UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento."

Transcripción

1 UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto.

2 2.1 La Capitalizació simple o Iterés simple Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses de cada periodo de capitalizació o se agrega al capital iicial para hallar los itereses del periodo siguiete, sio que éstos siempre se calcula sobre el capital iicial Cálculo de Itereses o cálculo del iterés Los itereses producidos so proporcioales al capital ivertido, al tipo de iterés aplicado y al tiempo que dure la iversió Los elemetos que iterviee e el cálculo del iterés so: Nomeclatura Elemeto Cocepto Ates Ahora Iterés Reta que produce u capital I I Capital o Capital iicial Capital que se posee e el mometo iicial C C Rédito Tasa, tato o tipo de iterés Iterés producido por 1 uidades moetarias e u año Iterés producido por ua uidad moetaria e u año (se expresa e tato por uo r - - i Tiempo Tiempo que dura la operació expresado e años t Motate o Capital Fial M C La fórmula quedaría de la siguiete forma: I C.r.t/1 Es decir el famoso carrete partido por cie que alguos sabíais de ates. I Capital. rédito. tiempo /1 Pero trabajado co la omeclatura actual tedríamos otra distita I C.. T i Esta será la fórmula co la que trabajaremos ormalmete. Debemos recordar que el tipo de iterés i puede veir expresado e tato por cieto pero

3 osotros hemos de trabajar e tato por uo. i 6 % Deberemos trabajar co i, Cálculo del Motate o Capital Fial El motate es la suma del capital iicial más los itereses totales producidos C C + I T C C ( 1+ i. Fórmula que os preseta la capitalizació simple o iterés simple y que vamos a utilizar osotros. La expresió ( 1 + i., recibe el ombre de factor de capitalizació Cálculo de cualquier variable Para efectuar el cálculo de cualquiera de las variables que iterviee e las operacioes de iterés simple, se despejaría su valor de las expresioes ateriores Relació etre el tiempo y el tipo de iterés: Tatos equivaletes - El tipo de iterés y el tiempo ha de estar referidos a periodos homogéeos - Para coseguirlo, se puede trasformar tato el tipo como el tiempo - El caso más geeral es aquél e que el tipo viee dado e años y el tiempo e otras fraccioes iguales o iferiores, de tal forma que la solució pasa por trasformar el tipo para obteer u tato equivalete Tatos equivaletes: Dos tatos so equivaletes cuado aplicados al mismo capital y durate el mismo tiempo, produce el mismo motate E iterés simple, la obteció de u tato equivalete por K-ésimos de año ( i se obtiee de la siguiete forma: i i Si queremos ecotrar el tato semestral a partir del tato aual solamete tedríamos que dividir etre dos. Si fuese el trimestral etre cuatro y así sucesivamete. Si fuese al cotrario, teemos u tato semestral y quiero calcular el tato aual debería multiplicar al primero por dos y ya lo teemos. i i

4 Año comercial y año civil Cuado el tiempo viee expresado e días, estos se puede correspoder co el año civil o atural que está formado por 365 días, o co el año comercial, que como su propio ombre idica, sólo tiee ua utilidad comercial y costa de 36 días. Los resultados varía segú que se aplique uo u otro, pudiédose comparar: a por diferecia: I C.. i C.. i 365* C.. i 36* C.. i 5* C. i. I * * Este resultado podemos dejarlo e fució del año civil: I 1 C.. i I * * I 365 O e fució del año comercial: I 1 C.. i I * * I b por cociete: I I Métodos abreviados Su utilizació es habitual e determiadas operacioes e las que ha de realizarse cálculos correspodietes a los itereses geerados simultáeamete por varios capitales Los más utilizados so: - Nº Comerciales (N C. de dode I T N i - Multiplicador Fijo (M i de dode IT N. M - Divisor fijo (D i de dode I T N D 2.2 LA CAPITALIZACIÓN COMPUESTA Cocepto de Capitalizació Compuesta Es la ley fiaciera segú la cual los itereses de cada periodo se agrega al capital para calcular los itereses del periodo siguiete y así sucesivamete hasta el cierre de la operació fiaciera Capital fial o Motate

