Diversos tipos de toberas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diversos tipos de toberas"

Transcripción

1

2 Diversos tipos de toberas

3 Descarga de un gas ideal de un recipiente con alta presión a otro recipiente con baja presión

4 Tobera convergente Si la descarga se realiza utilizando una tobera convergente entonces tendríamos: P1>P2 V1<V2 M1<M2 M2 máximo = 1

5 Idealmente las transformaciones del fluido en una tobera cumplirían las siguientes condiciones: Son adiabáticas (no hay una transmisión de calor del fluido a la tobera o al exterior). Son isoentrópicas (se trataría de un proceso reversible, sin pérdidas). El caudal de fluido que se desplaza a lo largo de la tobera permanecerá constante todo a lo largo de la misma.

6 Relación de presiones P/P0 en función de la presión de descarga PB PE = presión de salida PB = presión de descarga Relación de caudal másico en función de la presión de descarga

7 Distintos regímenes de descarga posibles para una tobera convergente

8 Tobera Laval (convergente divergente) De Laval estudió el flujo supersónico en toberas y resolvió el problema de aceleración máxima dentro de la tobera llegando al diseño de toberas con sección convergente-divergente en las que se logra un flujo sónico M = 1 (M = número de Mach) en la garganta para posteriormente expandir la tobera y lograr flujos supersónicos M > 1.

9 Estas toberas deben tener una expansión adecuada para evitar la generación de ondas de choque dentro de las mismas. La tobera es la encargada de convertir energía de presión en energía cinética adaptando las presiones y velocidades de los gases eyectados. Los flujos que recorren dicha tobera se consideran compresibles y se mueven a velocidades muy elevadas alcanzando valores supersónicos en la parte divergente. Las diferentes secciones transversales producen durante el avance de los gases variaciones en la densidad, presión y velocidad del fluido.

10 Todo ello está supuesto para condiciones de flujo isoentrópico, es decir, condiciones adiabáticas y sin rozamiento. En la práctica, no existe la condición de flujo isoentrópico ideal, por lo que se aplica un coeficiente de rendimiento que ajusta el cálculo.

11 Distintos regímenes de descarga posibles para una tobera Laval Sin onda de choque M garganta <1 M divergente <1 M garganta =1 M divergente <1 Con onda de choque en el divergente M div >1 antes de la onda M div < 1 después de la onda Con onda de choque a la salida M >1 antes de la salida M < 1 después de la salida Con onda de choque fuera de la salida Sin onda de choque a la salida (Régimen de descarga) Con ondas de expansión a la salida

12 Flujo externo en una tobera trabajando fuera de las condiciones de diseño

13 Distintos regímenes de descarga posibles para una tobera Laval

14 Distribución de presiones a lo largo de una tobera Laval para los distintos regímenes de descarga

15 Eficiencia de las toberas Debido a la fricción que ocurre entre el fluido y las paredes de la tobera y entre las propias capas del fluido, se producen algunas pérdidas que hacen que el proceso de expansión sea irreversible pero adiabático y por lo tanto, habrá una diferencia entre el proceso de expansión en condiciones ideales y el proceso en condiciones reales.

16 Eficiencia de las toberas En general, se puede decir que para determinar la eficiencia de una tobera se compara el desempeño real bajo condiciones definidas, con el desempeño que alcanzaría en condiciones ideales. Una manera de evaluar esta eficiencia es por medio de la relación que existe entre la ganancia de energía cinética debida a la caída de entalpía en condiciones reales y la ganancia de energía cinética debida a la caída de entalpía en condiciones ideales.

17 Eficiencia de las toberas

18 Si en un proceso ideal o isentrópico, y en un proceso real, entonces,

19 Eficiencia de las toberas Como la velocidad de entrada a la tobera V 1 es 0 o muy pequeña comparada con la velocidad a la salida V 2 entonces puede decirse que:

20 Empuje producido por una TOBERA IDEAL Consideramos que el gas que ingresa no introduce ningún momento en la dirección axial Aplicando la ley de conservación de la cantidad de movimiento el empuje Tht se obtiene de la siguiente ecuación:

21 Donde: Tht = Empuje Is = Cantidad de movimiento a la salida Ps = Presión de salida Pa = Presión ambiente F = Función Impulso As = Area de salida Si la tobera está correctamente expandida Ps = Pa => Tht = Is Esto se cumple para toberas convergentes con Pa > P* Si Ms < 1 la condición Ps =Pa siempre se cumple pero no tiene interés práctico

22 Expresión general del empuje Tht El Coeficiente de empuje CT se define como: CT en función del número de Mach queda:

23 El coeficiente de empuje puede ser expresado en función de la velocidad reducida w siendo este valor un parámetro que resulta utilizar cuando M> 1 donde El coeficiente de empuje CT se hace mínimo cuando Ms=1 o bien w=w*. Esto ocurre solo para toberas convergentes.

