03) Rapidez de Cambio. 0302) Rapidez de Cambio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "03) Rapidez de Cambio. 0302) Rapidez de Cambio"

Transcripción

1 Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7

2 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada en la figura a. Se define el cambio de la función enre los insanes y + como: ( + ) ( ) Se define la rapidez media de cambio de enre los insanes y + como: ( + ) ( ) () ( + ) ( ) () + (a) (b) Si dim(), enonces dim( ) T - Al respeco, podemos analizar los siguienes casos: ( ) ( + ) Rapidez de cambio posiia: (+) > () > > (er figura a) Rapidez de cambio cero o nula: (+) () (er figura b) Rapidez de cambio negaia: (+) < () < < (er figura c) () ( ) ( + ) + (c) + igura ) Concepo de rapidez de cambio. a) posiia; b) nula; c) negaia Ocubre 7

3 Página 3 Consideremos la función () mosrada en la figura. La rapidez media de cambio de la función enre y esa dada por: ( ) ( ) ( ) ( ) () Esa expresion corresponde a la pendiene de la reca secane al gráfico que pasa por los punos indicados. Reca Secane al gráfico en los punos indicados Nº de habianes (a Eolución del Nº de Habianes igura ) Definición de rapidez media de cambio Año Rapidez media de cambio (b Ineralos de años igura 3) (a) Variación del número de habianes; (b) Rapidez media de cambio del número de habianes Ocubre 7

4 Página 4 B) Concepo de Área Bajo la Cura Considere la siguiene abla, correspondiene al número de habianes de un pueblo rural en diferenes años. Año N hab [hab] Ineralo Año N hab N hab / Año A parir de esos gráficos se pueden obener los gráficos de la ariación de la canidad física número de habianes en función del iempo (figura 3a) y la rapidez media de cambio del número de habianes en función del iempo (figura 3b) Concenrémonos en el gráfico de la figura 3b. Calculando el área bajo la cura enre 9 y 93. A 4 año año año año [ ] + 5 [ año] + 4 [ año] 3[ hab] De la abla, se puede obserar el cambio del número de habianes enre 9 y 93 corresponde a un aumeno en 3 [hab] Calculando el área bajo la cura enre 94 y 97. A - año año año [ año] - 3 [ año] 7 [ año] [ hab] De la abla, se puede obserar el cambio del número de habianes enre 94 y 97 corresponde a una disminución en [hab] Así se puede obserar que exise una relación enre el área bajo la cura del gráfico de rapidez media de cambio enre dos insanes con la ariación de la canidad física en ales insanes. α s A Tomando como referencia la figura 4, emos que el área bajo la cura achurada esá dada por: [ s] igura 4) Definición de área bajo la cura. Ocubre 7

5 Página 5 A ( ) Por ora pare, de la definición de rapidez media de cambio ( ) ( ) ( ) ( ) ( ), lo que indica que el área bajo la cura de la rapidez media de cambio de una canidad física enre y es igual al cambio o ariación de enre ales insanes. A parir de la idea de área bajo la cura se definirá poseriormene (Maemáica II) el concepo de inegral. Así, por lógica se deduce que A ( ) ( ) C) Rapidez insanánea de cambio Son dos concepos diferenes, aunque ínimamene relacionados: La rapidez media de cambio ( ) indica la ariación promedio de la función enre dos insanes de iempo. La rapidez (insanánea) de cambio () es la pendiene de la función en un insane de iempo (er figura 5). () () A medida que se achica el ineralo de iempo enre el par de mediciones (o sea, cuando ), la rapidez media iende a la rapidez insanánea. Ello implica que la reca secane a la función en dos punos se ransforma en la reca angene a la función en un puno. En érminos maemáicos, eso se expresa a parir del concepo de límie (maeria que erán poseriormene en Maemáica I) de la siguiene manera. Reca angene al gráfico en el puno indicado igura 5) Definición de rapidez insanánea de cambio lim lim ( + ) ( ) Eso corresponde ni más ni menos que a la definición de la deriada de una función (maeria que ambién erán poseriormene en Maemáica I) Análisis de gráficos de rapidez media e insanánea ' ( ) Ocubre 7