5 Si partimos del cálculo de los motates al fial de cada año, como base para el cálculo de los motates del año siguiete, obteemos la siguiete relació: C1 C( 1+ i 2 C2 C1( 1+ i C( 1+ i( 1+ i C( 1+ i 2 C3 C2( 1+ i C( 1+ i ( 1+ i C ( 1+ i... De dode podemos deducir que : 3 C C ( + i 1 siedo ( 1+ i el factor de capitalizació e capitalizació compuesta Capital Iicial. Despejado de la fórmula del motate se obtiee: C C ( 1+ i C C ( + i 1 siedo ( 1+ i el factor de actualizació o descueto e capitalizació compuesta Itereses totales I C C I C ( 1+ i C I C [( 1+ i 1] Tipo de iterés Partiedo de la fórmula geeral teemos que i C 1 C

6 Tiempo Partiedo de la fórmula geeral teemos log C log C log( 1+ i LA ÚNICA FÓRMULA QUE DE VERDAD DEBEMOS UTILIZAR ES LA DEL CAPITAL FINAL EL RESTO SON SÓLO VARIACIONES SOBRE LA MISMA Comparació etre capitalizació simple y compuesta Dado valores a las fórmulas del motate e ambos casos, se observa que: Si 1 año Si <1 año Si >1 año coicide los motates el motate e Cap. Simple > el motate e Cap. compuesta el motate e Cap. Simple < el motate e Cap. Compuesta Tatos equivaletes a iterés compuesto Tatos equivaletes so aquellos que aplicados a u mismo capital durate u mismo periodo, produce idético motate, auque los periodos de capitalizació sea diferetes. A Tato de iterés efectivo aual ( i y tato equivalete por fracció de año ( i Como siempre, el tipo de iterés y el tiempo ha de estar e las mismas uidades para poder realizar cálculos matemáticos. Para obteer los tatos equivaletes por -ésimas partes de año e la capitalizació compuesta, ha de cumplirse la siguiete igualdad: ( i ( 1+ i de dode se desprede que : i 1 ( 1+ i 1 i ( 1+ i 1

7 B Tato de iterés Nomial Covertible por K-ésimas partes de año Es u tato proporcioal aual, que se obtiee multiplicado veces u tato equivalete por -ésimos de año J i. J Coociedo el, se puede calcular el tipo de iterés correspodiete a ua fracció de año de la misma forma que se hacía e la capitalizació simple Su ombre completo es tato omial covertible por -ésimas partes de año. C Comparació etre el iterés omial y el efectivo E alguos documetos mercatiles solamete se expresa el tipo de iterés omial, por lo que se hace ecesario calcular el iterés efectivo correspodiete. i J ( La Tasa Aual Equivalete (TAE Es u tipo de iterés regulado por el Baco de España, que debe expresarse e casi todos los documetos cotractuales que afecte al pequeño iversor o ahorrador. Se trata de u iterés efectivo aual que icluye el efecto que produce determiados gastos (como so, etre otros, las comisioes e el coste de la operació. Si o existiese gastos: TAE i La TAE iteta ser ua uidad homogéea de medida para que los pequeños iversores pueda comparar operacioes fiacieras Capitalizació e tiempo fraccioado Es la operació fiaciera e la que el tiempo de capitalizació o es u úmero exacto de periodos. Para resolver este caso existe dos solucioes: a Coveio expoecial: El cálculo del capital fial se realiza mediate la aplicació de la fórmula geeral de capitalizació compuesta C C ( + i 1 + m Siedo: úmero de periodos de capitalizació completos m fracció de periodo de capitalizació

8 b Coveio lieal Se capitaliza a iterés compuesto por el úmero exacto de periodos y a iterés simple por la fracció restate C C ( 1+ i ( 1+ im Al aplicar el coveio lieal se comete u error, y su utilizació obedece sólo a la pretesió de facilitar las operacioes matemáticas. Hoy e día se resuelve el problema co el uso de calculadoras, de forma que el coveio lieal ha quedado obsoleto Actualizació compuesta Es la operació iversa a la capitalizació compuesta, existiedo ua completa idetidad etre ambas. C C ( + i Equivalecia de Capitales e capitalizació compuesta Dos capitales que vece e diferetes mometos so equivaletes cuado valorados a u mismo tato y e u mismo mometo, tiee la misma cuatía. E capitalizació compuesta, y para u tipo de iterés dado, dos capitales que so equivaletes e u mometo cualquiera lo so tambié e cualquier otro mometo. (E capitalizació simple, la equivalecia sólo se da e u mometo, que hacemos coicidir co el mometo de orige de la operació Valorar u capital e u mometo distito al de su vecimieto, implica trasladarlo a ese mometo, lo cual implica capitalizar o actualizar dicho capital depediedo de si lo estamos trasladado a u tiempo posterior o aterior. EJEMPLO: Cotratamos u préstamo de 2. por el que tedremos que pagar 2.928,2 detro de 4 años. Si el tipo de iterés aplicado es el 1% compuesto aual, so equivaletes ambos capitales?. Realizar la comparació e el mometo, detro de 3 años y detro de 1 años

9 2.3.- EL DESCUENTO SIMPLE Cocepto de Descueto simple Es la operació fiaciera que cosiste e sustituir u capital futuro por otro co vecimieto e el presete. Es ua operació iversa a la capitalizació simple. La omeclatura a utilizar e este caso es la siguiete: E Efectivo: valor del capital e el mometo presete N Nomial: valor del capital e el mometo futuro d Tipo de descueto aplicado e tato por uo Tiempo Tipos de descueto a Descueto comercial ( D c Es aquél cuyo cálculo se realiza a partir del Nomial de la operació D N. c d. El Efectivo de la operació será la diferecia etre el Nomial y el descueto efectuado: E N D c E N N. d. N( 1 d. Si queremos aplicar la ley del descueto comercial, partiedo del dato del Efectivo, tedríamos que sustituir el Nomial de la fórmula geeral por su valor puesto e fució del efectivo (éste se cosigue despejado e la fórmula del efectivo: N E /( 1 d. D c Ed.. 1 d. b Descueto matemático (o racioal ( D m Es aquel cuyo cálculo se realiza a partir del Efectivo de la operació, coicidiedo su resultado co el que se obtedría utilizado la ley de capitalizació simple D E. m d. El Nomial de la operació será la suma del Efectivo y el descueto efectuado: N E + D m N E + E. d. E( 1+ d. Si queremos aplicar la ley del descueto matemático, partiedo del dato del Nomial,

10 tedríamos que sustituir el Efectivo de la fórmula geeral por su valor puesto e fució del Nomial (éste se cosigue despejado e la fórmula del efectivo: E N /( 1+ d. D m Nd.. 1+ d. NOTA IMPORTANTE: Dado que la ley del descueto matemático, se correspode co la ley de la capitalizació simple, el tipo de descueto aplicado se correspode co el tipo de iterés, es decir: d i, por lo que las fórmulas de calculo del descueto matemático puede presetarse de la siguiete forma: Dm E.. i N E( 1+ i. Ni.. Dm 1+ i. Los bacos utiliza habitualmete el descueto comercial, aplicado u tipo de descueto que es equivalete al tipo de iterés vigete Pricipales operacioes de descueto comercial : El Descueto Bacario El descueto Bacario es u cotrato por el que ua etidad fiaciera etrega el importe de ua letra o vecida, previa deducció de los descuetos, comisioes y gastos fijos correspodietes, recibiedo la letra para su cobro e el mometo del vecimieto El valor a recibir por el cliete será: E N D C G Siedo: D descueto calculado segú el procedimieto del descueto comercial C Comisioes, calculadas como % del Nomial, que tiee establecidas cada etidad fiaciera. Es usual aplicar u míimo por letra G Gastos fijos (correo, teléfoo, etc.. que depede de las tarifas de cada mometo Se deomia For-Fait, a u tato úico que icluye comisioes y gastos E el caso de que ua letra descotada resulte impagada a su vecimieto, el baco exigirá su pago a la persoa que la egoció, añadiedo gastos de comisioes, otaría (protesto y correo Métodos abreviados Cuado se descueta remesas de varios efectos, se utiliza los métodos de cálculo abreviado (Números comerciales Los tipos de descueto tiee el mismo tratamieto que los tipos de iterés, por tato podemos ecotraros tipos de descueto aual, mesual... La utilizació de los métodos abreviados es habitual e determiadas operacioes e las que ha de realizarse cálculos correspodietes a los itereses geerados simultáeamete por

11 varios capitales Los más utilizados so: - Nº Comerciales (N N. de dode I T N i - Multiplicador Fijo (M d de dode IT N. M - Divisor fijo (D d de dode I N T D Ejemplos: 1.- Calcular el importe que percibiremos al egociar ua letra de 2. ; el descueto asciede a 2.. El importe fialmete percibido, que es el efectivo, E, lo podemos obteer aplicado la fórmula: E N - D; E Calcular el efectivo que percibiremos al descotar ua letra de 1.. que vece detro de 9 días. Tipo de descueto aplicado 8%. E primer lugar calculamos D mediate la fórmula. D N.d.t / 365; D 1. *,8 * 9 / que aplicado a la fórmula geeral E N - D queda E

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ TABLA DE CONVERSIONES UNIVERSIDAD PERUANA LOS ANDES Educació a Distacia. Huacayo. Impresió

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

APLICACIONES LINEALES.

APLICACIONES LINEALES. APLICACIONES LINEALES. INTODUCCIÓN: APLICACIONES ENTE CONJUNTOS. Ua aplicació etre dos cojutos A y B es ua regla que permite asigar a cada elemeto de A, uo de B. La aplicació del cojuto A e el cojuto B

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

Matemática Financiera Tasas de Interés y Descuento

Matemática Financiera Tasas de Interés y Descuento Matemática Fiaciera Tasas de Iterés y Descueto 3 Qué apredemos Noció fiaciera y matemática de las tasas de iterés y descueto. Iterpretació práctica. Distitos tipos de tasas: proporcioales, omiales, equivaletes

Más detalles

REGÍMENES FINANCIEROS

REGÍMENES FINANCIEROS EGÍMEES FIAIEOS are Badía, Hortèsia Fotaals, Merche Galisteo, José Mª Lecia, Mª Agels Pos, Teresa Preixes, Dídac aírez, F. Javier Sarrasí y Aa Mª Sucarrats DEPATAMETO DE MATEMÁTIA EOÓMIA, FIAIEA Y ATUAIAL

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS

JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS JOSU IMANOL DELGADO UGARTE MANUAL PRÁCTICO DE GESTIÓN DE TESORERÍA DE EMPRESAS Í N D I C E Agradecimietos... Prólogo a cargo del Sr. D. Atoio Cacelo Aloso, Presidete de M.C.C.... Presetació... XI XIII

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

servicio familiar delhogar Información básica NIPO: 270-15-034-7

servicio familiar delhogar Información básica NIPO: 270-15-034-7 2015 servicio delhogar familiar 2015 Iformació básica NIPO: 270-15-034-7 Régime laboral Se cosidera relació laboral especial del servicio del hogar familiar la que cocierta el titular del mismo, como empleador,

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por:

Dada una secuencia g[n] se define su transformada Z (TZ) directa G(z), como. La relación entre la secuencia y su transformada se denota por: Tema 4. Trasformada Z. La trasformada Z para sistemas discretos desempeña u papel aálogo a la trasformada de Laplace para sistemas cotiuos. os va a permitir represetar la relació etrada salida de u sistema

Más detalles

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones.

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones. RESOLUCION No. A-DO-AF 028/99 9 de Marzo de 1999 LA SUPERINTENDENTE DE PENSIONES CONSIDERANDO: I. Que mediate resolució No. A-DO-AF-013/98, de fecha 3 de Marzo de 1998, se emitió el Istructivo No. SAP-12/98:

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

MATEMATICA DE LAS OPERACIONES FINANCIERAS II

MATEMATICA DE LAS OPERACIONES FINANCIERAS II MATEMATICA DE LAS OPERACIONES FINANCIERAS II TEMA 1: OPERACIÓN DE AMORTIZACIÓN 1. Defiició 2. Estudio estático de la operació 3. Estudio diámico de la operació 4. Ecuació diámica: pricipales variables

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN)

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) Ecoomía de la Empresa (Fiaciació) ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) 3ºLiceciatura e Derecho y Admiistració y Direcció de Empresas Prof. Dr. Jorge Otero Rodríguez 1/118 Ecoomía de la Empresa (Fiaciació)

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO DEFINICIONES Crédito de Cosumo: So aquellos créditos que se otorga a persoas aturales co igresos depedietes o idepedietes co la fialidad de ateder gastos de

Más detalles

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS Autor: Profesor de la Uiversidad de Graada (Dpto. Ecoomía Fiaciera y Cotabilidad) Profesor Tutor del

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

Matemáticas I - 1 o BACHILLERATO Binomio de Newton

Matemáticas I - 1 o BACHILLERATO Binomio de Newton Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 La medida del riesgo de los bonos Jua Mascareñas Uiversidad Complutese de Madrid Versió iicial: mayo 99 - Última versió: oviembre 06 - Teoremas de la valoració de los boos, - El cocepto de duració, 6 - La duració modificada como ua medida

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

en. Intentemos definir algunas operaciones en

en. Intentemos definir algunas operaciones en OPERACIONES EN 8 E la secció aterior utilizamos fucioes de el primer couto y estudiar sus propiedades e Itetemos defiir alguas operacioes e Recordemos de cursos ateriores que tomamos al couto de los compleos

Más detalles

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES DECRETO N 21 EL PRESIDENTE DE LA REPUBLICA DE EL SALVADOR CONSIDERANDO: I. Que de coformidad co la Ley Orgáica de la Superitedecia de Pesioes, correspode a la Superitedecia fiscalizar, vigilar, y cotrolar

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

DESCRIPCIÓN ESPECÍFICA

DESCRIPCIÓN ESPECÍFICA DESCRIPCIÓN ESPECÍFICA Núcleo: Sector Comercio y Servicios Subsector. Admiistració Nombre l Módulo: Aplicacioes Matemáticas Fiacieras Código: CSAD0204 Duració total: 80 horas. Objetivo Geeral: Resolver

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales

Espacio vectorial ESPACIO VECTORIAL. 8.- Intersección y suma de subespacios vectoriales ESPACIO VECTORIAL.- Itroducció.- Espacio Vectorial.- Subespacios vectoriales 4.- Geeració de Subespacios vectoriales 5.- Depedecia e idepedecia lieal 6.- Espacios vectoriales de tipo fiito 7.- Cambio de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

Tema 7. Fondos de Inversión Mobiliaria

Tema 7. Fondos de Inversión Mobiliaria ema 7 Fodos de Iversió Mobiliaria 1. La iversió colectiva El iterés por utilizar las istitucioes de iversió colectiva se basa e la fucioalidad que proporcioa a pequeños y mediaos aorradores de acudir a

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA

NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemática Fiaciera Fracico Pérez Herádez Departameto de Fiaciació e Ivetigació de la Uiveridad Autóoma de Madrid Objetivo del curo: Profudizar e lo fudameto del cálculo fiaciero, eceario para u aplicació

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Cálculo para la ingeniería Tomo II. Salvador Vera

Cálculo para la ingeniería Tomo II. Salvador Vera Cálculo para la igeiería Tomo II Salvador Vera 9 de eero de 5 ii Copyright c by Salvador Vera Ballesteros, 998-4. Ídice geeral 7. Series Numéricas 7.. El sigo del sumatorio: Sigma Σ... 7... Propiedades

Más detalles

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS

TEMA 13 INTRODUCCIÓN A LA VALORACIÓN DE ACTIVOS FINANCIEROS Diapoitiva. Cocepto y caracterítica de lo activo fiaciero 2. Reta variable, tipo y criterio de valoració 3. Reta fija, tipo y criterio de valoració 4. Duratió y covexidad de u activo fiaciero de reta fija

Más detalles

MATEMÁTICAS FINANCERAS

MATEMÁTICAS FINANCERAS MATEMÁTICAS FINANCERAS -Apoyadas co Microsoft Excel- (Versió prelimiar) Julio A. Sarmieto Sabogal Edgardo Cayó Fallo Bogotá D.C., Juio de 2005 Potificia Uiversidad Javeriaa Facultad de Ciecias Ecoómicas

Más detalles