24 El coeficiente de empuje para toberas convergentes se obtiene de la ecuación anterior donde As es igual a A*quedando: El valor mínimo de CT para toberas convergentes se obtiene cuando además Pa=P* siempre que Ms=1 De la ecuación general del CT vemos que para cualquier valor de As/A* el máximo se alcanza cuando Pa=0 (expansión al vacio). El empuje máximo se obtiene cuando As tiende a infinito (ws tiende a 1) y vale:

25 Vemos de las ecuaciones anteriores que el valor del coeficiente de empuje depende solamente del valor de gamma y se lo puede graficar tal como se muestra en el siguiente gráfico.

26 En este gráfico cada curva representa la ganancia de empuje que es factible obtener cuando se añade un divergente a una tobera convergente La línea de empuje máximo se obtiene cuando Pa=Ps (presión de descarga igual a la presión de salida) que es la condición de diseño de una tobera

27 Analíticamente se obtiene el empuje máximo diferenciando la expresión del empuje Tht con respecto a la longitud axial x y manteniendo la presión de descarga Pa=cte. Nota: Recordar que el máximo de una función se obtiene igualando la derivada primera a cero. Esto ocurre cuando Ps=Pa Las curvas del gráfico son válidas mientras la presión que se alcance corriente abajo del choque localizado a la salida del divergente sea mayor o igual que la presión ambiente.

28 Coeficiente de empuje en una TOBERA REAL Se expresa de manera similar al caso de una tobera ideal afectando la ecuación general por los diferentes coeficientes de corrección Donde: Cm es el coeficiente de descarga Cv es el coeficiente de velocidad Cc es el coeficiente de conicidad

29 El coeficiente de descarga Cm se define como la relación Donde m es el caudal másico real y (m)is es el caudal másico isoentrópico. Cuando se alcanzan las condiciones críticas de funcionamiento Cm es independiente del flujo corriente debajo de la garaganta. Por efectos friccionales, para Ag=cte el Cm disminuye si la longitud l aumenta. Para Ag=cte, Cm disminuye si rth disminuye. Esto se debe a la falta de uniformidad del flujo. Existe una relación de rth que optimiza el Cm (minimiza las pérdidas por fricción con el flujo lo mas uniforme posible)

30 La velocidad característica C* es una cantidad experimental que refleja el valor que adquiere la temperatura del gas antes de su expansión en la tobera y que resulta indicativa de la eficiencia del proceso que tiene lugar en la cámara de combustión. C* puede resultar menor que el valor teórico calculado debido a una combustión incompleta en la cámara de combustión y que ésta continúa realizándose en la tobera de escape. La Velocidad característica C* queda dada por la siguiente expresión: De tal manera que: Representa un parámetro que refleja la dependencia del caudal máximo (Mg=1) en función de gama.

31 El coeficiente de velocidad Cv está dado por la relación: Donde Vs es la velocidad final de salida Se usa la velocidad total Vs en lugar de su componente axial porque se desea incluir casos en que el ángulo tita es tal que la hipótesis no es compatible con la exactitud requerida en los cálculos tal como ocurre con una tobera Laval cónica. Corrección por conicidad

32 Integral del área elemental Lejos de la garganta podemos suponer las líneas de corriente como líneas rectas divergentes normales a la superficie de un casquete esférico. Integrando el área elemental y suponiendo que la velocidad y la densidad son uniformes, el caudal másico que atraviesa la superficie estará dado por la expresión:

33 La componente axial de la cantidad de movimiento Is está dada por la expresión: El valor medio de la componente axial Us en la sección de salida de la tobera puede calcularse a partir e la expresión: Se define el coeficiente de conicidad Cc tal que:

34 Introduciendo el coeficiente de conicidad C c en la expresión de la velocidad media U s tenemos: La componente axial de la cantidad de movimiento I s está dada entonces por la expresión: En toberas cónicas generalmente el ángulo de semiapertura es < 20, al cual corresponde un C c =0.97. C v es próximo a la unidad (0.99) para toberas relativamente grandes

35 Eficiencia de una tobera real

36 Difusores en túneles de viento supersónicos Condición de arranque mas desfavorable (onda de choque en la cámara de ensayos). Condición de arranque mas favorable (sin onda de choque)

37 En la primer garganta (A 1* ) el mach M1 es igual a 1 por lo que el caudal es máximo y constante. Por continuidad del flujo el caudal máximo que puede pasar por la segunda garganta (A 2* ) será igual al que pasa por (A 1* ) Si ambos caudales son iguales y constantes podemos escribir:

38 De donde se deduce que: Nota: Como P02 < P01 esto implica que (A2*) > (A*1 )

39 La relación entre el valor del área de la segunda garganta y el valor del área de la cámara de ensayos se puede calcular a partir de la siguiente expresión: Donde vemos que dicha relación será función del número de Mach en la cámara de ensayos

40 Tomas de aire supersónicas unidimensionales Condiciones de diseño requeridas: Máximo caudal Mínima pérdida de presión de estancamiento

41 Contracciones límites para diversos números de Mach

42 Toma de aire con geometría fija Área de garganta (Ag) constante

43 Toma de aire con geometría variable Área de garganta (Ag) variable

44 Eficiencia de los difusores

45 Si la energía cinética del flujo a la salida del difusor es pequeña comparada con la del flujo a la entrada, la presión de salida Ps puede reemplazarse por la presión de estancamiento Pos y la eficiencia adiabática queda definida por:

46 Eficiencia del conjuto tobera-difusor

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante.

Dinámica de los Gases I - 1er Parcial Resuelto. Ec. IV.2.3. Eso es así porque el caudal a lo largo del túnel se mantiene constante. inámica de los Gases I - er Parcial 03 - Resuelto Problema ( punto): Explicar como deberá ser el área en la garganta del difusor de un túnel supersónico, con respecto al área de garganta de la tobera,

Más detalles

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante.

El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Líneas de Fanno. El análisis de las curvas de Fanno se refiere a un flujo adiabático isoentrópico en un ducto de área constante. Los principios que rigen el estudio de las curvas de Fanno se derivan de

Más detalles

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas.

Flujo Compresible. h 0 = h + V 2 2. Es el estado alcanzado despues de una desaceleración hasta velocidad cero, pero con irreversibilidades asociadas. José Luis odríguez, Ph.D., Marzo del 004 1 Flujo Compresible 1 Propiedades de Estancamiento: 1.1 Estado de estancamiento isoentrópico Es el estado que alcanzaría un uido en movimiento si experimenta una

Más detalles

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3

ACCEDE - INGENIERÍA AERONÁUTICA PROBLEMA Nº 3 MINISTERIO DE EDUCCIÓN - RGENTIN CCEDE - INGENIERÍ ERONÁUTIC PROBLEM Nº 3 SITUCIÓN Una cámara de vacío aspira aire de la atmósfera a través de una tobera convergente-divergente, como se muestra en la figura

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

Ondas de Choque en Toberas

Ondas de Choque en Toberas José Luis Rodríguez, Ph.D., Marzo del 004 1 Ondas de Choque en Toberas Características de una tobera conergente-diergente cuando se presentan las ondas de choque. Figura 1 Punto d: P E P B y se ha mantenido

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Cuestiones de autoevaluación Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann,

Más detalles

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVI..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como el

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES

IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES IX.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES IX.1.- PERDIDAS DE CARGA EN LA CÁMARA DE COMBUSTIÓN Las pérdidas da carga que se producen en la cámara de combustión pueden ser: a) Pérdidas hidráulicas

Más detalles

II.4. FLUJO COMPRESIBLE.

II.4. FLUJO COMPRESIBLE. 1 UNIVERSIDAD DE OVIEDO Escuela Politécnica Superior de Ingeniería de Gijón Ingenieros Industriales Curso 008-009 Apuntes de Mecánica de Fluidos: ª parte II.4. FLUJO COMPRESIBLE. Condensación del vapor

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES

VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES VII.- PERDIDAS EN LA CÁMARA DE COMBUSTIÓN Y EN LOS ALABES VII.1.- PERDIDAS DE CARGA EN LA CÁMARA DE COMBUSTIÓN Las pérdidas da carga que se producen en la cámara de combustión pueden ser: - Pérdidas hidráulicas

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

TEMA 2. Prestaciones y análisis de la misión

TEMA 2. Prestaciones y análisis de la misión EMA Prestaciones y análisis de la misión G. Paniagua, P. Piqueras Departamento de Máquinas y Motores érmicos UNIVERSIDAD POLIÉCNICA DE VALENCIA 1 Índice Análisis del ciclo termodinámico Generación de empuje

Más detalles

Máquina de eyección Con utilización de salmuera. E. Torrella Pag. 2. E. Torrella Pag. 4. E. Torrella Pag. 3

Máquina de eyección Con utilización de salmuera. E. Torrella Pag. 2. E. Torrella Pag. 4. E. Torrella Pag. 3 SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Viscosímetros, explicaciones complementarias 0.0/ M/ FISICA Viscosímetros Explicaciones complementarias/ Versión 0.0/ MODULO / CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Cátedra de Física-FFYB-UBA [] Viscosímetros,

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

5. MOVIMIENTO DE FLUIDOS: TOBERAS Y DIFUSORES

5. MOVIMIENTO DE FLUIDOS: TOBERAS Y DIFUSORES 5. MOVIMIENO DE FLUIDOS: OBERAS Y DIFUSORES 5. INRODUCCIÓN El propósito de este capitulo es describir los aspectos termodinámicos del moimiento de fluidos. En este estudio se tratará de la ariación de

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION

FUNDAMENTOS SISTEMAS TRITÉRMICOS EYECCION SISTEMAS TRITÉRMICOS EYECCION LAS MÁQUINAS DE EYECCIÓN FUNDAMENTOS Como en el sistema de compresión, la máquina de eyección es un sistema basado en la vaporización de un líquido a baja presión. Las funciones

Más detalles

INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO CONCLUSIONES

INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO CONCLUSIONES Capítulo X: Flujos Compresibles Estacionarios: Segunda Parte INTRODUCCIÓN Repaso de conceptos de la clase anterior. OBJETIVOS DE LA CLASE DESARROLLO Flujo adiabático con fricción en un conducto de sección

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El primer principio de la termodinámica en sistemas abiertos Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Aplicación del primer principio a sistemas abiertos Conservación de la masa

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] 4.1 Conceptos básicos Aplicación de la ecuación de conservación genérica: [4.1] Ecuación de conservación de la energía total, macroscópica: [4.2] IngQui-4 [2] Bases

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 5. MOTORES DE REACCIÓN En los motores de reacción, la energía mecánica producida por el proceso de combustión aparece en forma de energía cinética de una corriente de fluido en lugar de presentarse como

Más detalles

1.2-Presión. Se incluye los temas de flujo y caudal

1.2-Presión. Se incluye los temas de flujo y caudal 1.2-Presión. Se incluye los temas de flujo y caudal Para optimizar el rendimiento en la obtención de electricidad a partir de la energía cinética del viento. Una de ellas está relacionada con la forma

Más detalles

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación Estructura de Materia 1 Verano 2017 Práctica 2 Leyes de conservación Problema 1. Un líquido incompresible de densidad ρ 0 fluye de manera estacionaria por el interior de un conducto de longitud finita

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

DISEÑO MECÁNICO DEL NÚCLEO DEL REACTOR FBNR CON POSIBILIDAD DE ADICIONAR UN REFLECTOR

DISEÑO MECÁNICO DEL NÚCLEO DEL REACTOR FBNR CON POSIBILIDAD DE ADICIONAR UN REFLECTOR DISEÑO MECÁNICO DEL NÚCLEO DEL REACTOR FBNR CON POSIBILIDAD DE ADICIONAR UN REFLECTOR CÁLCULO DEL ESPESOR DEL RECIPIENTE QUE SERÁ EL NÚCLEO DEL REACTOR FBNR Para calcular el espesor de las paredes del

Más detalles

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton? Es un proceso cíclico asociado generalmente a una turbina a gas. Al igual que otros ciclos de potencia de

Más detalles

11.1 Relaciones termodinámicas para un gas ideal

11.1 Relaciones termodinámicas para un gas ideal 3 Capítulo Flujo Compresible En éste capítulo se considerarán los efectos de la compresibilidad del fluido sobre las características del flujo. Los efectos de la compresibilidad se ven reflejados por ejemplo

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

ONDAS DE CHOQUE VUELO SUPERSÓNICO. Federico Flores M.

ONDAS DE CHOQUE VUELO SUPERSÓNICO. Federico Flores M. ONDAS DE CHOQUE UELO SUPERSÓNICO Federico Flores M. TEORÍA OBJETO MOIÉNDOSE A ELOCIDAD SUBSÓNICA Propagación de ondas de sonido desde una fuente estacionaria. Perturbaciones de presión producidas por un

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica CUESTIONARIO UNIDAD 5 1.- Qué es la eficiencia? Es la relación entre la energía útil y la energía invertida 2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

Ecuación de Bernoulli

Ecuación de Bernoulli Ecuación de Bernoulli Ejercicio 7.1. Hallar una relación entre la velocidad de descarga V y la altura de la superficie libre h de la figura. Suponer flujo estacionario sin fricción, salida de velocidad

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles ÍNDICE Prefacio... 19 Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades... 27 Objetivos fundamentales del capítulo... 27 1.1. Introducción... 27 1.2. Concepto de máquina

Más detalles

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.

PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2. PROYECTO DE INVESTIGACION por Universidad Nacional del Callao se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 2.5 Perú. Permisos que vayan más allá de lo cubierto por

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

Anexo II: Ejemplo de Simulación de un Caso Bidimensional

Anexo II: Ejemplo de Simulación de un Caso Bidimensional ANEXO II: Ejemplo de Simulación de un Caso Bidimensional (Estudio de la Corriente de Salida del Rótor y Comparación de los Resultados Obtenidos Simulando el Difusor de Forma Aislada) Para estudiar la interacción

Más detalles

V. Análisis de masa y energía de volúmenes de control

V. Análisis de masa y energía de volúmenes de control Objetivos: 1. Desarrollar el principio de conservación de masa. 2. Aplicar el principio de conservaciones de masa a varios sistemas incluyendo en estado estable y no estable. 3. Aplicar la primera ley

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.. En las conducciones hidráulicas los accesorios provocan a menudo pérdidas

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal. PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes

Más detalles

UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas 1. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el

UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas 1. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el UNIDAD 6 Turbinas de vapor. Operación. Eficiencias. Pérdidas. Clasificación Las turbinas de vapor son turbomáquinas en las que sólo se efectúa el proceso de expansión. Si bien existen turbinas a vapor

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

2. Ecuación de Bernoulli

2. Ecuación de Bernoulli Descargar versión para imprimir. Ecuación de Bernoulli Repaso: trabajo de una fuerza, energía potencial gravitatoria, y energía cinética 1. Trabajo de una fuerza. Uno de los efectos producido por las fuerzas

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 4 CENTRALES TÉRMICAS DE GAS CICLO DE BRAYTON ALUMNO: AÑO 2015 INTRODUCCIÓN La turbina

Más detalles

CONSTRUCCIONES HIDRAULICAS HIDRÁULICA DE PUENTES

CONSTRUCCIONES HIDRAULICAS HIDRÁULICA DE PUENTES TIPOS DE RÍO: R SECCIÓN N TRANSVERSAL DEL RÍO: R REMANSO: MEDIDAS PROTECTORAS EN ESTRIBOS: CRUCES VIAL OBLICUO: CRUCE VIAL PERPENDICULAR: INTERACCIÓN N DE UN CURSO DE AGUA CON LA OBRA VIAL: RESPUESTAS

Más detalles

6. pérdidas de carga en conduc tos climaver

6. pérdidas de carga en conduc tos climaver 6. pérdidas de carga en conduc tos climaver manual de conduc tos de aire acondicionado climaver 62 El aire que circula por la red de conductos, recibe la energía de impulsión (aspiración) por medio de

Más detalles

Características del husillo de bolas

Características del husillo de bolas Par de torsión motriz igual a un tercio del tornillo deslizante Con el husillo de bolas, las bolas giran entre el eje de husillo para poder lograr una alta efi ciencia. Su par de torsión motriz requerido

Más detalles

5.1 Primera ley de la termodinámica

5.1 Primera ley de la termodinámica 55 Capítulo 5 Energía En este capítulo se verán los aspectos energéticos asociados al flujo de un fluido cualquiera. Para ésto se introduce, en una primera etapa, la primera ley de la termodinámica que

Más detalles

Características del husillo de bolas

Características del husillo de bolas Par de torsión motriz igual a un tercio del tornillo deslizante Con el husillo de bolas, las bolas giran entre el eje de husillo para poder lograr una alta efi ciencia. Su par de torsión motriz requerido

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE GAS CICLO DE BRAYTON ALUMNO: AÑO 2017 INTRODUCCIÓN El Ciclo de

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA MECÁNICA DEPARTAMENTO ACADÉMICO DE CIENCIAS DE LA INGENIERÍA SILABO P.A. 2011-II 1. INFORMACIÓN GENERAL Nombre del curso : MECÁNICA DE FLUIDOS

