PROYECTO DE AEROGENERADOR 3º ESO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROYECTO DE AEROGENERADOR 3º ESO"

Transcripción

1 PROYECTO DE AEROGENERADOR 3º ESO IESO CAMINO ROMANO

2 Introducción Este guión es orientativo para darte una idea general, pero es bien seguro que tendrás que resolver algunas cuestiones a medida que avances en el proyecto. Objetivo Diseñar y construir la maqueta de una aerogenerador de eje horizontal de tres palas, imitando a aquellos que existen en nuestra región de Castilla La Mancha. Condiciones Debe producir una tensión de al menos 0,5 V. o suficiente energía eléctrica para iluminar un LED. Debe llevar los mismos elementos básicos que posee un aerogenerador auténtico y debe intentar imitarlo en cuanto a forma, es decir, debe estar escalado. Debe incorporar un mecanismo de transmisión multiplicador de velocidad. Altura máxima del poste: de 35 a 40 cm INFORME DE PRÁCTICAS 1. Objetivo: Definir el problema. Qué se va a hacer? 2. Investigación a) Qué es un aerogenerador y qué función tiene? b) Tipos básicos de aerogeneradores. c) Indica las partes básicas de un aerogenerador y explica brevemente la función que tienen, es decir, se trata de que describas el funcionamiento del aerogenerador. d) El sistema multiplicador de velocidad es esencial en un aerogenerador, descríbelo e indica cuál es su función. Se valorará el cálculo de la relación de transmisión del mecanismo. 3. Descripción del funcionamiento de la solución. 4. Planos a) Bocetos generales. Todos los miembros del grupo deben hacer aportaciones. Se valorará el haber realizado un dibujo a perspectiva escalado. b) Planos de detalle y despiece, debidamente acotados c) Esquema eléctrico y del mecanismo. 5. Planificación a) Lista de materiales (detalles de su uso). b) Lista de herramientas que necesitarías. c) Hoja de procesos (pasos de fabricación). d) Indica las normas de seguridad básica que debes seguir. 6. Valoración: Se trata de valorar el resultado final tras realizar las pruebas finales.

3 Información básica Un aerogenerador es la máquina que se encarga de convertir la energía cinética del viento en energía eléctrica. El funcionamiento de un aerogenerador es muy sencillo. El viento mueve las palas del aerogenerador y a través de un sistema mecánico de engranajes hacen girar el rotor. La energía mecánica rotacional del rotor es transformada en energía eléctrica por el generador. Sus partes principales son: La góndola- carcasa que protege las partes fundamentales del aerogenerador Las palas del rotor que transmiten la potencia del viento hacía el buje. El buje que es la parte que une las palas del rotor con el eje de baja velocidad. Eje de baja velocidad que conecta el buje del rotor al multiplicador. Su velocidad de giro es muy lenta. El multiplicador, permite que el eje de alta velocidad gire mucho más rápido que el eje de baja velocidad. Eje de alta velocidad, gira a gran velocidad y permite el funcionamiento del generador eléctrico. El generador eléctrico que es una de las partes mas importantes de un aerogenerador. Transforma la energía mecánica en energía eléctrica El controlador electrónico, es un ordenador que monitoriza las condiciones del viento y controla el mecanismo de orientación. La unidad de refrigeración, mecanismo que sirve para enfriar el generador eléctrico. La torre que es la parte del aerogenerador que soporta la góndola y el rotor. El mecanismo de orientación, está activado por el controlador electrónico, la orientación del aerogenerador cambia según las condiciones del viento.

4 Fase constructiva aerogenerador a) Construyendo las palas del aerogeneradores 1. Elegir el tamaño correcto Para elegir el tamaño de las palas del aerogenerador, debes saber, que tienen una longitud aproximadamente igual a la mitad de la altura de la torre. Emplearemos tuberías de PVC para construir tanto la torre del aerogenerador, como las palas, pues este es un material ligero, resistente y barato. Como sabes, los aerogeneradores tienen tres palas, aunque construiremos cuatro. De este modo, tendrás uno de reserva por si alguno te sale mal. 7. Corta una pieza de tubería de la misma longitud que las palas 8. Se aconseja que el grosor de las tuberías sea un quinto de la longitud de las palas. Es decir, que si las palas miden, por ejemplo, 35 cm de longitud, la tuberías debe tener 7 cm de grueso. 9. Dibuja un rectángulo de cartulina cuya longitud sea igual a la de las palas, y cuyo ancho sea igual a la cuarta parte que la longitud total de la circunferencia de la tubería, pues necesitas cuatro palas. a) Recuerdas la fórmula de circunferencia? Longitud circunferencia= número pi * diámetro de tubería. b) Así, por ejemplo: si la tubería tiene 7 cm de diámetro, L = 3,14*7 = 21'98 cm c) Halla la cuarta parte del valor de la circunferencia. En este caso Ancho = 21,98/4=5,5 cm 10. Ahora utiliza ese pedazo de cartulina a modo de plantilla, fijándolo sobre la tubería y trazando con un lápiz las cuatro divisiones que debemos obtener. De este modo podrás dividir en cuatro partes iguales la tubería. 11. Dibuja sobre la cartulina la forma de la pala. a) Para dibujar la pala, debes dibujar en la base un pequeño rectángulo de unos pocos cm de lado (debes calcularlo tú) como el señalado por la flecha en la imagen. La zona sombreada será una de nuestras cuatro palas. b) Recuerda, el ancho de esta plantilla es la cuarta parte de la circunferencia de la tubería. c) En la fotografía puedes ver el diseño real de una de las palas

5 d) En las siguiente fotografía puedes ver ya una de las palas terminadas. La segunda comenzando desde arriba. Sólo resta taladrar dos orificios por donde pasarán los tornillos que sujetan las palas al rotor. El tamaño de esos orificios será el mismo que el de los tornillos de ajuste. b) Construyendo el rotor El rotor es la pieza que gira. Debes construir una pieza circular de madera los suficientemente amplia como para albergar las tres palas. La pieza será de chapa de madera de 3 mm. Si encuentras otro material más resistente, pero a la vez ligero, se admite. Debes fijar cada pala con dos tornillos y sus correspondientes tuercas y arandelas. No olvides que debes perforar un orificio central por el que debe pasar el eje rotor, que será una varilla roscada de 6 mm de grueso, previamente cortada según la longitud deseada. La varilla roscada se ajusta con dos tuercas. Una a cada lado del disco rotor, con sus correspondientes arandelas, de modo que una actúa de tuerca y otra de contratuerca. En la siguiente fotografía, para que parezca más real, puedes adosar una pieza que cubra el disco del rotor. En la fotografía se pone la pieza antes de adosar el eje rotor, pero no debes hacerlo después. Fíjate en un detalle. Hay un pequeño triángulo que puedes adosar con tuercas y tornillos entre las tres palas. Este triángulo le da mucha estabilidad a las palas, pues impide que se muevan cuando gire el rotor. Si lo añades, hazlo antes de insertar la varilla, pues debe ser perforado.

6 c) Construyendo la góndola La góndola es la parte del aerogenerador que está sobre la torre y soporta el rotor con sus palas, así como el mecanismo multiplicador de velocidad y demás instrumentos. Sobre una plataforma de madera, debes construir una estructura que soporte el rotor con sus aspas. Aquí tienes un ejemplo, aunque puedes crear otras ideas... Varilla roscada Torre de PVC En uno de los extremos de la varilla roscada, que hace de eje rotor, irán las palas, mientras que en el otro se debe adosar una polea que servirá para el mecanismo multiplicador. La góndola se podría cubrir con una tapa de plástico de una botella, por ejemplo. d) Multiplicador El multiplicador de velocidad mostrado se corresponde con un sistema de poleas doble, que permite crear el efecto de multiplicación de velocidad con más garantía. Una primera polea (en lo alto) transmite el movimiento circular hasta un eje situado a mitad de altura. Este eje tiene acoplada otra polea idéntica a la primera, que a su vez transmite el movimiento al generador. Este, al moverse, genera una corriente eléctrica que llevará energía hasta un LED que actúa como una luz de testigo.

7

Tecnologia 3º ESO: Proyecto Aerogenerador

Tecnologia 3º ESO: Proyecto Aerogenerador Tecnologia 3º ESO: Proyecto Aerogenerador Este guión es orientativo para darte una idea general, pero es bien seguro que tendrás que resolver algunas cuestiones a medida que avances en el proyecto. Lo

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Términos 3 2. Parque eólicos 2.1. Qué es un parque eólico? 4 2.2. Cómo funciona un parque eólico? 5 2 1. Glosario 1.1. Términos Góndola Es la carcasa que protege

Más detalles

Historia TECNOLOGÍA ENERGÉTICA 2

Historia TECNOLOGÍA ENERGÉTICA 2 ENERGÍA EÓLICA Historia Primer aprovechamiento: Egipcios En el siglo VII d.c. surgen molinos elementales en Persia para el riego y moler el grano A partir de los siglos XII-XIII empieza a generalizarse

Más detalles

Objetivo Construcción de una noria de feria con iluminación. En este documento se explica el proceso de construcción, es cometido de los alumnos

Objetivo Construcción de una noria de feria con iluminación. En este documento se explica el proceso de construcción, es cometido de los alumnos Objetivo Construcción de una noria de feria con iluminación. En este documento se explica el proceso de construcción, es cometido de los alumnos hacer la memoria del proyecto usando esta información y

Más detalles

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUERTA CORREDERA DE TORNILLO

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUERTA CORREDERA DE TORNILLO GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUERTA CORREDERA DE TORNILLO PROYECTO DE PUERTA CORREDERA DE TORNILLO Vas a proyectar y construir una PUERTA CORREDERA DE TORNILLO, este dispositivo se

Más detalles

Mini Aerogenerador kit C-0207

Mini Aerogenerador kit C-0207 Mini Aerogenerador kit C0207 Este mini aerogenerador que tenéis que montar, produce suficiente energía eléctrica para iluminar los leds luminosos que lleva insertados en la carcasa y que avisa de la presencia

Más detalles

PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUENTE LEVADIZO

PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUENTE LEVADIZO PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE PUENTE LEVADIZO PROYECTO DE PUENTE LEVADIZO Vas a proyectar y construir un PUENTE LEVADIZO, este dispositivo se puede utilizar en ríos dónde no es posible

Más detalles

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE CRUCE DE SEMÁFOROS

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE CRUCE DE SEMÁFOROS GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE CRUCE DE SEMÁFOROS PROYECTO DE CRUCE DE SEMÁFOROS Vas a proyectar y construir un CRUCE DE SEMÁFOROS, este dispositivo se utiliza masivamente para el control

Más detalles

Lanzadera vertical

Lanzadera vertical 105.048 Lanzadera vertical Material suministrado: 1 contrachapado 300 x 210 x 5 mm 2 contrachapado 150 x 120 x 5 mm 1 contrachapado 160 x 160 x 5 mm 1 contrachapado 250 x 70 x 5 mm 1 contrachapado 70 x

Más detalles

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor.

Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Mecanismo: Elemento destinado a transmitir y/o transformar las fuerzas o movimientos desde un elemento motriz (motor) hasta un elemento receptor. Finalidad: - Permiten realizar trabajos con mayor comodidad

Más detalles

RECUPERACIÓN PENDIENTES TECNOLOGÍA 3º ESO

RECUPERACIÓN PENDIENTES TECNOLOGÍA 3º ESO NOMBRE Y APELLIDOS: CURSO: RECUPERACIÓN PENDIENTES TECNOLOGÍA 3º ESO Para recuperar la TECNOLOGÍA DE 3º ESO PENDIENTE será necesario realizar un examen de recuperación y entregar el siguiente trabajo:

Más detalles

TIPOS DE AE A ROGE G NE N RAD A O D RES

TIPOS DE AE A ROGE G NE N RAD A O D RES TIPOS DE AEROGENERADORES Criterios para la clasificación de los aerogeneradores Por la posición de su Eje Por la Velocidad Específica λ=(ω R)/V w Por su posición respecto a la Torre Por sus diferentes

Más detalles

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE BARRERA DE APARCAMIENTO

GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE BARRERA DE APARCAMIENTO GUÍA PARA LA REALIZACIÓN DEL PROYECTO Y MAQUETA DE BARRERA DE APARCAMIENTO PROYECTO DE PLATAFORMA ELEVADORA DE TIJERAS Vas a proyectar y construir una BARRERA DE APARCAMIENTO, este dispositivo se utiliza

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

3º ESO - Ejercicios de mecanismos HOJA 1

3º ESO - Ejercicios de mecanismos HOJA 1 3º ESO - Ejercicios de mecanismos HOJA 1 1. Para sacar una muela hay que hacer una fuerza de 980 N. La dentista utiliza para ello unas tenazas que tienen un mango de 15 cm. La distancia entre el extremo

Más detalles

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA

FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... 1) MECANISMOS: LA PALANCA FICHA DE ADAPTACIÓN CURRICULAR 3º ESO Nombre:... Curso:... CALIFICACIÓN: 1) MECANISMOS: LA PALANCA La palanca es un mecanismo que transforma un movimiento lineal, es decir de traslación, en otro lineal

Más detalles

1.- Con la carretilla de la figura queremos transportar una carga de tierra.

1.- Con la carretilla de la figura queremos transportar una carga de tierra. MECANISMOS 1.- Con la carretilla de la figura queremos transportar una carga de tierra. A) qué tipo de palanca estamos empleando? B) Qué esfuerzo tenemos que realizar si el peso de la arena a transportar

Más detalles

UNIDAD 3.- MECANISMOS

UNIDAD 3.- MECANISMOS UNIDAD 3.- MECANISMOS 3.1.- Máquinas simples 3.2.- Mecanismos de transmisión de movimiento 3.3.- Mecanismos de transformación de movimiento MECANISMOS DE TRANSMISIÓN Y TRANSFORMACIÓN DE MOVIMIENTO Un MECANISMO

Más detalles

PROYECTO TÉCNICO DE TECNOLOGÍAS

PROYECTO TÉCNICO DE TECNOLOGÍAS PROYECTO TÉCNICO DE TECNOLOGÍAS 1º ESO CUADERNILLO DE TALLER CURSO 2008 2009 Alumno: OBJETIVO GENERAL DEL PROYECTO: Construir la maqueta de una. La grúa tendrá una. ESPECIFICACIONES TÉCNICAS -. de la maqueta,

Más detalles

15 Figuras y cuerpos

15 Figuras y cuerpos 15 Figuras y cuerpos 1 Longitudes 1 Determinar la altura de un triángulo equilatero de lado 4. Calcula su radio y su apotema 4 m 2 Un puente levadizo de entrada a un castillo tiene 6 metros de longitud.

Más detalles

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza

RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS. Fuerza RECOPILACIÓN DE PROBLEMAS DE EXÁMENES MECANISMOS PÁGINA 1 RECOPILACIÓN DE PROBLEMAS DE EXÁMENES 1. PALANCAS Fuerza 1.1.- La piedra del dibujo pesa 160 kg. Calcular la fuerza que hay que aplicar en el extremo

Más detalles

1.4 Acoplamientos de protección o seguridad Limitadores de par mecánicos Tecnotrans

1.4 Acoplamientos de protección o seguridad Limitadores de par mecánicos Tecnotrans 1.4 Acoplamientos de protección o seguridad Limitadores de par mecánicos Tecnotrans Los limitadores de par mecánicos actúan como protección contra sobrecargas en accionamiento, tanto convencionales (unión

Más detalles

Respetar las normas locales en vigor referentes a la instalación eléctrica y evacuación de gases.

Respetar las normas locales en vigor referentes a la instalación eléctrica y evacuación de gases. Pág.: 42 de 92 5 CAMPANAS DECORATIVAS En el momento de la instalación de una Campana Decorativa, existen ciertos factores importantes a considerar. Pasamos a indicar: Antes de proceder a la instalación

Más detalles

LECCIÓN 8. Aerogeneradores INTRODUCCIÓN

LECCIÓN 8. Aerogeneradores INTRODUCCIÓN 54 LECCIÓN 8. Aerogeneradores Competencia. Diseña con su equipo K Nex un aerogenerador, para producir electricidad. Indicador. Elabora un aerogenerador para producir electricidad. INTRODUCCIÓN Gracias

Más detalles

TRABAJO EXPERIMENTAL

TRABAJO EXPERIMENTAL TRABAJO EXPERIMENTAL Temas 1: UNA ESPIRAL GIRATORIA Ya hemos visto que al calentar un fluido se establece una circulación hacia arriba que hemos llamado "corriente de convección". Cómo conseguir que se

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

Máquina para hacer pompas de jabón. Útiles necesarios:

Máquina para hacer pompas de jabón. Útiles necesarios: 106.326 Máquina para hacer pompas de jabón Útiles necesarios: Sierra de marquetería y plancha para sierra de marquetería Lima para madera y papel de lija Taladro vertical Punzón y brocas de ø 2,5 mm Destornillador

Más detalles

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA

Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA Unidad 2: EXPRESIÓN Y COMUNICACIÓN GRÁFICA EN TECNOLOGÍA El dibujo es una forma de comunicación que permite expresar de un modo sencillo cosas que son muy difíciles de explicar con las palabras. Piensa

Más detalles

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014

EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 EJERCICIOS DE MECÁNICA 3º ESO Curso 2013/2014 Para realizar estos ejercicios consulta antes tus apuntes, el libro y vuestra Web: www.tecnologia.maestrojuandeavila.es (Temas Mecánica) 1. Qué es la Mecánica?

Más detalles

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N.

BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I. 2. Un motor de 100 CV gira a 3000 rpm. Calcula el par motor. Sol: N. BLOQUE II. ELEMENTOS DE MÁQUINAS. PROBLEMAS. TECNOLOGÍA INDUSTRIAL I 1. El cuentakilómetros de una bicicleta marca 30 km/h. El radio de la rueda es de 30 cm. Calcula: a) Velocidad lineal de la rueda en

Más detalles

AEROGENERADORES DE MEDIA POTENCIA. Nuevos Vientos para la EólicaE GARBI

AEROGENERADORES DE MEDIA POTENCIA. Nuevos Vientos para la EólicaE GARBI AEROGENERADORES DE MEDIA POTENCIA Nuevos Vientos para la EólicaE CAMPO DE ACTUACIÓN Eolincyl desarrolla un aerogenerador totalmente novedoso con las siguientes características principales: Potencia Media

Más detalles

MANUAL DE CONSTRUCCIÓN MESA

MANUAL DE CONSTRUCCIÓN MESA Manual de construcción MANUAL DE CONSTRUCCIÓN MESA ATENCIÓN: Antes de utilizar este manual leer atentamente LA GUÍA GENERAL DE CONSTRUCCIÓN 76 cm 80 cm 120 cm IDENTIFICACIÓN DE PIEZAS tapa tacos de fijación

Más detalles

QUÉ SON LOS MECANISMOS?

QUÉ SON LOS MECANISMOS? QUÉ SON LOS MECANISMOS? Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) aun elemento receptor. Permiten realizar determinados trabajos con mayor

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

móvil) conectado a un mecanismo de tracción.

móvil) conectado a un mecanismo de tracción. La polea: Es un mecanismo formado por un eje y una rueda acanalada, por la que pasa una cuerda o una correa. Para qué sirve? Para cambiar la dirección en la que actúa una fuerza y disminuir el esfuerzo

Más detalles

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo

Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo UNIDAD ESTRUCTURAS Y MECANISMOS TECNOLOGÍA 1º ESO ESTRUCTURAS 1. Fuerzas: Fuerza es todo aquello capaz de deformar un cuerpo o de alterar su estado de movimiento o reposo 2. Estructuras: Una estructura

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

El objetivo de esta actividad es practicar la relación de transmisión y reflexionar sobre las peculiaridades del mecanismo de polea-correa.

El objetivo de esta actividad es practicar la relación de transmisión y reflexionar sobre las peculiaridades del mecanismo de polea-correa. El objetivo de esta actividad es practicar la relación de transmisión y reflexionar sobre las peculiaridades del mecanismo de polea-correa. V1=20v/min., V2=X EJERCICIO RESUELTO. 1. El sistema de la figura

Más detalles

BLOQUE 2. OPERADORES MECÁNICOS

BLOQUE 2. OPERADORES MECÁNICOS BLOQUE 2. OPERADORES MECÁNICOS 1. INTRODUCCIÓN Hay muchas maneras de definir una máquina. Nosotros vamos a usar la siguiente definición: Máquina: es el conjunto de mecanismos (operadores mecánicos) capaz

Más detalles

Utilizan como MEDIO el plano. Ambos deben utilizar el mismo código NORMALIZACIÓN

Utilizan como MEDIO el plano. Ambos deben utilizar el mismo código NORMALIZACIÓN - NORMALIZACIÓN. Para que la comunicación pueda ser posible, tanto si utilizamos el dibujo como cualquier otro idioma, es necesario que tanto el emisor del mensaje (persona que realiza el dibujo) como

Más detalles

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s?

1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 1. El eje de un motor gira a 500rpm. a que velocidad angular equivale en rad/s? 2. Determina la relación de transmisión entre dos árboles y la velocidad del segundo si están unidos mediante una transmisión

Más detalles

Veleta con balancín. Útiles necesarios:

Veleta con balancín. Útiles necesarios: 1 0 6. 0 6 1 Veleta con balancín Útiles necesarios: Regla, compás, lápiz Papel de lija Tijeras para chapa o tenazas Llave fija (M4= abertura de la llave 7 mm) Destornillador plano o en cruz Brocas de,

Más detalles

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2

Z 1 = 8 Z 2 = 16 W 1 Z 1 = W 2 Z 2 7- SISTEMAS DE ENGRANAJES Para que dos ruedas dentadas engranen entre sí, el tamaño de los dientes de cada una deben ser iguales. Z 1 = 8 Z 2 = 16 El número de dientes de un engranaje se representa por

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

Clasificación de los mecanismos.

Clasificación de los mecanismos. MECANISMOS - II MECANISMOS. Son elementos destinados a trasmitir y transformar fuerzas y movimientos desde un elemento motriz (motor) a un elemento receptor. Permiten al ser humano realizar determinados

Más detalles

Actividades Recuperación septiembre 2º ESO

Actividades Recuperación septiembre 2º ESO Actividades Recuperación septiembre 2º ESO Alumno:.. Grupo:. 1ª Evaluación Escala: 1cuadro = 5 mm Se debe de realizar en láminas de dibujo con cajetín delineadas a lápiz con escuadra y cartabón Lámina

Más detalles

La energía eléctrica Se produce en los aparatos llamados generadores o alternadores.

La energía eléctrica Se produce en los aparatos llamados generadores o alternadores. 65 LECCIÓN. 10 Producción de electricidad Competencia. Analiza la producción de electricidad a gran escala. Indicador. Interpreta la producción de electricidad en pequeña escala. INTRODUCCIÓN La energía

Más detalles

ACOTACIÓN DE DIBUJOS

ACOTACIÓN DE DIBUJOS ACOTACIÓN DE DIBUJOS Para que haya comunicación y se pueda entender, al igual que con un idioma, es necesario que el emisor (persona que realiza el dibujo) y el receptor (persona que lo interpreta) utilicen

Más detalles

TECNOLOGÍA. 1º E.S.O. DIBUJO TÉCNICO -.DIBUJO TÉCNICO.-

TECNOLOGÍA. 1º E.S.O. DIBUJO TÉCNICO -.DIBUJO TÉCNICO.- Introducción. -.DIBUJO TÉCNICO.- El objetivo del dibujo técnico y del dibujo en general es poder plasmar en dos dimensiones (las de una hoja de papel) objetos, es decir, cuerpos con tres dimensiones. Para

Más detalles

Aerogenerador de 17 pies de diámetro Hecho en Casa

Aerogenerador de 17 pies de diámetro Hecho en Casa Aerogenerador de 17 pies de diámetro Hecho en Casa Esta es la traducción autorizada del artículo Large 17 Turbine de la gente de Otherpower. PAGINA 1 Fabricación del chasis y procedimiento de diseño del

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGIN 212 Recorta en cartulina cada una de estas figuras y sujétalas en palillos de dientes. Sosteniendo el palillo entre los dedos y soplando en el lateral, qué ves en cada caso? Triángulo ono

Más detalles

Triciclo solar C-6138

Triciclo solar C-6138 Triciclo solar C638 Comprobar todas las piezas, antes de empezar el montaje Herramientas y material necesario para el montaje del Triciclo Taladro Broca para madera Ø mm Broca para metal Ø3 mm Lima metálica

Más detalles

EL BOCETO Y EL CROQUIS

EL BOCETO Y EL CROQUIS 2 EL BOCETO Y EL CROQUIS Por Tomás López Expresando ideas técnicas. La forma más inmediata de expresar una idea técnica es coger un lápiz y un papel y ponerse a dibujar. Al resultado le llamamos boceto.

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS

!!!!!!!!! TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS TEMA 1: DIBUJO 1.INSTRUMENTOS 2.SOPORTES 3.BOCETOS, CROQUIS Y PLANOS 4.VISTAS 5.PERSPECTIVAS 1.INSTRUMENTOS Lápices Son los principales instrumentos de trazado. Se fabrican en madera y llevan en su interior

Más detalles

Construcciones técnicas, engranajes y máquinas

Construcciones técnicas, engranajes y máquinas 1 1 4. 0 0 0 Construcciones técnicas, engranajes y máquinas 1 s de los elementos de engranajes Los elementos de construcción más importantes se pueden representar por símbolos. Una de las formas de representación

Más detalles

TECNOLOGÍA. 4º E.S.O. DIBUJO TÉCNICO -.DIBUJO TÉCNICO.-

TECNOLOGÍA. 4º E.S.O. DIBUJO TÉCNICO -.DIBUJO TÉCNICO.- Introducción. -.DIBUJO TÉCNICO.- El objetivo del dibujo técnico y del dibujo en general es poder plasmar en dos dimensiones (las de una hoja de papel) objetos, es decir, cuerpos con tres dimensiones. Para

Más detalles

LA ELABORACIÓN DEL LINO EN ASTURIAS (José cuevas, s XIX)

LA ELABORACIÓN DEL LINO EN ASTURIAS (José cuevas, s XIX) L ELORCIÓN DEL LINO EN STURIS (José cuevas, s XIX) MÁQUINS Y MECNISMOS PRTE IV: EJERCICIOS SORE MÁQUINS Y MOVIMIENTOS. 1.- IDENTIFICCIÓN DE OPERDORES ÁSICOS 1.-El siguiente mecanismo representa una barrera

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

C o c h e d e c a r r e r a s NOTA

C o c h e d e c a r r e r a s NOTA NOTA Una vez terminadas, las maquetas de construcción de OPITEC no deberían ser consideradas como juguetes en el sentido comercial del termino. De hecho son medios didácticos adecuados para un trabajo

Más detalles

Carrera: Diseño Industrial

Carrera: Diseño Industrial POLÍGONOS 1) Dados los siguientes polígonos se pide determinar cuales de ellos son cóncavos y cuales convexos. Justifique sus respuestas. a) b) c) 2) En los polígonos graficados a continuación indique

Más detalles

CONSTRUCCIÓN DE MOTORES Tipo de actividad: montaje Agrupamiento: equipos de 2 alumnos. 1.- Material necesario.

CONSTRUCCIÓN DE MOTORES Tipo de actividad: montaje Agrupamiento: equipos de 2 alumnos. 1.- Material necesario. Construcción de un motor 1 CONSTRUCCIÓN DE MOTORES Tipo de actividad: montaje Agrupamiento: equipos de 2 alumnos 1.- Material necesario. LISTA DE MATERIALES Nº Cantid. Material Observaciones 1 1 Radio

Más detalles

MÁQUINAS SIMPLES UNIDAD 6

MÁQUINAS SIMPLES UNIDAD 6 MÁQUINAS SIMPLES UNIDAD 6 TECHNOLOGIES IES MIGUEL ESPINOSA 2013/2014 INDICE 1. INTRODUCCIÓN 2. LA POLEA 3. LA PALANCA 4. EL PLANO INCLINADO 5. EL TORNO 6. TRANSMISIÓN POR ENGRANAJE 7. TRANSMISIÓN POR CADENA

Más detalles

aerogeneradores Blue Wind

aerogeneradores Blue Wind aerogeneradores Blue Wind CONDE Y BARBE es una empresa española dedicada a la fabricación de maquetas, prototipos y desarrollo de aplicaciones electrónicas. Se constituyó en el año 1984, dedicándose a

Más detalles

Actividad de Aula 2.0. Engranajes

Actividad de Aula 2.0. Engranajes Apellidos, Nombre: Curso: Nota: Fecha: Realiza los montajes que se indican a continuación y contesta a las siguientes preguntas: 1.1. Engranaje recto sin cambio de velocidad Cuál es la relación de transmisión?

Más detalles

K i t d e e x p e r i e n c i a s c o n energías ecológicas

K i t d e e x p e r i e n c i a s c o n energías ecológicas 1 2 3. 9 8 7 K i t d e e x p e r i e n c i a s c o n energías ecológicas NOTA Una vez terminadas, las maquetas de construcción de OPITEC no deberían ser consideradas como juguetes en el sentido comercial

Más detalles

Molino de viento. Notas para el profesor

Molino de viento. Notas para el profesor Notas para el profesor Molino de viento Diseño y tecnología Uso de mecanismos engranajes de aumento, engranajes de reducción Diseño y fabricación Combinando materiales Trinquetes Seguridad y sistemas de

Más detalles

Se abre una ventana que permite especificar el número de filas y columnas para la tabla.

Se abre una ventana que permite especificar el número de filas y columnas para la tabla. Una tabla está formada por celdas o casillas, agrupadas por filas y columnas. En cada celda se puede insertar texto, números o gráficos. CREAR TABLAS Para crear una tabla accedemos siempre desde la pestaña

Más detalles

EXPRESIÓN. Profesor: Julio Serrano

EXPRESIÓN. Profesor: Julio Serrano EXPRESIÓN GRÁFICA Profesor: Julio Serrano Materiales e Instrumentos Para la realización de dibujos se necesita un soporte, generalmente papel, e instrumentos de trazado, como lápices, plumas o rotuladores

Más detalles

AEROGENERADORES TECHNOWIND CATALOGO 201.

AEROGENERADORES TECHNOWIND CATALOGO 201. AEROES TECHNOWIND CATALOGO 201 Mini-aerogenerador de 0.35kW de potencia de última generación. serie 0.35 Gracias a su atractivo diseño y sus aspas ultraligeras de aluminio, arranca con brisas de tan solo

Más detalles

Hazlo tu mismo. Hacer un mueble con Placas Pladur;

Hazlo tu mismo. Hacer un mueble con Placas Pladur; Hazlo tu mismo. Hacer un mueble con Placas Pladur; Materiales. Paneles de trillaje, tiras de perfil u 31, tornillos de 3 9 x 25 Mm. para pladur, tacos de golpe mungo 5 x 35, cinta red y papel, molduras

Más detalles

A u t o m ó v i l r e c i c l a d o c o n transmisión por correa

A u t o m ó v i l r e c i c l a d o c o n transmisión por correa 115268 A u t o m ó v i l r e c i c l a d o c o n transmisión por correa Nota: Las maquetas de OPITEC, una vez terminadas, no deberían ser consideradas como juguetes en el sentido comercial del término.

Más detalles

CELOSÍA O-210 INSTRUCCIONES DE MONTAJE

CELOSÍA O-210 INSTRUCCIONES DE MONTAJE CELOSÍA O-210 INSTRUCCIONES DE MONTAJE ATENCIÓN! Es importante para la seguridad de las personas y para la integridad del producto leer detenidamente estas instrucciones antes de la instalación, operación,

Más detalles

A RG. Abatimientos 1: Punto y Plano Chuleta 13 Hoja 1/2. α 2 A 2. V r2. r 2. cota A. V r1. cota A A 1. α 1

A RG. Abatimientos 1: Punto y Plano Chuleta 13 Hoja 1/2. α 2 A 2. V r2. r 2. cota A. V r1. cota A A 1. α 1 r2 r1 G cota cota ' 0 batimiento del punto. El proceso es: 1. Por la proyección 1, se dibuja una línea perpedicular a la traza horizontal α1, cortandola en el punto G. 2. Nuevamente por la proyección 1,

Más detalles

ESTUDIO DE LA FUERZA CENTRÍPETA

ESTUDIO DE LA FUERZA CENTRÍPETA Laboratorio de Física General Primer Curso (ecánica) ESTUDIO DE LA FUERZA CENTRÍPETA Fecha: 07/02/05 1. Objetivo de la práctica Verificación experimental de la fuerza centrípeta que hay que aplicar a una

Más detalles

Energía eólica. Energía eólica

Energía eólica. Energía eólica Energía eólica I. Introducción. II. Aerogeneradores: Funcionamiento, tipos y constitución. II.1. Funcionamiento II.2. Tipos II.3. Constitución III. Diseño de las instalaciones IV. Aplicaciones V. Ventajas

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS

Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS Y SISTEMASEleELE ELEMENTOS DE MÁQUINAS Y SISTEMAS 1 Mecanismos y sistemas mecánicos Mecanismo Conjunto de elementos conectados entre sí por medio de articulaciones móviles cuya misión es: transformar una

Más detalles

MANUAL DE INSTALACION TEJA ANDINA ETERNIT

MANUAL DE INSTALACION TEJA ANDINA ETERNIT MANUAL DE INSTALACION TEJA ANDINA ETERNIT CARACTERISTICAS GENERALES DE LA TEJA ANDINA 5 mm 70 Ancho útil = 690 30 Ancho total = 720 Largo útil = 1000 140 Largo total = 1140 Dimensiones en MEDIDAS DEL PRODUCTO

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com INDUCCIÓN ELECTROMAGNÉTICA 1- a) Explique en qué consiste el fenómeno de inducción electromagnética y escriba la ley de Lenz-Faraday. b) Una espira, contenida en el plano horizontal XY y moviéndose en

Más detalles

Materia: Matemática de Séptimo Tema: Circunferencia. Marco teórico

Materia: Matemática de Séptimo Tema: Circunferencia. Marco teórico Materia: Matemática de Séptimo Tema: Circunferencia Cómo harías para saber la longitud de la concha de la pizza? Una pizza grande tiene 14 pulgadas de diámetro y se puede cortar en 8 o 10 pedazos, la concha

Más detalles

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO Actividad nº/título: SISTEMAS DE COORDENADAS Introducción a la actividad Material Didáctico: Tiempo: (2 horas) 1. CASO

Más detalles

I) Situación inicial: Planteamiento del problema y estudio de posibilidades para llevar a cabo el desmontaje

I) Situación inicial: Planteamiento del problema y estudio de posibilidades para llevar a cabo el desmontaje PROCESO DE DESMONTAJE DE LA CAJA DE VELOCIDADES DE UN TORNO PARALELO PARA SU POSTERIOR REPARACIÓN I) Situación inicial: Planteamiento del problema y estudio de posibilidades para llevar a cabo el desmontaje

Más detalles

Herramientas para trabajar en el taller

Herramientas para trabajar en el taller Herramientas para trabajar en el taller De acuerdo al uso que les demos a las herramientas que nos encontramos en el taller de Tecnología, podemos realizar una primera clasificación: herramientas para

Más detalles

Los dientes de los engranajes: 1.- Impiden el deslizamiento lo que a su vez permite que los ejes que giran con un sistema de engranajes, puedan estar

Los dientes de los engranajes: 1.- Impiden el deslizamiento lo que a su vez permite que los ejes que giran con un sistema de engranajes, puedan estar Qué es un engranaje? Un engranaje es una rueda dentada Los engranajes se unen unos a otros por sus dientes (transmisión directa) o a través de una cadena, formando así un sistema transmisor del movimiento.

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles

Herramientas para trabajar la madera

Herramientas para trabajar la madera Herramientas para trabajar la madera Las operaciones que podemos hacer con la madera son: 1. 2. 3. 4. 5. 6. 7. 8. 1. Herramientas para medir Es necesario útiles y herramientas para medir las dimensiones

Más detalles

En hojas A3: 2.Despiece acotado del Arbol (marca 2), (3.0 puntos). 1

En hojas A3: 2.Despiece acotado del Arbol (marca 2), (3.0 puntos). 1 E.T.S.I.I.M. - DIBUJ INDUSTRIAL II (Ing. Ind.) y DIBUJ INDUSTRIAL (Ing. Quim.) 11 10 3 4 A A 8 15 9 5 ENUNCIAD DEL CNJUNT REDUCTR SIN FIN - CRNA Notas previas: 7 6 Debido a la corrección de ejercicio de

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Reloj de péndulo de diseño

Reloj de péndulo de diseño 110. Reloj de péndulo de diseño Nota Las maquetas de OPITEC, una vez terminadas, no deberían ser consideradas como juguetes en el sentido comercial del término. De hecho, se trata de material didáctico

Más detalles

ACTIVIDADES A REALIZAR EN TORTUGARTE. Áreas del Conocimiento Matemático. Geometría

ACTIVIDADES A REALIZAR EN TORTUGARTE. Áreas del Conocimiento Matemático. Geometría ACTIVIDADES A REALIZAR EN TORTUGARTE Áreas del Conocimiento Matemático Geometría Estas actividades se utilizarán para el trabajo con maestros y en clase. INTRODUCCIÓN El programa no se puede definir como

Más detalles

EL FORMATO DIN A0. DIN A0 es un formato estándar de papel de dibujo.

EL FORMATO DIN A0. DIN A0 es un formato estándar de papel de dibujo. EL FORMATO DIN A0 DIN A0 es un formato estándar de papel de dibujo. Partimos del A0, que mide exactamente 1 m 2 y vamos dividiendo entre 2, una y otra vez, obteniendo sucesivamente los tamaños A1, A2,

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

LECCIÓN. 19 Reductores de velocidad

LECCIÓN. 19 Reductores de velocidad 108 LECCIÓN. 19 Reductores de velocidad Competencia. Construye y utiliza un sistema de frenado. Indicador. Interpreta resultados de sistema de frenado. INTRODUCCIÓN Toda máquina Cuyo movimiento sea generado

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2.

Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2. Consideraciones eléctricas y conceptos básicos sobre la generación, transmisión y distribución de energía Unidad 1 Parte 2. 1 CONTENIDO 2. ENERGÍA... 3 2.1 Generación... 3 2.2 Subestaciones de energía

Más detalles