6 Página 6 Considere el gráfico de la figura 6a, que represena la ariación en el iempo de una canidad física G. Supongamos que G() 4. Ese gráfico puede ser de rapidez media de cambio o de rapidez insanánea de cambio. Supongamos que el gráfico de la figura 6a fuera de rapidez media de cambio. En ese caso, cada uno de los alores represenaría la rapidez media de cambio en un ineralo específico. Por ejemplo, el alor G represena la rapidez media de s cambio de G enre los insanes y. A parir del dao de G() y usando la idea de area bajo la cura se pueden obener los alores de G en los insanes, 4, 6, 8 y [s]: s 4 8 α + s s 8 α α 3 s s α 8 6 α 3 s s -4 α 8-4 α + 4 s s 4 α ( ) G( ) + G ( ) 4[ α ] + [ s] 8[ α ] G ( 4) G( ) + G ( ) [ ] [ ] [ ] G 4 ( 6) G( 4) + G ( ) [ ] [ ] [ ] G 4 6 ( 8) G( 6) + G ( ) [ ] [ ] [ ] G 6 8 ( ) G( 8) + G ( ) [ ] [ ] [ ] G 8 Con esos daos, obenemos el gráfico de la figura 6b, en donde solamene aparecen los punos hallados. A parir de un gráfico de rapidez media de cambio y alor de la función en solamene se pueden obener algunos alores de G los insanes de iempo indicados, pero no se puede saber lo que sucede enre ellos, es decir, no se puede inerpolar (lo que equialdría a razar una línea que cruce los punos Supongamos que el gráfico de la figura 6a fuera de rapidez insanánea de cambio. En al caso, al gráfico represenaría la pendiene de la función G en cada puno. Exise la posibilidad de inerpolar y obener áreas bajo la cura enre cualquier par de punos en el ineralo considerado, lo que gráficamene equiale a razar la reca que une a los punos enconrados. Se obienen los alores para G en los insanes,, 4, 6, 8 y [s] de la misma manera que en el caso anerior, pero ahora se raza una reca (inerpolación) enre cada para de punos coniguos, obeniéndose el gráfico de la figura 6c ( )[ ] G α G s a) [ s] G[ α ] b) [ s] G[ α ] c) [ s] igura 6) Análisis gráfico. a) unción de ariación emporal de G; b) G() si gráfico a) fuera de rapidez media de cambio; c) G() si gráfico a) fuera de rapidez insanánea de cambio Ocubre 7

7 Página 7 D) Aceleración de cambio. Aceleración media de cambio Hace algunos años, un grupo de profesores hizo un our auomoilísico por el inerior de la casa cenral de la USM, siguiendo la rua indicada pr el mapa de la figura 5a. Durane ese rayeco, se midió lo que marcaba el elocímero en deerminados insanes. A parir de esas mediciones se obuo el gráfico de la figura 5b. El elocímero indica la rapidez insanánea de cambio de posición del ehículo en cualquier insane de iempo. A esa función se le pueden pracicar los mismos análisis que se le aplican a cualquier ora, incluido el cálculo de rapidez media y rapidez insanánea de cambio. (a) (b) Considere una canidad física (), la cual iene asociada una función de rapidez insanánea de cambio (). Se define la igura 5) a) Mapa del recorrido del ehículo denro de la USM; aceleración media de cambio b) gráfico de elocidad del ehículo /s iempo de enre los insanes y + como la rapidez media de cambio de enre los insanes ciados ( + ) ( ) Si dim(), enonces dim( ) T - Por ejemplo, enre los insanes 5[s] y [s] deerminamos del gráfico que la rapidez aumenó de [km/h] a 5 [km/h]. La rapidez media de cambio de la elocidad del auomóil (rapidez insanánea) o aceleración media de cambio de la posición del auomóil esá dada por: Ocubre 7