Más detalles

Dinámica de los Gases I

Dinámica de los Gases I Dinámica de los Gases I Ing. Aeronáutica - Plan 232-97-05 Hoja 1 de 5 Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Aeronáutica

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO FACULTAD DE INGENIERIA MECANICA ÁREA: CIENCIAS DE LA INGENIERÍA

UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO FACULTAD DE INGENIERIA MECANICA ÁREA: CIENCIAS DE LA INGENIERÍA UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO FACULTAD DE INGENIERIA MECANICA ÁREA: CIENCIAS DE LA INGENIERÍA Programa de asignatura de: Mecánica de Fluidos CARRERA: INGENIERIA MECANICA MODULO: SEGUNDO

Más detalles

Introducción a las Ondas de Choque

Introducción a las Ondas de Choque Introducción a las Luis Moraga Centro de Física Experimental, Facultad de Ciencias, Universidad de Chile Curso de Pre- y Postgrado ONDAS DE CHOQUE, 2008 Asunto: Introducción La naturaleza de las ondas

Más detalles

2.1 1ª Hipótesis: Hipótesis y Factores que más afectan al rendimiento

2.1 1ª Hipótesis: Hipótesis y Factores que más afectan al rendimiento 2.1 1ª Hipótesis: A gastos másicos diferentes al de diseño, el de los escalonamientos intermedios de la turbina es el mismo que en condiciones nominales dado que las relaciones de expansión y los gastos

Más detalles

Tema 2. Primer Principio

Tema 2. Primer Principio ema. rimer rincipio.- Un sistema cerrado inicialmente en reposo sobre la tierra es sometido a un proceso en el que recibe una transferencia neta de energía por trabajo igual a 00KJ. Durante este proceso

Más detalles

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas

UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas UNIDAD 5 Turbinas radiales. Turbomáquinas hidráulicas: bombas y turbinas hidráulicas 1. Turbina radial 1.1 General La turbina radial es físicamente muy similar al compresor centrífugo. La Figura 5.1 muestra

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores

TURBOMÁQUINAS. Mg. Amancio R. Rojas Flores TURBOMÁQUINAS Mg. Amancio R. Rojas Flores 1.- DEFINICIÓN DE TURBOMÁQUINAS Las turbomáquinas son equipos diseñados para conseguir un intercambio energético entre un fluido (que pasa a su través de forma

Más detalles

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412

Prof. Nathaly Moreno Salas Ing. Victor Trejo TURBOMÁQUINAS TÉRMICAS CT-3412 8. TRBINAS AXIALES Prof. Natal Moreno Salas Ing. Victor Trejo TRBOMÁQINAS TÉRMIAS T-4 ontenido Trabajo en una etapa de expansión Factor de arga Factor de Flujo Grado de Reacción Triángulo nitario Rendimiento

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO.

Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO. . Tema 2 FUNDAMENTOS FÍSICOS DEL ORDEÑO MECÁNICO. Mecanismo de extracción de la leche La máquina de ordeño extrae la leche de las vacas de forma similar a como lo hacen las crías, es decir, mediante una

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición (Los valores numéricos de las soluciones se pueden obtener si se copian las

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

CALORIMETRIA DEL VAPOR DE AGUA

CALORIMETRIA DEL VAPOR DE AGUA CAPITULO I.- CALORIMETRIA DEL VAPOR DE AGUA GENERACIÓN DE VAPOR DE AGUA. Cuando al agua se le agrega energía calorífica, varían su entalpía y su estado físico. A medida que tiene lugar el calentamiento,

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Teoría (30 puntos) TIEMPO: 50 minutos 1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) 1. La Primera Ley afirma

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes)

Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) Práctica No 14 Determinación experimental del índice adiabático (método de Clement-Desormes) 1. Objetivo general: Determinar experimentalmente el índice adiabático, utilizando el método de Clement- Desormes.

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de idráulica Ing. David ernández uéramo Manual de prácticas idráulica de canales 5o semestre Autores: Guillermo Benjamín Pérez Morales Jesús Alberto Rodríguez Castro Jesús Martín Caballero

Más detalles

El funcionamiento de las trampas FENIX en aplicaciones de carga variable

El funcionamiento de las trampas FENIX en aplicaciones de carga variable fenix earth inc 1100 NW Loop 410 Suite 700-136 San Antonio, Texas 78213 USA tel. 210 888 9057 sales@fenixearth.com El funcionamiento de las trampas FENIX en aplicaciones de carga variable La trampa FENIX

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles