució mucho más apuada que la ormal. El corase rechaza la hipóesis de ormalidad co oal coudecia. A veces, ua variable e ivel o es ormal, pero sí e logarimos. El logarimo corae los valores uméricos grades y expade los valores pequeños. Por ello, 6 esa rasformació iduce ormalidad.

7 Aálisis gráfico y descripivo de dos variables (II) Tabulació cruzada de educ (filas) cora male (columas) [ 0][ ] TOT. [ ] [ 2] [ 3] [ 4] [ 5] TOTAL Supoga que además de la educació, se icluye iformació sobre el sexo del idividuo (male: si es hombre, 0 si es mujer) La abla cruzada de la izquierda iforma que de u oal de 472 idividuos 579 so mujeres y 893 so hombres. Además iforma de cúaas mujeres y hombres iee cada ivel de educació 7

8 Regresió lieal simple (I) Cosumo Y = 463, + 0,779X Cosumo co respeco a Rea EEUU Se quiere esimar la fució de cosumo C = β + β R + ε 0 Se dibuja e el plao el par de valores de Cosumo y Rea observados e cada año (NUBE DE PUNTOS REAL) Rea La disacia ere cada puo de la ube y la reca de ajuse es el residuo Si el modelo es lieal, ua esimació posible es ua reca llamada RECTA DE AJUSTE Cˆ = ˆ β + ˆ β 0 R 8

9 Regresió lieal simple (II) El residuo es medible, iee sigo y la misma uidad de medida que el cosumo. Se calcula para cada isae de iempo, como: ˆ ˆ ε = C C Los residuos se puede dibujar (e ese caso, a lo largo del iempo): 9

10 Regresió lieal simple (III) Residuos de la regresiû (= c observada - esimada) c observada y esimada esimada observada residuo 0 c El gráfico de la izquierda muesra la evolució emporal de los residuos resulaes (e alguos años posiivos, e oros cero y e oros egaivos) El gráfico de la derecha muesra la evolució del Cosumo observado y del Cosumo ajusado o geerado por el modelo. La disacia es el residuo 0

11 Regresió lieal simple (IV) Objeivo: Esimar los parámeros de forma que se cumpla algú crierio de opimalidad: 2 2 mi ˆ ˆ ˆ ˆ ε = mi C C = mi C β0 βr = = # $ # $ & ' & ' 2 Esimació por MCO (Míimos Cuadrados Ordiarios)

12 Regresió lieal simple (V) 2 2 ˆ ˆ ˆ ε = C β0 βr = = mi mi ( ) = ˆ β ˆ ε 0 2 = 2 ( C ˆ β ˆ β R ) = 0 = 0 = ˆ β ˆ ε 2 = 2 ( C ˆ β ˆ β R ) R = 0 = 0 2

13 Regresió lieal simple (VI) Ese es u sisema de dos ecuacioes co dos icógias. Resolviedo: C ˆ β ˆ β R 0 ˆ β C ˆ β R + + = = 0 0 = = CR CR ( C C)( R R) ˆ = = β = = R R ( R R) = = 3

14 Regresió lieal simple (VII) Relació de la esimació de la pediee co el coeficiee de correlació lieal: ρ = CR cov[ ˆ CR] var[ ˆ C ] var[ ˆ R] β ˆ = cov[ ˆ CR] var[ ˆ R ] 4

15 Regresió lieal simple (VIII) Por ao: ρ = CR cov[ ˆ CR] var[ ˆ R ] var[ ˆ C ] var[ ˆ R] var[ ˆ R] CR ˆ var[ ˆ R ] ˆ se[ R ] = = var[ ˆ C ] se[ C ] ρ β β No so iguales, sio direcamee proporcioales y iee el mismo sigo. El coeficiee de correlació es adimesioal y esá acoado ere - y. 5

16 Regresió lieal simple (IX) Coeficiee de correlació ere Cosumo y Rea corr(c, y) = 0, Modelo: MCO, usado las observacioes (T = 37) Variable depediee: c Coeficiee Desv. Típica Esadísico Valor p cos 463,77 98,792 4,688 4,0e-05 *** y 0, , ,8,99e-046 *** Media de la vble. dep. 328,65 D.T. de la vble. dep. 2505,24 Suma de cuad. residuos 6997,4 D.T. de la regresió 33,0920 R-cuadrado 0, R-cuadrado corregido 0,99778 F(, 35) 2720,5 Valor p (de F),99e-46 Log-verosimiliud -232,442 Crierio de Akaike 468,8824 Crierio de Schwarz 472,042 Cri. de Haa-Qui 470,082 6 E la regresió lieal simple, el coeficiee de correlació lieal simple al cuadrado coicide co el R-cuadrado

17 Trasformació logarímica Modelo eórico y l = βx + ε y = βl x + ε l y = βx + y ε = βl x + ε Ierpreació maemáica β β Δy = Δ x = % Δy % Δx % Δy 00β = Δ x β Δy = 00 % Δx Ierpreació cocepual Cambio esperado e y cuado x aumea e ua uidad Elasicidad. Cambio porceual e y cuado x aumea e u % Semielasicidad. Cambio porceual e y cuado x aumea e uidad Semielasicidad. Cambio e y e uidades cuado x aumea e u %

18 Daos de Ascombe (I) Usado los daos de Ascombe dispoibles e los archivos de daos de muesra de Grel, se pide esimar por MCO las cuaro regresioes simples siguiees: y = β + β x + ε y y 2 = β + β x + ε = β + β x + ε y = β + β x + ε

19 Daos de Ascombe (II) Y 8 Y X 4 X Y3 8 Y X X2

20 Tareas a realizar por el alumo () Esimar por MCO las cuaro regresioes lieales usado Grel. (2) Especificar y esimar oras relacioes ere y2 y x de forma que el ajuse de los daos mejore. (3) Reesime la regresió de y3 sobre x, elimiado el ercer par de valores de ambas variables. Cómo cambia los resulados? (4) Es posible esimar la regresió de y4 sobre x2, elimiado el ocavo par de valores de ambas variables? Calcule la variaza muesral de x2 y la variaza de la pediee de la regresió.

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Estimación de modelos de volatilidad estocástica asimétrica. Aplicación en series de rendimientos de índices bursátiles.

Estimación de modelos de volatilidad estocástica asimétrica. Aplicación en series de rendimientos de índices bursátiles. Esimación de modelos de volailidad esocásica asimérica. Aplicación en series de rendimienos de índices bursáiles. Esimación de modelos de volailidad esocásica asimérica. Aplicación en series de rendimienos

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema.

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema. CAPITULO PRONOSTICOS Hacer u proósico, es hacer u proceso de esimació de u acoecimieo fuuro, a parir de ua iformació de ipo hisórica, ormalmee de ipo maemáica, y/o de ipo referecial de apreciacioes, esimacioes

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Cómo medir la precisión de los pronósticos?

Cómo medir la precisión de los pronósticos? Cómo medir la precisió de los proósicos? Por Tomás Gálvez Maríez Presidee y Direcor de CELOGIS Educaio Parer de ENAE Busiess School A la fecha de la publicació de ese documeo used podrá ecorar, e la mayoría

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004)

TEMA 2 MODELO LINEAL SIMPLE (MLS) Gujarati, Econometria (2004) EMA 2 MODELO LINEAL SIMPLE (MLS) Gujarai, Economeria (2004). Planeamieno e inerpreación del modelo economérico lineal simple. Capíulo 2 páginas 36 a 39 2. Hipóesis Básicas del Modelo Capíulo 3 páginas

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

2.- Estudio Poblacional y Muestral Univariante

2.- Estudio Poblacional y Muestral Univariante .- Estudio Poblacioal y Muestral Uivariate Població: Colectivo de persoas o elemetos co ua característica comú, objeto de estudio. Imposibilidad de estudio de esta característica e toda la població - Coste

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN ESTUDIO DE MERCADO. MÉTODOS DE PROECCIÓN Qué es una proyección? Es una esimación del comporamieno de una variable en el fuuro. Específicamene, se raa de esimar el valor de una variable en el fuuro a parir

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA Insrucor: Horacio Caalán TEORÍA DE COINTEGRACIÓN Efecos de las propiedades esocásicas de las series en un modelo de regresión

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Tema 1. Estadística Descriptiva

Tema 1. Estadística Descriptiva Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 1 Estadística Descriptiva 1 Itroducció 1 2 Coceptos geerales 2 3 Distribucioes de frecuecias 3 4 Represetacioes

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS.

ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. UNIDAD Nº 3 ANÁLISIS TEMPORAL DE SISTEMAS LINEALES Y AUTÓNOMOS. 3.- Iroducció. Como se vio e los emas aeriores, el primer paso para aalizar u sisema de corol es obeer el modelo maemáico del mismo. Ua vez

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Qué es el muestreo? SISTEMA DE EVALUACION. Practicas 30% Examen parcial 30% Examen final 30% Trabajos encargados 10% TECNICAS DE MUESTREO II

Qué es el muestreo? SISTEMA DE EVALUACION. Practicas 30% Examen parcial 30% Examen final 30% Trabajos encargados 10% TECNICAS DE MUESTREO II SISTEMA DE EVALUACION TECNICAS DE MUESTREO II Practicas 3% Exame parcial 3% Exame fial 3% Trabaos ecargados % Profesor: Ig. Celso Gozales Ch. Mg.Sc Email:cgozales@lamolia.edu.pe REFERENCIAS BIBLIOGRAFICAS

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Práctica 3 MUESTREO E INTERVALOS DE CONFIANZA

Práctica 3 MUESTREO E INTERVALOS DE CONFIANZA Deparameo de Méodos Cuaiaivos e Iformáicos. Objeivos: a) Calcular los parámeros de la disribució de medias o proporcioes muesrales de amaño, exraídas de ua població de media y variaza coocidas. b) Calcular

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

T4. Modelos con variables cualitativas

T4. Modelos con variables cualitativas T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

Distribuciones estadísticas dobles. n muchos campos del conocimiento surge la necesidad de establecer relaciones

Distribuciones estadísticas dobles. n muchos campos del conocimiento surge la necesidad de establecer relaciones UNIDAD 11 Distribucioes estadísticas dobles muchos campos del coocimieto surge la ecesidad de establecer relacioes E etre dos cojutos de datos, o dos variables estadísticas, au sabiedo que tal relació

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012

ESTADÍSTICA. estadística. Recogida de datos. Las muestras de una población. Las variables estadísticas 03/06/2012 ESTADÍSTICA estadística Grupo 4 Opció A La estadística estudia u cojuto de datos para obteer iformació y poder tomar decisioes. Por tato,las FASES de utrabajoestadístico será: Recogida de datos. Orgaizació

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Aálisis de Señales e Geofísica 3 Clase Frecuecia de los Sistemas Lieales e Ivariates Facultad de Ciecias Astroómicas y Geofísicas, Uiversidad Nacioal de La Plata, Argetia Fucioes y Valores Propios Defiició:

Más detalles

Normalidad de los errores. Fortino Vela Peón Universidad Autónoma Metropolitana

Normalidad de los errores. Fortino Vela Peón Universidad Autónoma Metropolitana Normalidad de los errores Forino Vela Peón Universidad Auónoma Meropoliana fvela@correo.xoc.uam.mx Ocubre, 00 0/0/0 México, D. F. Inroducción Uno de los supuesos básicos del modelo de regresión lineal

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION Págia de 34 Uiversidad Nacioal de Cordoba FILTROS ADAPTIVOS LMS RMS Filro Kalma INTRODUCCION El cocepo de filro adapaivo, sugiere el de u disposiivo que iea modelizar la relació ere señales e iempo real

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 4) Euciado Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 0-1 2 1 ( putos) Resuelva la siguiete ecuació matricial: A X - 2 B C, siedo A 1 0 1, B -2, C. 1

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 008 (Modelo 6) Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 008 (MODELO 6) OPIÓN A EJERIIO 1_A (3 putos) Ua empresa produce botellas de leche etera

Más detalles

Tema: Análisis de regresión y análisis de varianza. La tabla ANOVA tiene la siguiente representación: CMR F c CME SCE CME=SCE/GLE

Tema: Análisis de regresión y análisis de varianza. La tabla ANOVA tiene la siguiente representación: CMR F c CME SCE CME=SCE/GLE Clase de economería 1: Universidad Cenroamericana UCA Tema: Análisis de regresión y análisis de varianza La abla ANOVA iene la siguiene represenación: Fuenes de variación Grados de liberad uma de cuadrados

Más detalles

CAPÍTULO 9 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL

CAPÍTULO 9 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL CAPÍTULO 9 ESTADÍSTICA DESCRIPTIVA BIDIMENSIONAL 1 INTERROGANTES CENTRALES DEL CAPÍTULO a) Cuado sobre cada idividuo se observa simultáeamete dos características cuatitativas cómo se orgaiza y represeta

Más detalles

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden

PRÁCTICA 1. Sistemas eléctricos de primer y segundo orden PRÁCTICA 1 Sisemas elécricos de rimer y segudo orde Objeivo: Deermiar la resisecia iera de u geerador. Realizar medicioes de la cosae de iemo de circuios de rimer orde asabajas y de los arámeros de diseño

Más detalles

Como Calcular la Tasa de Crecimiento de los Agregados Macroeconómicos Mediante el Análisis de Regresión

Como Calcular la Tasa de Crecimiento de los Agregados Macroeconómicos Mediante el Análisis de Regresión Como Calcular la Tasa de Crecimieno de los Agregados Macroeconómicos Mediane el Análisis de Regresión HL Maa 1 La esadísica ha generado diversos indicadores para medir el crecimieno de los agregados económicos,

Más detalles

Apéndice C: Datos Experimentos

Apéndice C: Datos Experimentos Apédice C: Datos Experimetos Experimetos Los experimetos permitiero evaluar la afectividad de los usuarios al iteractuar etre ellos detro del IM. La realizació de los experimetos se basa e los siguietes

Más detalles

Contrastes para los parámetros de dos poblaciones Normales

Contrastes para los parámetros de dos poblaciones Normales Esaísica Corases ara los arámeros e os oblacioes Normales Ieeiees eeiees rof r. Jose Jacobo Zubcoff earameo e Ciecias el Mar Biología Alicaa Esaísica Corases ara os oblacioes ieeiees Ejemlo e roblema a

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES

INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 1 INFERENCIA ESTADÍSTICA. TEST DE HIPÓTESIS. TIPOS DE ERRORES 001. PAU SELECTIVIDAD Uiversidad de Oviedo Juio 1996 La empresa de trasportes urgetes El Rápido asegura que etrega el 80% de sus evíos ates

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles