TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas."

Transcripción

1 TIPOS D TNDNCIAS Y SUS CONSQUNCIAS. Tendencas esocáscas versus deermnsas. Concepos báscos. Parmos de la base que una sere emporal es la realzacón de un proceso esocásco. Tal y como vmos en los modelos ARIMA. Un proceso esocásco es una sucesón de varables aleaoras ordenadas en el empo. { },, K, Por lo ano una sere emporal es una muesra T dmensonal de amaño. lamaremos Proceso Generador de Daos (PGD) a la ley de probabldad que defne la varable aleaora, es decr, como se genera la v.a.. saconaredad en sendo fuere: Un proceso es esaconaro en sendo esrco cuando su funcón de dsrbucón conjuna es nvarane ane desplazamenos en el empo. F (,, ) F(,, ), r r, r saconaredad en sendo débl o de segundo orden: Un proceso es esaconaro en sendo débl cuando se cumple smuláneamene: ( ) Var Cov µ ( ) σ σ < ( ) Cov( ) γ <, r, µ < ± ± r ± r± γ

2 as seres económcas suelen ser no esaconaras. Suelen presenar una endenca crecene (y en algunos casos decrecene). sa no esaconaredad puede ser en meda o en varanza, o ambas a la vez. Tpos de No saconaredad. a no esaconaredad débl puede esar provocada pro uno de los sguenes movos o por los dos a la vez. so nos permrá cuanfcar el po de endenca presene en la sere analzada. - No esaconaredad en meda. - No esaconaredad en varanza.

3 No esaconaredad en meda. a) Se puede ener en cuena en la modelzacón medane la ulzacón de érmnos deermnsas. b) No nvalda la ulzacón de la nferenca esandar. c) os esmadores MCO del modelo que ncluye los elemenos o érmnos deermnsas serán asnocamene normales. jemplo:, σ d < [ ] M T T

4 Var [ ] ( ) ( ( )) ( ) 4 ( ) ( ) ( ) ( ) σ ( ) No esaconaredad en varanza. a) nvalda los nsrumenos de nferenca esándar, dado que los esadíscos de prueba no convergen a sus dsrbucones habuales. b) as dsrbucones asnócas de los esadíscos habuales (-rao, F, R, DW) son funcón de procesos de Wener o [ rt ] w r. Movmenos Brownanos: j T j c) A pesar de eso los esmadores MCO de los modelos que nvolucren procesos no esaconaros en varanza serán super-conssenes. Una de las razones más habuales por las que podemos ener procesos no esaconaros en varanza es la presenca de raíces unaras en procesos auorregresvos. jemplo:

5 M [ ] [ ] σ Var T Procesos negrados Proceso I(): Un proceso I() es un proceso esaconaro en varanza, es decr, su varanza a largo plazo es fna y posva. Por ejemplo odos los procesos MA son procesos I(), los procesos AR y ARMA esaconaros ambén son I(). Procesos I(d): Se dce que un proceso esocásco es negrado de orden d, d I, s ras dferencarlo d veces es I(). I d I s I I I d I d d d

6 Tendenca esocásca: Se dce que un proceso ene una endenca esocásca s su varanza depende del empo (no es fna). A los procesos no esaconaros en varanza se les llama procesos negrados. l ejemplo más sencllo es el camno aleaoro: Donde es la suma acumulada de odas las nnovacones de perodos anerores. Caraceríscas de los procesos I() y I(). I() - Mean Reverng. l número de períodos esperados que han de pasar para que la sere cruce la meda es fno. - ρ cuando. - VAR ( ) fna y consane. - Memora lmada. - Dsrbucón de los esadíscos basados en la Normal. I() - Comporameno dvagane. l número de períodos esperados que han de pasar para que la sere cruce la meda es nfno. - ρ cuando. - VAR ( ) depende de. - Memora lmada. - Dsrbucón de los esadíscos depdende de funcones de movmenos Browanos o de Werner.

7 Memora lmada Memora lmada

8 Tpos de Tendencas y sus consecuencas. Tendencas deermnsas y esocáscas. Analzaremos las sguenes suacones: - Ausenca de endenca. - Tendenca deermnsa (no esaconaredad en meda). - Tendenca esocásca (no esaconaredad en varanza). - Tendenca deermnsa y esocásca. Ausenca de endenca. Por ejemplo sea un proceso :, σ d < Susuyendo recursvamene. M S ende a nfno:

9 Se puede comprobar que: cov σ γ γ samos ane un proceso esaconaro en meda y varanza. a esmacón por MCO del modelo proporconará esmadores segados, conssenes y asnócamene efcenes. Y endrán dsrbucón asnócamene según una Normal σ VAR

10 Tendenca deermnsa (no esaconaredad en meda). Un proceso ene una endenca deermnsa cuando su varanza es fna y no depende del empo pero su valor esperado no lo es. Un ejemplo de ese po de procesos es:, σ d < Susuyendo recursvamene. [ ] M S ende a nfno: Se puede comprobar que:

11 ( ) VAR ( ) 4 ( ) ( ) ( ) ( ) σ ( ) γ ( ) cov σ γ ( ) De los resulados anerores se desprende que: - l momeno de prmer orden depende del empo, a medda que ( ),. - os momenos de segundo orden fnos y no dependen del empo., no es fno y VAR y γ son - se proceso presena el momeno de orden uno que es funcón del empo, por lo que es un proceso no esaconaro en meda, pero s que lo es en varanza. - Se le conoce con el nombre de Trend-Saonary (TS). Para recoger ese po de no esaconaredad nada mas hace fala nclur una endenca deermnsa ( ), esa rendenca deermnsa recogerá la evolucón de la meda.

12 - a esmacón por MCO de, segados, conssenes y asnócamene efcenes. Y endrán dsrbucón asnócamene según una Normal Tendenca esocásca (No esaconaro en varanza). l ercer po de proceso vene dado por aquellas seres emporales que presenan una endenca esocásca, es decr, que los momenos de segundo orden dependen del empo (no esaconaros en varanza). l caso más sencllo es un el paseo aleaoro. (, σ ) d Susuyendo recursvamene:

13 M De donde podemos ver: [ ] [ ] σ Var T [ ] cov σ γ T T Por lo ano se puede comprobar que: - s un proceso esaconaro en meda dado que.

14 - s un proceso no esaconaro en varanza ya que la varanza y las auocovaranzas don funcón del empo. s un procesos I(d), con d. - A los procesos I(d), en ese cos concreo I() se les llama Dfference Saonary (DS), dado que necesan ser dferencados para converrse en esaconaros. - os procesos I(d) ambén se conocen como procesos con raíces unaras (enen d raíces unaras). n el caso d, enemos: ( ) ( ) - S se esma el modelo al proceso con, la esmacón será segada super-conssene: P.G.D Modelo smado T ˆ O p T T ˆ O p T Velocdad

15 - Pero la dsrbucón asnóca de ( ˆ ) T no será Normal sno que será funcón de procesos Brownanos: P.G.D Modelo smado T ( ˆ ) N(, ) w r dw r T ( ˆ ) dr w r - so hace que no se pueda ulzar los nsrumenos de la nferenca esándar. s decr, no se puede aplcar los conrases po y F habuales. - Gráfcamene.

16 Tendenca deermnsa y esocásca. Fnalmene, nos podemos enconrar ane procesos que presenen ambos pos de endenca. l ejemplo más sencllo de proceso con endenca deermnsa y esocásca es el paseo aleaoro con derva ( ): (, σ ) d Susuyendo recursvamene: M ( ) A parr de lo aneror es fácl ver que: ( ) ( ) σ Var γ ( ) ( ) σ cov Por lo ano los momenos de prmer y de segundo orden dependen del empo, en consecuenca: - l proceso ene una endenca esocásca, es I(), por lo ano necesa ser dferencado una vez para converrse en esaconaro. s un proceso DS (Dfference Saonary).

17 T ˆ O p - S el PDG vene dado por con y se esma por MCO la esmacón del parámero es super-conssene su dsrbucón será funcón de demeaned Brownan moon processes. - S el PDG vene dado por y se esma por MCO la esmacón del parámero es super-conssene ( ˆ ) T O p. Pero con. Pero su dsrbucón será funcón de demeaned and derended Brownan moon processes. - Por lo ano no será váloda la nferenca esándar basada en los conrases po y F. Gráfcamene:.5

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

SISTEMAS DE ECUACIONES SIMULTANEAS

SISTEMAS DE ECUACIONES SIMULTANEAS Apunes de eoría Economérca I. Profesor: Vvana Fernández SISEMAS DE ECUACIONES SIMULANEAS I INRODUCCION A la fecha, nos hemos cenrado en modelos unecuaconales, eso es, aquellos que nvolucran sólo una ecuacón

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

Hay convergencia entre los países de la UE?

Hay convergencia entre los países de la UE? Hay convergenca enre los países de la UE? Marzo de 003 Mª Isael González Marínez Deparameno de Méodos Cuanavos para la Economía Faculad Economía y Empresa, Unversdad de Murca Campus Espnardo, 3000 ESPINARDO

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

PRODUCTO INTERNO BRUTO TRIMESTRAL

PRODUCTO INTERNO BRUTO TRIMESTRAL PRODUCTO INTERNO BRUTO TRIMESTRAL Prmer Trmesre 2010 La Paz - Bolva Pr o d u c o Inerno Br u o Tr m e s r a l Prmer Trmesre 2010 Elaborado por el Insuo Naconal de Esadísca Depóso Legal Nº 4-4 - 227-10

Más detalles

El tipo de cambio real dólar-euro y el diferencial de tipos de interés real

El tipo de cambio real dólar-euro y el diferencial de tipos de interés real El po de cambo real dólar-euro y el dferencal de pos de nerés real (Versón prelmnar) Paz Rco Belda Unversdad de Valenca Faculad de Economía Avd. de los Naranjos, s/n 46022 Valenca Paz.Rco@uv.es Absrac

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model Unversy of Exremadura Deparmen of Economcs Macroeconomc Effecs of Fscal Shocks n he European Unon: A GVAR Model Ths verson: February 212 Alejandro RICCI RISQUETE Julán RAMAJO HERNÁNDEZ Unversdad de Exremadura

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es Tme dependence on Fnancal Operaons of Invesmen Davd eballos Hornero Deparamen de Maemàca Econòmca, Fnancera Acuaral. Unversa de Barcelona ceballos@eco.ub.es Dynamc analyss of a Fnancal Operaon of Invesmen

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

PRESENTE, PEDAGOGIA Y FUTURO DE LA ECONOMETRIA *

PRESENTE, PEDAGOGIA Y FUTURO DE LA ECONOMETRIA * PRESENTE, PEDAGOGIA Y FUTURO DE LA ECONOMETRIA * Carlos E Casellar P. ** 1. INTRODUCCION La enseñanza de la Economería en odos los deparamenos de Economía ha enfrenado una secular dscusón: donde comenzar?

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión PÁCTICA 1: Idenfcacón del modelo de un moor de C.C. con enrada en escalón de ensón Ojevos: Guón: Caracerzar un moor de C.C. Deermnar las consanes y τ. Smulacón del funconameno de un moor de C.C. en Sm.

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D o de Economía Aplicada Cuaniaiva I Basilio Sanz Carnero PROCESOS ESTOCÁSTICOS Un proceso esocásico «Z» considera «n» variables aleaorias, Z n, en momenos de iempo sucesivos, cada una de esas «n» variables

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

Determinantes de largo plazo del tipo de cambio real en América Latina.

Determinantes de largo plazo del tipo de cambio real en América Latina. Deermnanes de largo plazo del po de cambo real en Amérca Lana. Jorge Carrera 1 y Roman Resou 2.. 31 de agoso 2007. Absrac hs paper nvesgaes he long run behavor of real exchange raes (RER) n weny one counres

Más detalles

Crecimiento económico y gasto público: una interpretación de las experiencias internacionales y del caso colombiano ( ) *

Crecimiento económico y gasto público: una interpretación de las experiencias internacionales y del caso colombiano ( ) * Crecmeno económco y gaso públco: una nerpreacón de las experencas nernaconales y del caso colombano (98-999) * Carlos Eseban Posada ** José Fernando Escobar *** Resumen En ese documeno se presenan los

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

Adaboost con aplicación a detección de caras mediante el algoritmo de Viola-Jones. Trabajo final - Introducción al reconocimiento de patrones

Adaboost con aplicación a detección de caras mediante el algoritmo de Viola-Jones. Trabajo final - Introducción al reconocimiento de patrones Adaboos con aplcacón a deeccón de caras medane el algormo de Vola-Jones rabajo fnal - Inroduccón al reconocmeno de parones ésor Paz Febrero de 2009 Adaboos con aplcacón a deeccón de caras medane algormo

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO L INNOVCION EN L LITERTUR RECIENTE DEL CRECIMIENTO ENDOGENO Carlos Borondo rrbas Unversdad de Valladold Revsón: sepembre 28 Resumen Ese arículo presena un repaso de los prncpales modelos recenes que hacen

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Análisis de Series Temporales. Jose Jacobo Zubcoff. Departamento de Ciencias del Mar y Biología Aplicada

Análisis de Series Temporales. Jose Jacobo Zubcoff. Departamento de Ciencias del Mar y Biología Aplicada Análisis de Series Temporales Jose Jacobo Zubcoff Deparameno de Ciencias del Mar y Biología Aplicada Inroducción al análisis de series emporales Objeivo: analizar la evolución de una variable a ravés del

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS www.quan-radng.co INTERPOLACIÓN CURVA DE TASAS DE INTERÉS El rendmeno hasa el vencmeno de un bono es una medda úl para eecos de comparacón. Sn embargo hay oras meddas que conenen mucha más normacón como

Más detalles

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa

Determinación Experimental de la Distribución de Tiempos de Residencia en un Estanque Agitado con Pulpa Deermnacón Expermenal de la Dsrbucón de Tempos de Resdenca en un Esanque Agado con Pulpa Lus Marín Escalona Julo de 2oo7 Índce Resumen 3 Anecedenes Generales 3 Procedmeno Expermenal Dscusones 4 onclusones

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES

UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES UNA INTRODUCCIÓN A LOS MODELOS DE SERIES TEMPORALES NO LINEALES Juan Gabrel Rodríguez Hernández* Mayo 00 *Unversdad Rey Juan Carlos. Campus de Vcálvaro, 803 Madrd. Ese rabajo se a benefcado de los comenaros

Más detalles

Simulación de Series Temporales: Una Aplicación al Precio del Petróleo

Simulación de Series Temporales: Una Aplicación al Precio del Petróleo 1 Simulación de Series Temporales: Una Aplicación al Precio del Petróleo Dr. Ricardo A. Queralt (CUNEF) Lorena Zaragozá (CEPSA) 2 INDICE 1 Introducción 2 Modelos de Series Temporales y @Risk 3 Precios

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Esadísico de Daos Climáicos SERIES TEMPORALES I Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Monevideo, Uruguay 2011 CONTENIDO Esudio de las series emporales en Climaología.

Más detalles

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002

Séptimas Jornadas de Economía Monetaria e Internacional La Plata, 9 y 10 de mayo de 2002 Unversdad Naconal de a Plaa Sépas Jornadas de Econoía Moneara e Inernaconal a Plaa, 9 y de ayo de 22 Un Análss Econoérco del Efeco de la Políca Moneara en Argenna Urera, Gasón Ezequel (Unversdad Epresaral

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100

Manual Metodológico del Índice de Remuneraciones (IR) Índice de Costo de Mano de Obra (ICMO) Base anual 2009 = 100 Manual Meodológco del Índce de Remuneracones (IR) Índce de Coso de Mano de Obra (ICMO) Base anual 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Proyeco de acualzacón IR ICMO Subdreccón Técnca

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

Circuitos Rectificadores 1/8

Circuitos Rectificadores 1/8 Crcuos Recfcadores 1/8 1. Inroduccón Un crcuo recfcador es un crcuo que ene la capacdad de converr una señal de c.a. en una señal de c.c. pulsane, ransformando así una señal bpolar en una señal monopolar.

Más detalles

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS TESIS DE GRADO PARA OPTAR AL TITULO DE MAGISTER EN INGENIERÍA

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

ÍNDICES ENCADENADOS DE VOLUMEN: UNA GUÍA PRÁCTICA 8

ÍNDICES ENCADENADOS DE VOLUMEN: UNA GUÍA PRÁCTICA 8 VII. EMA A DEBAE. ÍNDICES ENCADENADOS DE VOLUMEN: UNA GUÍA PRÁCICA 8 Ana Mª Abad Insuo Naconal de Esadísca Ángel Cuevas D.G. de Políca Económca Mnsero de Economía y Hacenda Enrue M. Quls D.G. del esoro

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES Deparameno de Economía Fnancera y Conabldad I MODELIZACIÓN ACTUARIAL DEL VALOR RAZONABLE EN LAS ENTIDADES ASEGURADORAS

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

TEMA V: NUMEROS INDICES. V.2.- Números índices simples. Definición y propiedades. V Números índices complejos sin ponderar

TEMA V: NUMEROS INDICES. V.2.- Números índices simples. Definición y propiedades. V Números índices complejos sin ponderar Números índces TEMA V: NUMEROS NDCES V.1.- nroduccón, conceo y clasfcacón V.2.- Números índces smles. Defncón y roedades V.3.- Números índces comlejos V.3.1.- Números índces comlejos sn onderar V.3.2.-

Más detalles

UNIDAD VII Predicción En Modelos No Lineales

UNIDAD VII Predicción En Modelos No Lineales UNIDAD VII Predccón En Modelos No Lneales UNIDAD VII La Cenca es necesara cuando se planfca el fuuro. S el fuuro depende del azar, la cenca no ene sendo Vcor Garca Gonzales, 99 Cuáles son las aplcacones

Más detalles

Esa variación puede darse con la magnitud de la velocidad, su dirección y/o su sentido.

Esa variación puede darse con la magnitud de la velocidad, su dirección y/o su sentido. Momeno Varado - Que un momeno ea arado gnca que el mól que lo poee ene una elocdad aría con el empo. Ea aracón puede dare con la magnud de la elocdad, u dreccón y/o u endo. Un prmer cao lo enemo en momeno

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla:

ANEXO Las instituciones calcularán mensualmente los puntos en riesgo utilizando el procedimiento que a continuación se detalla: ANEXO 5 METODOLOGIA A SEGUIR PARA DETERMINAR EL MONTO MÍNIMO DEL FIDEICOMISO, ASÍ COMO EL IMPORTE DE LAS CUOTAS SOBRE LAS CUALES SE CALCULARÁN LAS APORTACIONES A QUE SE REFIERE EL ARTÍCULO 55 BIS DE LA

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

Ser keynesiano en el corto plazo y clásico en el largo plazo*

Ser keynesiano en el corto plazo y clásico en el largo plazo* Ser keynesano en el coro plazo y clásco en el largo plazo* Gérard Duménl** y Domnque Lévy*** Inroduccón * Traducdo por Davd A. Turpn jr., Deparameno de Economía de la UAM-A. ** CE: gerard. dumenl@u-pars0.fr

Más detalles

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanes Aleandro Pena Andrés Sosa 002-204 688-7565 Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanesª, Aleandro Pena b**,

Más detalles

Amplificador Operacional 1/14

Amplificador Operacional 1/14 Amplfcadr Operacnal /4. Inrduccón Un amplfcadr peracnal, ambén llamad peracnal es un módul funcnal fabrcad sbre una sla paslla chp (crcu negrad, I) que encapsula un amplfcadr ranssrzad muy esable para

Más detalles

Indice de Coste Laboral Armonizado. Metodología

Indice de Coste Laboral Armonizado. Metodología Indce de Coste Laboral Armonzado Metodología Indce 1. Introduccón 2. Defncones 3. Formulacón 4. Ajuste de seres 1. Introduccón El objetvo prncpal del Indce de Coste Laboral Armonzado es proporconar una

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA

EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA Prohbda la reproduccón oal o parcal de esa obra sn el permso escro del auor o de FUNDACIÓN MAPFRE Insuo de Cencas del Seguro EL FAIR VALUE DE LAS PROVISIONES TÉCNICAS DE LOS SEGUROS DE VIDA Emlano Pozuelo

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

POLÍTICAS CAMBIARIAS DE LOS PAÍSES DEL ESTE Y CENTRO DE EUROPA EN SU PROCESO DE INTEGRACIÓN ECONÓMICA EN LA

POLÍTICAS CAMBIARIAS DE LOS PAÍSES DEL ESTE Y CENTRO DE EUROPA EN SU PROCESO DE INTEGRACIÓN ECONÓMICA EN LA POLÍTICAS CAMBIARIAS DE LOS PAÍSES DEL ESTE Y CENTRO DE EUROPA EN SU PROCESO DE INTEGRACIÓN ECONÓMICA EN LA UNIÓN EUROPEA: EFECTOS SOBRE LA VOLATILIDAD CAMBIARIA José María López Morales Unversdad de Alcalá

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA Insrucor: Horacio Caalán TEORÍA DE COINTEGRACIÓN Efecos de las propiedades esocásicas de las series en un modelo de regresión

Más detalles

Precios y costes laborales

Precios y costes laborales Precs y coses laborales Noas meodológcas y explcavas 1 Índces de precs de consumo El Índce de Precs de Consumo (IPC), elaborado por el INE, mde la evolucón del conjuno de precs de los benes y servcs que

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes DOCUMENTO CEDE 2002-02 ISSN 1657-7191 (Edcón elecrónca) ABRIL DE 2002 CEDE EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Aras UCLA Albero Carrasqulla Unversdad de los Andes Aruro Galndo Banco

Más detalles