8 ( ) ( ) ( )[ Km 5 5 ] Página 8 Km Km seg h ( )[ ] h 3 h,8 m 5 seg 5 seg seg Análogamene, la aceleración insanánea de cambio es el límie de la aceleración media de cambio cuando ( + ) ( ) a lim lim ' ( ) ' ' ( ) Eso corresponde a la primera deriada de la función de rapidez insanánea, y a la segunda deriada de la función (maeria que erán poseriormene en Maemáica I) E) Calculo Algebraico de Rapidez Media e Insanánea de Cambio. A coninuación eremos el procedimieno general para calcular la rapidez media de cambio y la rapidez insanánea de cambio de cualquier función para el ineralo enre y + El problema general es el siguiene: sea una canidad física, cuya ariación en el iempo es represenada por la función (). Calcular una expresión para la rapidez media de cambio ( ) y la rapidez insanánea de cambio () de enre los insanes y +. ( + ) ( ) + lim lim donde (): Valor de en el insane (+): Valor de en el insane +. (+)- (): Cambio de enre los insane y +. ( ) ( ) Noa: debido a que muchos no han iso el concepo de límie en Maemáica I, lo que se hará es analizar para el caso (que, en el fondo, es lo mismo). Para explicar el procedimieno, consideremos el siguiene ejemplo: Suponga que el radio de la de la figura 6 aumena con el iempo de acuerdo con la función ' ( ) ( ) R + a R, con a >. Calcule la rapidez media de cambio de la superficie. igura 6) Esfera del ejemplo de cálculo de rapidez de cambio Ocubre 7

9 Página 9 Considere ambién el caso de pequeños ineralos de iempo. Paso ) Lea bien el problema Esos problemas se caracerizan por su alo conenido de geomería. Clae: al menos una de las ariables es dependiene del iempo Paso ) Idenificar la geomería implícia en el problema En ese caso, la resolución del problema requiere conocer la expresión correspondiene al área de una, la cual depende del radio R. A 4πR Paso 3) Idenificar la(s) ariable(s) dependiene(s) del iempo. En ese caso, el radio de la es dependiene del iempo, y como a > por enunciado, el radio crece con el iempo. ( ) R + a R Paso 4) Obener expresión para la función a la cual se le a a calcular la rapidez media de cambio. En el ejemplo, la ariación del radio de la en función del iempo rae como consecuencia la ariación de la superficie de la. ( ) 4π ( R a ) A + Paso 5) Calcular la rapidez media de cambio de la función. Una ez aplicada la definición de rapidez media de cambio a la función obenida en el paso 4, se hacen las simplificaciones algebraicas correspondienes para llegar a una expresión lo más simple y compaca posible. A 4π A () A ( + ) A ( ) [ R a + a + a ] 4π [ R a + a + a ] 4π [( R + a( + )) ( R + a ) ] Paso 6) Calcular la rapidez insanánea de cambio de la función. Ocubre 7

10 Página Si en el problema se pide calcular la rapidez media de cambio para ineralos de iempo muy pequeños, se esá pidiendo el caso, que corresponde al cálculo de la rapidez insanánea de cambio. Para ello, hay que despreciar odos los érminos que conengan () n, n,,3,4,...así: ( ) 4π [ R a + a ] 8πa[ R a] () lim A + A El alor resulane debe ser el mismo que se debería obener al deriar la función original (de hecho, ese proceso no es ni más ni menos que la aplicación del concepo de deriada) ( ) 4 π a ( R + a ) 8 a ( R a ) () A ' π A + Ocubre 7

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

Movimiento rectilíneo uniformemente variado (parte 1)

Movimiento rectilíneo uniformemente variado (parte 1) Moimieno recilíneo uniformemene ariado Moimieno recilíneo uniformemene ariado Empecemos! A diferencia del MRU cuya elocidad es consane, en nuesra ida diaria obseramos oro ipo de moimieno en el que hay

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

Las señales pueden ser también, señales continuas o señales alternas.

Las señales pueden ser también, señales continuas o señales alternas. INSIUO ÉCNICO SLESINO LORENZO MSS ema 1: CONCEPOS PRELIMINRES LLER DE MEDICIONES Conenido: Concepo de señal elécrica. Valores caracerísicos de las señales elécricas: Frecuencia (período, Fase, Valor de

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría

Experimento 3. Análisis del movimiento en una dimensión. Objetivos. Teoría Experimeno 3 Análisis del movimieno en una dimensión Objeivos. Esablecer la relación enre la posición y la velocidad de un cuerpo en movimieno 2. Definir la velocidad como el cambio de posición en un inervalo

Más detalles

Circuitos para observar la descarga y carga de un capacitor.

Circuitos para observar la descarga y carga de un capacitor. IUITO Objeivo Enconrar el comporamieno de la diferencia de poencial en función del iempo, (), enre los exremos de un capacior cuando en un circuio se carga y cuando se descarga el capacior. INTODUION onsidere

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA

ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ESTUDIO DEL MOVIMIENTO: CINEMÁTICA ALUMNO:... CURSO:... DEPARTAMENTO DE CIENCIAS I.E.S. LA JARCIA PUERTO REAL 1. Cuándo se muee un cuerpo? El ren que aparece en la figura adjuna, esá en reposo o en moimieno?

Más detalles

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS

CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES 2.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS CURVAS PLANAS, ECUACIONES PARAMETRICAS Y COORDENADAS POLARES.1 CURVAS PLANAS Y ECUACIONES PARAMETRICAS Hasa ahora conocemos la represenación de una grafica mediane una ecuación con dos variables. En ese

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función =

DERIVACIÓN BAJO EL SIGNO INTEGRAL. 1. Hallar el punto del intervalo [0,2] en el que la función = DERIVACIÓN BAJO EL SIGNO INTEGRAL. Hallar el puno del inervalo [,] en el que la función F () d alcanza su valor mínimo. El mínimo de una función se alcanza en los punos donde su primera derivada es nula

Más detalles

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN

Problemas de Matemáticas 2º Bachillerato OPTIMIZACIÓN Problemas de Maemáicas º Bachillerao OPTIMIZACIÓN En ese documeno se eplica brevemene cómo se resuelven los problemas de opimización, y se ilusra mediane un ejemplo. Como sabéis, los problemas de opimización

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 007 Insiuo de Física Faculad de Ineniería UdelaR TITULO AUTORES MAQUINA DE ATWOOD EPERIMENTAL Maximiliano Bellas, Erneso Pasarisa INTRODUCCIÓN Geore Awood (745-807),

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

Tema 3. Circuitos capacitivos

Tema 3. Circuitos capacitivos Inroducción a la Teoría de ircuios Tema 3. ircuios capaciivos. Inroducción... 2. Inerrupores... 3. ondensadores... 2 3.. Asociación de capacidades.... 5 ondensadores en paralelo... 5 ondensadores en serie...

Más detalles

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla:

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla: ANEXO 5 METODOLOGIA A SEGUIR PARA DETERMINAR EL MONTO MÍNIMO DEL FIDEICOMISO, ASÍ COMO EL IMPORTE DE LAS CUOTAS SOBRE LAS CUALES SE CALCULARÁN LAS APORTACIONES A QUE SE REFIERE EL ARTÍCULO 55 BIS DE LA

Más detalles

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO

Departamento de Ingeniería Hidráulica y M.A. de la U.P.V HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 6 6.- HIDROGRAMA UNITARIO Deparameno de Ingeniería Hidráulica y M.A. de la U.P.V. 63 PROBLEMA RESUELTO 1 El HU de una cuenca para una lluvia de 1

Más detalles

0,05 (0,02 0,16 5) 0,129 v

0,05 (0,02 0,16 5) 0,129 v L Campo Magnéico III 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. El campo magnéico aría con el iempo de acuerdo con la expresión:

Más detalles

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t )

FÍSICA - LAB. 2. x = x ( t ) v = v ( t ) a = a ( t ) FÍSICA - LAB. CINEMÁTICA Y DINÁMICA LINEAL NOTA IMPORTANTE: para la realización de ese laboraorio cada alumno deberá raer calculadora y dos hojas de papel milimerado, las que al concluir el laboraorio

Más detalles

Tema 2: El modelo de Solow y Swan: análisis teórico

Tema 2: El modelo de Solow y Swan: análisis teórico Tema 2: El modelo de Solow y Swan: análisis eórico 2.1 El modelo 2.2 El esado esacionario 2.3 La regla de oro de la acumulación del capial. 2.4 La asa de crecimieno a lo largo del iempo Bibliografía: Sala

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3

Cinemática. El ángulo que forman las gotas de lluvia con la horizontal de la ventana es: 8,9 tg 0,46 arc tg 0,46 24,76º 19,3 Cinemáica. Un auomóil se muee con una elocidad de 9,3 m/s y cae lluia a 8,9 m/s en forma direca hacia abajo. Qué ángulo forma la lluia con respeco a la horizonal en la enanilla del conducor? El ángulo

Más detalles

Curvas de descarga de un condensador

Curvas de descarga de un condensador Curvas de descarga de un condensador Fundameno Cuando un condensador esá cargado y se desea descargarlo muy rápidamene basa hacer un corocircuio enre sus bornes. Esa operación consise en poner enre los

Más detalles

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( )

45 EJERCICIOS de INTEGRAL DEFINIDA 2º BACH. ( ) 5 EJERCICIOS de INTEGRAL DEFINIDA º BACH. Inegral definida:. Enunciar la regla de Barrow. Calcular:. Calcular:. (S) Calcular: d (Soluc: ) a + b a ( ) a + b d Soluc : b d (Soluc: 5/). Calcular: 5. Calcular:

Más detalles

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR

GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR 1.- Inroducción GUÍA Nº 5 CARGA Y DESCARGA DE UN CONDENSADOR Un condensador es un disposiivo que permie almacenar cargas elécricas de forma análoga a como un esanque almacena agua. Exisen condensadores

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, DATOS EN FUNCIÓN DEL TIEMPO. La velocidad de una parícula viene dada por v( ) 6 +, con en segundos y v en m/s. a) Hacer un gráfico de v() y hallar el área limiada por

Más detalles

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial

Los Procesos de Poisson y su principal distribución asociada: la distribución exponencial Los Procesos de Poisson y su principal disribución asociada: la disribución exponencial Lucio Fernandez Arjona Noviembre 2004. Revisado Mayo 2005 Inroducción El objeivo de esas noas es inroducir al esudio

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

GUÍA DE EJERCICIOS II

GUÍA DE EJERCICIOS II Faculad de Ingeniería UCV Álgebra ineal Geomería Analíica Ciclo Básico GUÍA DE Encuenre las ecuaciones de la reca que a) iene vecor direcor v (,, ) pasa por el puno P ( 4, 5, ) b) pasa por los punos A

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

ESTADISTICA PARA RELACIONES LABORALES

ESTADISTICA PARA RELACIONES LABORALES ESTADISTICA PARA RELACIONES LABORALES CURSO 2010 TURNO VESPERTINO Y NOCTURNO MODULO 8 INFLACION, DEFLACTACION INFLACION La INFLACION es el aumeno del nivel general de precios en una economía. Por ello

Más detalles

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm

El flujo que atraviesa la espira es v que es constante. La intensidad que circula se calcula con la ley de Ohm 01. Una bobina circular de 0 espiras y radio 5 cm se coloca en un campo magnéico perpendicular al plano de la bobina. l campo magnéico aría con el iempo de acuerdo con la expresión: B = 0,0 + 0,08 SI,

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

1-Características generales del movimiento

1-Características generales del movimiento 1-Caracerísicas generales del movimieno La pare de la física que se encarga de esudiar los movimienos de los cuerpos se llama Cinemáica. 1.1-Sisema de referencia, posición y rayecoria. Decimos que un cuerpo

Más detalles

El Transistor como Ampli cador

El Transistor como Ampli cador 1 El Transisor como Ampli cador R. Carrillo, J.I.Huircan Absrac La incorporación de exciaciones de corriene alerna (ca), produc en ariaciones en i B, BE, las que asu ez modi can las ariables y V CE del

Más detalles

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos.

Lección 3. Curvas. 4. Curvas parametrizadas: ejemplos. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 4. Curvas paramerizadas: ejemplos. La descripción más direca y flexible de una curva es una represenación paramérica. En lugar de considerar una de las coordenadas

Más detalles

Funciones trigonométricas

Funciones trigonométricas 0 Funciones rigonoméricas Tenemos en el plano R² la circunferencia C de radio con cenro (0,0. En ella disinguimos el puno (,0, que es el puno de inersección dec con el semieje de las x posiivas. Si pariendo

Más detalles

1. El movimiento rectilíneo

1. El movimiento rectilíneo MANEJO CONOCIMIENTOS PROPIOS DE LAS CIENCIAS NATURALES. El moimieno recilíneo. El moimieno D cionados con el moimieno. La cinemáica es la pare de la física que esudia el moimieno de los cuerpos sin ocuparse

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA

DERIVADAS INTRODUCCIÓN 1. MEDIDA DEL CRECIMIENTO DE UNA FUNCIÓN 1.1. TASA DE VARIACIÓN MEDIA INTRODUCCIÓN DERIVADAS La observación de un fenóeno, un cabio, conduce a una función. Observaos, por ejeplo, la inflación a lo largo del iepo en una econoía paricular. Observaos en un ebalse coo el nivel

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 :

= = f=440 Hz, v=143 m/s A=0.75 mm. b) Las posiciones de los nodos están en x=0,λ/2,2λ/2 : 15.7 Una de las cuerdas de una guiarra esá en el eje cuando esá en equilibrio. El eremo 0 el puene de la guiarra esá fijo. Una onda senoidal incidene iaja por la cuerda en dirección a 143 m/s con ampliud

Más detalles

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden

1.10 Aplicaciones de las ecuaciones diferenciales de primer orden . Aplicaciones de las ecuaciones diferenciales de primer orden 55. Aplicaciones de las ecuaciones diferenciales de primer orden Ejemplo.. Decaimieno radiacivo El isóopo radiacivo Torio 24 se desinegra

Más detalles

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2).

2) Hallar las coordenadas del vértice D del paralelogramo ABCD sabiendo que A(1, 0), B(2, 3) y C(3, -2). Álgebra Geomería Analíica Prof. Gisela Saslas Vecores en R en R. Recas planos en el espacio Verifique los resulados analíicos mediane la resolución gráfica usando un sofware de Maemáica. ) Sabiendo que

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

Electrónica Digital. Universidad de Alcalá (19/06/2012)

Electrónica Digital. Universidad de Alcalá (19/06/2012) Elecrónica Digial Universidad de Alcalá (19/06/2012) Índice Ejercicios del Tema 3... 2 Cuesión 1... 2 Cuesión 2... 3 Cuesión 3... 4 Cuesión 4... 5 Cuesión 5... 6 Cuesión 6... 7 Cuesión 7... 8 Cuesión 8...

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras

GEOMETRÍA. Matemática - EL MAESTRO EN CASA PIRÁMIDE. Pirámide cuadrangular: su base es un cuadrado (4 lados), al igual que sus caras Maemáica - EL MAESTRO EN CASA PIRÁMIDE Una pirámide es un poliedro cuya superficie esá formada por una base que es un polígono cualquiera y caras laerales riangulares que confluyen en un vérice que se

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D

Figura 11.1 Corriente en el diodo en función de la tensión aplicada en un diodo real. i D OS EFDOES OS EFDOES 11.1 ilización del diodo El diodo semicondcor se lo emplea en circios en los qe se qiere aproechar la diferene resisencia qe presena en n senido o en el oro. El gráfico de la corriene

Más detalles

SUPERFICIES Y CURVAS EN EL ESPACIO

SUPERFICIES Y CURVAS EN EL ESPACIO SUPERFICIES Y CURVAS EN EL ESPACIO Es ese maerial se presenan algunas gráficas confeccionadas con el sofware MAPLE A coninuación de cada una se indica la senencia uiliada para obenerla Tenga en cuena que:

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles

( ) m / s en un ( ) m. Después de nadar ( ) m / s. a) Cuáles CINEMÁTICA: MOVIMIENTO TRIDIMENSIONAL, DATOS EN FUNCIÓN DEL TIEMPO. Una cucaracha sobre una mesa se arrasra con una aceleración consane dada por: a (.3ˆ i. ˆ j ) cm / s. Esa sale desde un puno ( 4, ) cm

Más detalles

RELACIONES Y ÁLGEBRA DISTRIBUCIÓN SEGÚN HABILIDADES Y CONOCIMIENTOS. Matemática - EL MAESTRO EN CASA ÁREA 1: RELACIONES Y ÁLGEBRA.

RELACIONES Y ÁLGEBRA DISTRIBUCIÓN SEGÚN HABILIDADES Y CONOCIMIENTOS. Matemática - EL MAESTRO EN CASA ÁREA 1: RELACIONES Y ÁLGEBRA. DISTRIBUCIÓN SEGÚN HABILIDADES Y CONOCIMIENTOS CONOCIMIENTOS Funciones Función cuadráica ÁREA : RELACIONES Y ÁLGEBRA HABILIDADES ESPECÍFICAS. Idenificar siuaciones dadas que pueden ser expresadas algebraicamene

Más detalles

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA)

UNIDAD 6: CONGELACIÓN DE ALIMENTOS. GUIA DE PROBLEMAS RESUELTOS (Versión ALFA) UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS / ASIGNATURA : Ingeniería de Procesos III (ITCL 4) PROFESOR : Elon F. Morales Blancas UNIDAD 6: CONGELACIÓN DE ALIMENTOS

Más detalles

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico

Primera ley de Maxwell o ley de Gauss para el campo Eléctrico CUACION D MAW as leyes experimenales de la elecricidad y del magneismo se resumen en una serie de expresiones conocidas como ecuaciones de Maxwell. sas ecuaciones relacionan los vecores inensidad de campo

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

LOGARITMOS. 2.- Calcula las siguientes potencias y escríbelas en forma de logaritmo, tal y como se indica en el. d)

LOGARITMOS. 2.- Calcula las siguientes potencias y escríbelas en forma de logaritmo, tal y como se indica en el. d) LOGARITMOS.- Calcula las siguienes poencias y escríbelas en forma de logarimo, al y como se indica en el ejemplo: = log = a) 7 b) c) 9 d) e) 0 f) 7 g) h) i).- Calcula las siguienes poencias y escríbelas

Más detalles

Colección de problemas del Curso 05/06 Circuitos Electrónicos. 2º Ing. Aeronáutico Dpto. de Ingeniería Electrónica

Colección de problemas del Curso 05/06 Circuitos Electrónicos. 2º Ing. Aeronáutico Dpto. de Ingeniería Electrónica Colección de problemas del Curso 05/06 Circuios Elecrónicos. º Ing. Aeronáuico Dpo. de Ingeniería Elecrónica Problema. Calcule la ransformada de Fourier, G(), de las siguienes funciones: + a) g = e u(

Más detalles

DERIVADAS. Lim. y Lim. y Lim

DERIVADAS. Lim. y Lim. y Lim DERIVADAS En maemáicas la erivaa e una función es uno e los os concepos cenrales el cálculo. El oro concepo es la anierivaa o inegral; ambos concepos esán relacionaos por el eorema funamenal el cálculo.

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

UNIVERSIDAD DE CONCEPCIÓN

UNIVERSIDAD DE CONCEPCIÓN CAPITULO : DERIVADA DE UNA FUNCIÓN. UNIVERSIDAD DE CONCEPCIÓN. 1. Concepo inuiivo de límie y el concepo de derivada en un puno. Considere la siguiene epresión: n 1, siendo n un número naural, es decir,

Más detalles

TEMA 3: CINEMATICA DE UNA PARTICULA

TEMA 3: CINEMATICA DE UNA PARTICULA La Mecánica es la pare de la Física que esudia el moimieno de los cuerpos. La cinemáica es la pare de la mecánica que describe el moimieno en sí, sin ener en cuena la causa del mismo. La Dinámica es la

Más detalles

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08

Facultad de Ciencias del Mar. Curso 2007/08 11/07/08 Esadísica Convocaoria de Junio Faculad de Ciencias del ar. Curso 007/08 /07/08 El galludo (Squalus egalops) es una especie de iburón de aguas empladas a ropicales, que habia la plaaforma coninenal exerior

Más detalles

Capítulo 11A Movimiento Angular SAI JORGE

Capítulo 11A Movimiento Angular SAI JORGE Capíulo 11A Movimieno Angular SAI JOGE 01 Las TUBINAS DE VIENTO como ésas pueden generar energía significaiva en una forma que es ambienalmene amisosa y renovable. Los concepos de aceleración roacional,

Más detalles

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS

UNIDAD 1: CINEMÁTICA Y DINÁMICA PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO ROBLEMAS RESUELTOS 1 ROBLEMAS RESUELTOS 1.- Un jugador de béisbol uiliza una maquina lanzadora para ayudarse a mejorar su promedio de baeo. Coloca la máquina de 50 kg sobre un esanque

Más detalles

Funciones linealmente independientes. Juan-Miguel Gracia

Funciones linealmente independientes. Juan-Miguel Gracia Juan-Miguel Gracia Definición 1 Sean f 1 (), f 2 (), f 3 () funciones reales definidas en un inervalo I. Diremos que esas funciones son linealmene independienes en I si la relación: Para odo I α 1 f 1

Más detalles

Tema 2: Cinemática de la Partícula

Tema 2: Cinemática de la Partícula Física I-Grupo 3 (Curso 013/14) Tema : Cinemáica de la Parícula Grado en Ingeniería Diseño Indusrial y Des. Prod. Doble Gra. en Ing. Diseño Ind. y D.P e Ing. Mecánica Escuela Poliécnica Superior Universidad

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIEÍA ELÉCTICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Erneso Pereda de Pablo Tema 0: epaso de concepos PUNTOS OBJETO DE ESTUDIO 3 Inroducción

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla)

Prácticas de Tecnología de Fluidos y Calor (Departamento de Física Aplicada I - E.U.P. Universidad de Sevilla) TERMOGENERADOR DE SEMICONDUCTORES. Objeivos Poner de manifieso el efeco Seebeck. Deerminar el coeficiene Seebeck, α, la f.e.m, la resisencia inerna, r, y el rendimieno, η, del ermogenerador (o ermopila).

Más detalles

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN ESTUDIO DE MERCADO. MÉTODOS DE PROECCIÓN Qué es una proyección? Es una esimación del comporamieno de una variable en el fuuro. Específicamene, se raa de esimar el valor de una variable en el fuuro a parir

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

Trabajo Práctico 1 Cinemática: el estudio del movimiento

Trabajo Práctico 1 Cinemática: el estudio del movimiento Trabajo Prácico 1 Cinemáica: el esudio del movimieno 1. Cómo e das cuena que un cuerpo esá en movimieno? Qué significa decir que el movimieno es relaivo? 2. Qué diferencia hay enre la rapidez y la velocidad?

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

Propagación de crecidas

Propagación de crecidas cnicas y algorimos empleados en esudios hidrológicos e hidráulicos Monevideo - Agoso 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Propagación de crecidas Luis Teixeira Profesor Tiular,

Más detalles

Universidad de Alcalá ANÁLISIS Y SÍNTESIS DE SISTEMAS SECUENCIALES. M. Mazo, S. E. Palazuelos, L. M. Bergasa

Universidad de Alcalá ANÁLISIS Y SÍNTESIS DE SISTEMAS SECUENCIALES. M. Mazo, S. E. Palazuelos, L. M. Bergasa Universidad de Alcalá ANÁLISIS Y SÍNTESIS DE SISTEMAS SECUENCIALES M. Mazo, S. E. Palazuelos, L. M. Bergasa Mayo de 23 Índice Aspecos generales sobre circuios secuenciales... 4 Esrucura general y funcionamieno...

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

5. MODELOS DE FLUJO EN REACTORES REALES

5. MODELOS DE FLUJO EN REACTORES REALES 5. MODLOS D FLUJO N RACTORS RALS 5.1 INTRODUCCIÓN n el caso de los reacores homogéneos isoérmicos, para predecir el comporamieno de los mismos deben enerse en cuena dos aspecos: - La velocidad a la cual

Más detalles

CAPÍTULO 9: POTENCIA E INVERSIÓN (II)

CAPÍTULO 9: POTENCIA E INVERSIÓN (II) CAÍTULO 9: OTENCIA E INVERSIÓN (II) Dane Guerrero-Chanduví iura, 015 FACULTAD DE INGENIERÍA Área Deparamenal de Ingeniería Indusrial y de Sisemas CAÍTULO 9: OTENCIA E INVERSIÓN (II) Esa obra esá bajo una

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles