Razones y Proporciones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Razones y Proporciones"

Transcripción

1 LMDE Números Razones y Proporciones Razones Sean a y b dos cantidades Una razón entre a y b es: a a : b denotada también, y se lee a es b a b Una razón entre dos magnitudes es una comparación entre las dos cantidades mediante una división entre dichas cantidades Ejemplo Se realiza una encuesta a un grupo de estudiantes sobre si practica algún deporte Luego de un análisis de las respuestas se concluye que 4 de cada 0 estudiantes practica algún deporte La razón entre los estudiantes que practican deporte y el total de estudiantes es 4 : 0, razón que es equivalente a : 5 Nota: La razón entre los estudiantes que practican deporte y los que no es 4 : 6 Observación Las razones se pueden amplificar y/o simplificar, y se mantiene la razón Ejemplo El radio de la Luna es 3/ del radio de la Tierra, y el radio del Sol es igual a 08 radios terrestres Hallar la razón entre los radios de la Luna y del Sol Solución RadioTierra Luego: Por lo tanto, 3 3 / RadioTierra 08 Ejemplo 3 Una cinta de 90cm se divide en dos trozos en la razón :3 Cuánto mide cada trozo? a Solución Sean a y b las medidas de los trozos Luego Así, a, b 3 b 3 Como a + b 90, luego , obteniendo 8 Por lo tanto: a 36 cm, b 54cm Ejercicio La razón entre población y superficie se conoce (por los demógrafos) como densidad poblacional La tabla presenta la cantidad de habitantes de las provincias de la Región del Maule, según el Censo del año 00, y la superficie correspondiente:

2 Provincia Habitantes Superficie Curicó ,9 km Talca ,8 km Cauquenes , km Linares , km b) Hallar la densidad poblacional de cada provincia b) Hallar la densidad poblacional de la Región del Maule Proporciones Una proporción es una igualdad entre dos razones Sean a, b, c y d cuatro cantidades La igualdad es a b como c es a d a c se denomina proporción Se lee: a b d Nota a c si y sólo si a d b c b d Magnitudes proporcionales Algunas aplicaciones en situaciones de la vida diaria son por ejemplo: cuando se prepara una torta, es necesario que todos sus ingredientes mantengan una proporción (leche, harina y huevos); al preparar mezclas de materiales para la construcción de un muro, se debe mantener una proporción entre la arena, la grava, el cemento y la cantidad de agua Ejemplo Un saco de maíz pesa 45 kg a) Cuánto pesan sacos?, 3 sacos? b) Un cargamento de maíz pesa 5 kg Cuántos sacos de 45 kg se podrán generar? Solución N sacos 3? Peso en Kg a) Dos sacos pesan 90 kg; y tres sacos pesan 35 kg b) Con 5 kg se puede generar 5 sacos de maíz 3 En efecto, constante Luego implica 5 Notar que el cuociente de las dos magnitudes [cuociente de las cantidades correspondientes] N sa cos, es constante peso en kg Se dice: Las magnitudes número de sacos y peso en kg son directamente proporcionales

3 Ejemplo Un depósito de agua se llena en,5 horas usando seis llaves de agua de igual diámetro En cuánto tiempo se llenará, si se utiliza una única llave?, dos llaves?, tres?, cuatro? Solución N llaves Tiempo en horas,5 3,75 5 7,5 5 En la tabla se observa que, al disminuir el número de llaves de agua, se incrementa el tiempo necesario para llenar el depósito Notar que el producto de las dos magnitudes [producto de las cantidades correspondientes] N llaves * Tiempo en horas, es constante Se dice: Las magnitudes número de llaves y Tiempo en hrs son inversamente proporcionales Observación Cuando se comparan dos magnitudes se dan dos tipos de variación proporcional: la proporcionalidad directa y la proporcionalidad inversa Magnitudes directamente proporcionales Si al comparar dos magnitudes ocurre que el cuociente de las cantidades correspondientes es constante, entonces se dice que esas dos magnitudes son directamente proporcionales Ver ejemplo Cuando una cantidad aumenta, la otra aumenta, manteniendo el cuociente constante Magnitudes inversamente proporcionales Si al comparar dos magnitudes ocurre que el producto de las cantidades correspondientes es constante, entonces se dice que esas dos magnitudes son inversamente proporcionales Ver ejemplo Cuando una cantidad aumenta, la otra disminuye, manteniendo el producto constante Resumiendo: Si e y son dos variables que se encuentran en Proporcionalidad Directa, entonces se cumple que constante y Proporcionalidad Inversa, entonces se cumple que y constante

4 Ejercicios ) Si es a 0 como es a 5, entonces? ) Determine en cada proporción: 7 a) b) c) 0,6 : : d) 0,7 5 e),4 0,3 0, 0,9 f) 3 5 : : g),6 : 7,8 3: h) / 6 5 / / 3 i) :,4 3:, 8 j) 8 : 3 7 : 5 k) 7,4 : 3,7 : 0, 5 l) 5 : 3 6 : 3) Una cinta de 84cm se divide en tres partes, en la razón 3 : 5 : 6 Cuánto mide cada parte? 4) Proporcionalidad directa a) 35 lápices valen 400 pesos Cuánto valen 4 lápices? b) En 50 litros de agua de mar hay 300 gramos de sal Cuántos litros de agua de mar contendrán 500 gramos de sal? c) Un automóvil gasta 5 litros de bencina cada 80 km Si en el depósito hay litros, cuántos kilómetros podrá recorrer el automóvil? d) Un automovilista condujo 600 km con 40 litros de bencina Cuántos litros necesitaría para recorrer 500 km? e) Para comprar un libro que cuesta $ 4000, dos hermanos decidieron aportar una cantidad directamente proporcional a sus ahorros Si Paula tiene $ 6000 y Danilo tiene $ 0000 Cuánto debe aportar cada uno? f) Una llave arroja,5 litros de agua por minuto Cuánto demorará esta llave en llenar de 3 agua un estanque de, m? 5) Proporcionalidad inversa a) Seis trabajadores cavan una zanja de 80 metros de longitud en un día Cuántos metros cavarán en un día 4 trabajadores, laborando en las mismas condiciones?

5 b) Una moto que va a una velocidad de 00 km/h demora 0 minutos en recorrer la distancia entre dos pueblos Qué velocidad debería llevar para hacer el recorrido en 6 minutos? c) Un edificio se construye por una cuadrilla de 5 albañiles en 00 días Cuántos albañiles se debe añadir a la cuadrilla para terminar el trabajo en 50 días? 6) Ejercicios varios a) Un corredor da 5 vueltas a una pista deportiva en 5 minutos Si sigue al mismo ritmo, cuánto tardará en dar 5 vueltas? b) Por tres horas de trabajo, Mario ha cobrado 6000 pesos Cuánto cobrará por 8 horas? c) Para recorrer los 360 km que hay entre A y B un auto tardó 3 horas a una velocidad de 0 km/h Si disminuye la velocidad a 00 km/h, cuánto tardará? d) En un taller de modas, si se trabajan 8 horas diarias tardan 6 días en servir un pedido Cuánto tardarán en servir el pedido si se trabajan horas diarias? e) Si 400 gramos de salmón ahumado cuestan 00 pesos, cuánto debería pagar por,5 kg? f) Un auto recorre 309 km en 3 horas cuántos kilómetros recorre en 7 horas?, y en una hora? g) Tres obreros descargan un camión en dos horas Cuánto tardarán con la ayuda de dos obreros más? h) Tres kilogramos de carne cuestan 6000 pesos Cuánto podré comprar con 4500 pesos? i) Una receta de tarta de manzana especifica los siguientes ingredientes para 6 personas: 365 g de harina, 4 huevos, 300 g de mantequilla, 50 g de azúcar, 6 manzanas Calcule los ingredientes necesarios de una tarta de manzana para 5 personas j) Una moto va a 50 km/h y tarda 40 minutos en cubrir cierto recorrido Cuánto tardará un coche a 0 Km/h? k) Una máquina embotelladora llena 40 botellas en 0 minutos Cuántas botellas llenará en hora y media? l) Un padre paga la mesada a sus tres hijas de forma que a cada una le corresponde una cantidad proporcional a su edad A la mayor, que tiene 0 años, le da 5000 pesos Cuánto dará a las otras dos hijas de 5 y 8 años de edad? m) Un agricultor labra una determinada superficie en horas utilizando dos tractores Cuánto tardará en labrarla si utiliza tres tractores? n) Con 5 máquinas de escribir durante 6 horas, se escriben 0 documentos Cuántos documentos se escribirán con 45 máquinas durante 6 horas?

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA 1 REGLA DE TRES SIMPLE Y COMPUESTA Actividad Especial de Recuperación CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos.

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la

Más detalles

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa MATEMÁTICAS Grado Séptimo Bimestre I Semana 8 Número de clases 36-39 Clase 36 Tema: Magnitudes directamente proporcionales regla de tres simple directa Actividad 1 A partir de la tabla, determine si las

Más detalles

GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS

GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS 1 GUÍA No.1 REGLA DE TRES SIMPLE Y COMPUESTA CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos. Ejemplos Un automóvil

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El éxito no se logra sólo con cualidades especiales. Es sobre todo un trabajo de constancia, de método y de organización. J.P.

Más detalles

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD PROPORCIONALIDAD - Proporcionalidad directa e inversa - Ejercicios y problemas de reglas de tres directas, inversas y compuestas. - Problemas de porcentajes - Problemas de repartos directa e inversamente

Más detalles

EJERCITACION SUMADA A LA DE LAS CLASES

EJERCITACION SUMADA A LA DE LAS CLASES EJERCITACION SUMADA A LA DE LAS CLASES PROPORCIONALIDAD 1.- Indica si hay proporcionalidad directa, inversa o si no hay ninguna Proporcionalidad: a) Cantidad de personas que viajan en un autobús y dinero

Más detalles

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100 1.- Es cribe D en los pares de magnitudes directamente proporcionales, I en las inversamente proporcionales y X en las que no sean ni una cosa ni otra.. El número de personas que van en el autobús y la

Más detalles

Una razón es el cociente entre dos cantidades. En una razón, el numerador se llama antecedente y el denominador se llama consecuente.

Una razón es el cociente entre dos cantidades. En una razón, el numerador se llama antecedente y el denominador se llama consecuente. GUIA Nº 1 DE MATEMÁTICA TEMA: RAZONES Y PROPORCIONES Curso: 7ºE. Básica Razón Una razón es el cociente entre dos cantidades. En una razón, el numerador se llama antecedente y el denominador se llama consecuente.

Más detalles

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la

Más detalles

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3

Más detalles

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9 MATEMÁTICAS 2º ESO EJERCICIOS/PROBLEMAS: PROPORCIONALIDAD NOMBRE FECHA 1.- Escribe = o entre cada par de razones según formen o no proporción 1 3 5 15 9 3 2 4 9 9 4 2 2.- Calcula el término desconocido

Más detalles

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x 1 de 7 MAGNITUDES DIRECTAMENTE PROPORCIONALES Ejemplo 1: Un saco de patatas pesa 20 kg. Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. Cuántos sacos se podrán hacer? CASO 3 Nº sacos 1 2 y

Más detalles

proporcionalidad numérica

proporcionalidad numérica IES Mata Jove tema 9: proporcionalidad curso 2009/2010 nombre: apellidos: proporcionalidad numérica Lee el texto siguiente y realiza las actividades propuestas Los griegos ya conocían las proporciones

Más detalles

Si 55 turistas tienen comida para 18 días, para cuántos días habrá comida si se marchan 12 turistas?

Si 55 turistas tienen comida para 18 días, para cuántos días habrá comida si se marchan 12 turistas? 010 Si 55 turistas tienen comida para 18 días, para cuántos días habrá comida si se marchan 12 turistas? 55 Turistas ----------------------- 18 días 43 Turistas ----------------------- x (menos turistas,

Más detalles

Actividades para preparar el examen de Proporcionalidad.

Actividades para preparar el examen de Proporcionalidad. Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 22 / 09 / 15 Guía Didáctica 4-3 Desempeños:* Reconoce y aplica las propiedades

Más detalles

c) Es 91 múltiplo de 7? y 7 divisor de 91?

c) Es 91 múltiplo de 7? y 7 divisor de 91? UNIDAD 1: NÚMEROS NATURALES (1 pto) Ejercicio nº 1.- a) Escribe los diez primeros múltiplos de 15: IES EL CORONIL b) Todos los divisores del 60 c) Es 91 múltiplo de 7? y 7 divisor de 91? (1 pto) Ejercicio

Más detalles

Ficha de trabajo: Multiplicación y división de expresiones decimales

Ficha de trabajo: Multiplicación y división de expresiones decimales Ficha de trabajo: Multiplicación y división de Efectúa las siguientes multiplicaciones. a.,457 00 = 45,7 b. 2,26 000 = 2,260 000 = 2 260 c. 52,042 000 = Cuando se multiplica una expresión decimal por una

Más detalles

1. a) Escribe los primeros cinco múltiplos de 16 que estén entre 75 y 150

1. a) Escribe los primeros cinco múltiplos de 16 que estén entre 75 y 150 ACTIVIDADES DE PENDIENTES DE 2º eso. UNIDADES 1, 2, 3, 4 1. a) Escribe los primeros cinco múltiplos de 16 que estén entre 75 y 150 b) Escribe todos los divisores de 54 c) Escribe todos los divisores de

Más detalles

Programa Igualdad de Oportunidades. Matemáticas

Programa Igualdad de Oportunidades. Matemáticas Regla de tres Es una forma práctica de plantear un problema de proporciones cuando se conocen tres términos (o más) y se requiere calcular el cuarto término (el quinto, etc). La regla de tres puede ser

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 15 / 09 / 15 Guía Didáctica 4-2 Desempeño: Reconoce y aplica las propiedades

Más detalles

proporcionalidad numérica

proporcionalidad numérica nombre: apellidos: proporcionalidad numérica Lee el texto siguiente y realiza las actividades propuestas Los griegos ya conocían las proporciones hace 2500 años pero sus conocimientos ya venían de Babilonia

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 8. Proporcionalidad numérica 1. Proporcionalidad simple directa Una magnitud es toda cualidad de un ser que pueda medirse. Ejemplos de magnitudes son la longitud, la temperatura,

Más detalles

Guía Relaciones Proporcionales Nivel : 8º año 2011 Prof. Juan Schuchhardt E

Guía Relaciones Proporcionales Nivel : 8º año 2011 Prof. Juan Schuchhardt E 1 I.- Resumen de contenidos Relaciones proporcionales Razón Una razón entre dos cantidades es una comparación entre las cantidades que se realiza mediante un cociente, se anota a : b o bien b a, y se lee

Más detalles

Proporcionalidad y porcentajes

Proporcionalidad y porcentajes CLAVES PARA EMPEZAR a) 1 4 2 5 4 10 No son equivalentes. b) 12 7 16 6 4 96 No son equivalentes. c) 4 60 3 0 240 240 Sí son equivalentes. a) 3 2 6 12/3 4 b) 3 6 x 24/6 4 c) x 6 12 7 4/6 14 a) b) c) d) e)

Más detalles

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS REGLA DE TRES SIMPLE Y COMPUESTA GRADO: 6 TALLER 6 SEMESTRE II RESEÑA HISTÓRICA Aunque griegos y romanos conocían las proporciones no llegaron

Más detalles

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2) MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios

Más detalles

Problemas de proporcionalidad

Problemas de proporcionalidad Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de

Más detalles

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.-

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.- MATEMÁTICAS º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: 5 6 1, 45 7 19 4 5, 5 1 4 9 Ejercicio nº.- Sitúa cada número (entero o natural) en el conjunto que

Más detalles

Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces.

Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces. GUÍA DE EJERCICIOS Nº 3 RACIONALES II, POTENCIAS Y RAÍCES Contenidos: Números decimales: operatoria. Potencias numéricas. Raíces numéricas. Definición, propiedades y cálculo de raíces. 1. Un depósito vacío

Más detalles

= , ,2

= , ,2 Pág. 2 5 Calcula x en cada proporción: a) 20 440 b) 72 30 x 135 c) 14 d) x x 63 17 a) 20 400 x 30 440 660 30 x 20 b) 72 x x 45 72 24 135 45 135 c) 14 x 63 54 x 63 14 d) x 143 x 17 143 13 17 187 187 143

Más detalles

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =... Proporcionalidad y porcentajes Esquema de la unidad Curso:... Fecha:... PROPORCIONALIDAD PROPORCIÓN Una proporción es la igualdad de...... a b = Los términos a y d se llaman... Los términos b y c se llaman...

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Definiciones Igualdad : Una igualdad se compone de dos expresiones unidas por el signo igual. Una igualdad puede ser: 2x + 3 = 5x 2 Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental EL SISTEMA DE NUMERACIÓN DECIMAL LOS NÚMEROS NATURALES Nuestro sistema de numeración es decimal: 10 unidades de un orden cualquiera hacen una unidad del orden inmediato superior.

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 29 / 09 / 15 Guía Didáctica 4-4 Desempeños: * Plantea una regla de tres simple

Más detalles

TEMA 4: PROPORCIONALIDAD Y PORCENTAJES

TEMA 4: PROPORCIONALIDAD Y PORCENTAJES TEMA : PROPORCIONALIDAD Y PORCENTAJES.1Razones y proporciones Página 90 ejercicio 1 Elige la respuesta correcta en cada caso: a) La razón de 5 y15 es: 1 2, 1 3, 2 3 5 15 15 5 5 5 1 3 Tareas 05-12-12: todos

Más detalles

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...

TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=

Más detalles

017 Calcula el valor desconocido en la proporción Completa la siguiente tabla. 1/2E. 020 Completa la siguiente tabla: 1/2E

017 Calcula el valor desconocido en la proporción Completa la siguiente tabla. 1/2E. 020 Completa la siguiente tabla: 1/2E TRABAJO PRÁCTICO. PROPORCIONES Y REGLA DE TRES 017 Calcula el valor desconocido en la proporción 3 5 = 15 x 001 Apoyándote en la definición, escribe alguna razón 002 Comprueba si las siguientes razones

Más detalles

Tema 7. Proporcionalidad

Tema 7. Proporcionalidad Matemáticas 1º ESO Ejercicios Tema 7 BLOQUE I: ARITMÉTICA Tema 7. Proporcionalidad 1. Calcula el número que falta x 14 a) 7 = 5 x b) = c) 28 9 36 a) 3,5 b) 20 c) 43,88 2,3 = 9,8 10,3 x 2. Indica si existe

Más detalles

Números racionales 1. 1.- En un cine hay 63 personas de las que 4/7 son chicas, cuántos chicos y chicas hay?

Números racionales 1. 1.- En un cine hay 63 personas de las que 4/7 son chicas, cuántos chicos y chicas hay? Números racionales Los problemas que se presentan a continuación son problemas "tipo". Estúdialos detenidamente pues encontrarás multitud de situaciones cotidianas cuya resolución exige los mismos procesos

Más detalles

Evaluación de Matemática 1

Evaluación de Matemática 1 Institución Educativa Apellidos y nombres del estudiante : : 2do Grado Sección : 1. Un tanque tiene capacidad para 63 litros de gasolina. Si el tanque tiene llena la tercera parte de su capacidad total,

Más detalles

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO

EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número

Más detalles

Guía del estudiante. Clase 31 Tema: Aplicaciones de la proporcionalidad. La escala

Guía del estudiante. Clase 31 Tema: Aplicaciones de la proporcionalidad. La escala MATEMÁTICAS Grado Séptimo Bimestre I Semana 7 Número de clases 31-34 Clase 31 Tema: Aplicaciones de la proporcionalidad. La escala Actividad 1 En el mapa de esta isla, determine la distancia real entre

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 Con los datos de la ilustración, calcula la distancia que recorre cada vehículo en una hora. Coche de caballos en min 0 km en 0 min Coche utilitario

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

4Soluciones a los ejercicios y problemas PÁGINA 99

4Soluciones a los ejercicios y problemas PÁGINA 99 PÁGINA 99 Pág. 1 R azones y proporciones 1 Escribe: a) Tres pares de números cuya razón sea 2/3. b)tres parejas de números que estén en relación de cinco a uno. c) Tres parejas de números que estén en

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponden a los espacios académicos en los que el estudiante del Politécnico Los Alpes puede profundizar y reforzar sus conocimientos en diferentes temas de cara

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º)

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º) FICHA 1 NÚMEROS I Fecha límite de entrega: 3 de noviembre 1. Calcula el resultado de las siguientes sumas de enteros positivos y negativos: a) 5+(-)= b) 5+(-7)= c) (-)+5= d) (-7)+5= e) (-5)+(-7)=. Calcula

Más detalles

Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la

Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la Examen (segunda parte) Habilidades NÚMEROS CON SIGNO. 1. Una longitud positiva denota los grados al este de los datos del tiempo en la línea internacional; la longitud negativa denota los grados al oeste

Más detalles

IES TARTESSOS CURSO 2016/2017

IES TARTESSOS CURSO 2016/2017 IES TARTESSOS CURSO 2016/2017 NÚMEROS NATURALES Ejercicio nº 1.- Cuántas decenas hay en: a) 5 UM b) 4 CM c) 20 U d) 6 DM Ejercicio nº 2.- Responde a las preguntas: a) Cuántas unidades de mil hay en 400

Más detalles

a) 1 2 3 4 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD PÁGINA 167

a) 1 2 3 4 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD PÁGINA 167 Pág. 1 PÁGINA 167 EJERCICIOS Las relaciones de proporcionalidad 1 Indica los pares de magnitudes que son directamente proporcionales (D), los que son inversamente proporcionales (I) y los que no guardan

Más detalles

E. P. E. T. N 20 MATEMÁTICA 2 TRABAJO PRÁCTICO: PROPORCIONALIDAD. PROFESORES: Carlos Pavesio. Mauro Candellero. María Angélica Netto.

E. P. E. T. N 20 MATEMÁTICA 2 TRABAJO PRÁCTICO: PROPORCIONALIDAD. PROFESORES: Carlos Pavesio. Mauro Candellero. María Angélica Netto. E. P. E. T. N 0 MATEMÁTICA TRABAJO PRÁCTICO: PROPORCIONALIDAD PROFESORES: Carlos Pavesio Mauro Candellero María Angélica Netto Sergio Garcia Contenidos Conceptuales - Matemática - año - Año 01 Unidad Nº

Más detalles

8 Proporcionalidad numérica

8 Proporcionalidad numérica _ 0-00.qxd //0 0:0 Página Proporcionalidad numérica INTRODUCCIÓN La proporcionalidad numérica es un concepto que resulta a los alumnos complejo y difícil de comprender si no se ha adquirido soltura en

Más detalles

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg

5 Proporcionalidad. 1. Razón y proporción. Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? Solución: 160 : 8 = 20 /kg 5 Proporcionalidad 1. Razón y proporción Una pescadería cobra 160 por 8 kg de bogavantes. Cuánto cobrará por un kilo? P I E N S A Y C A L C U L A 160 : 8 20 /kg Carné calculista 1 409,6 : 68 C 6,02; R

Más detalles

Ejercicios para repasar y recuperar el. Área de Matemáticas de 1º ESO

Ejercicios para repasar y recuperar el. Área de Matemáticas de 1º ESO Octubre 01 º Cuadernillo Ejercicios para repasar y recuperar el Área de Matemáticas de 1º ESO Nota: Debes de presentarlo el día del º Parcial. ALUMNO: 1 1. Efectúa: a) 5 5 1 : 5 = b) 1 = c) 7 5 8 1 10

Más detalles

COMPARAR Y MEDIR LONGITUDES PESOS Y CAPACIDADES

COMPARAR Y MEDIR LONGITUDES PESOS Y CAPACIDADES m COMPARAR Y MEDIR LONGITUDES PESOS Y CAPACIDADES 3er. Grado Universidad de La Punta Consideraciones Generales En relación con la medida, una primera cuestión a considerar en el primer ciclo es la diferenciación

Más detalles

4 Proporcionalidad. 1. Razones y proporciones

4 Proporcionalidad. 1. Razones y proporciones 4 Proporcionalidad 1. Razones y proporciones Se han comprado 5 kg de melocotones por 10,5. Calcula mentalmente cuánto cuesta cada kilo. 10,5 : 5 = 2,1 /kg P I E N S A Y C A L C U L A 1 Calcula las razones

Más detalles

Capitulo VII: Regla de Tres

Capitulo VII: Regla de Tres Capitulo VII: Regla de Tres Concepto: Es un método aritmético, que consiste en calcular un valor desconocido de una magnitud, mediante la comparación de magnitudes proporcionales. Simple Simple directa

Más detalles

Guía ensayo PSU Razones y Proporciones A) 1,19 B) 2,5 C) 6,2 D) 65,3 E) 484 A) 30 B) 45 C) 105 D) 180 E) 540

Guía ensayo PSU Razones y Proporciones A) 1,19 B) 2,5 C) 6,2 D) 65,3 E) 484 A) 30 B) 45 C) 105 D) 180 E) 540 Guía ensayo PSU Razones y Proporciones 1.- De las cantidades siguientes, cuál o cuáles de ellas equivalen al 36% de N? I. 18/5 N II. 9/25 N III. 0,36 N A) sólo II B) sólo III sólo I y III D) sólo II y

Más detalles

MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL

MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL MEDIDA DE MAGNITUDES. EL SISTEMA MÉTRICO DECIMAL MAGNITUDES Y UNIDADES Las cualidades de un objeto que se pueden medir se llaman magnitudes. Las magnitudes se expresan con una unidad de medida. Algunas

Más detalles

RELACIONES DE PROPORCIONALIDAD

RELACIONES DE PROPORCIONALIDAD RELACIONES DE PROPORCIONALIDAD Magnitudes directamente proporcionales: ) En la vidriera de una casa de artículos para computación hay un cartel que promociona una oferta en el precio de los CD grabables.

Más detalles

8 Proporcionalidad numérica

8 Proporcionalidad numérica 94 _ 009-0.qxd /9/07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Comenzamos recordando la importancia del significado y la comprensión de las fracciones equivalentes. Objetos y situaciones de la vida

Más detalles

Datos Operaciones Resultado. 2. Ricardo va al mercado con 297 euros y regresa con 183 euros. Cuánto le cuesta la compra? Datos Operaciones Resultado

Datos Operaciones Resultado. 2. Ricardo va al mercado con 297 euros y regresa con 183 euros. Cuánto le cuesta la compra? Datos Operaciones Resultado 4º de Ed. Primaria Problemas matemáticos Nombre:.. 1. Almudena tiene 345 y Luis tiene 389, cuántos euros tienen entre los dos? Tienen entre los dos.. euros. 2. Ricardo va al mercado con 297 euros y regresa

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

8 Proporcionalidad. 1. Razón y proporción

8 Proporcionalidad. 1. Razón y proporción 8 Proporcionalidad 1. Razón y proporción Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 150 km en 5 horas. En qué unidades expresarías la velocidad? 150 : 5 0 km/h P I E N

Más detalles

UNIDAD 4. PROPORCIONALIDAD NUMÉRICA.

UNIDAD 4. PROPORCIONALIDAD NUMÉRICA. UNIDAD 4. PROPORCIONALIDAD NUMÉRICA. Al final deberás haber aprendido... Diferenciar entre razones y proporciones y aplicar sus propiedades. Distinguir los distintos tipos de proporcionalidad entre magnitudes

Más detalles

Razones y Proporciones

Razones y Proporciones Razones y Proporciones Razon: Una razón es el cuociente entre dos cantidades. Se escribe a b donde a se denomina antecedente y b se denomina consecuente. o a:b y se lee: a es a b en Proporción: Una proporción

Más detalles

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5

3 = x PROPORCIONALIDAD. 01 Apoyándote en la definición, escribe alguna razón. 02 Escribe 2 números mayores de 23 y menores que 31 cuya razón sea 4/5 IES PROF. JUAN BAUTISTA EL VISO DEL ALCOR TEMA 4.- Proporcionalidad. Ejercicios de Repaso y ampliación. PROPORCIONALIDAD 01 Apoyándote en la definición, escribe alguna razón 02 Escribe 2 números mayores

Más detalles

O-3. CENTRO DE ESTUDIOS RIVAS & MÉNGAR MAGNUS BLIKSTAD 83 ENTRLO C

O-3. CENTRO DE ESTUDIOS RIVAS & MÉNGAR MAGNUS BLIKSTAD 83 ENTRLO C 1) SI CADA UNO DE LOS MIEMBROS DE UNA FAMILIA DE 4 PERSONAS AHORRAN 2 DUROS Y 3 PESETAS AL DÍA, CUÁNTO AHORRARÍA AL CABO DE UN AÑO? a) 18.000 ptas b) 25.000 ptas c) 18.980 ptas d) 13.250 ptas 2) JUAN LE

Más detalles

OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA

OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA OPORTUNIDADES PARA APRENDER- FORMA A PROFESORES DE MATEMÁTICA 5TO GRADO DE EDUCACIÓN SECUNDARIA (Información que debe llenar el examinador aquí y en la hoja de respuestas) Código Modular del Centro Educativo

Más detalles

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º)

Departamento de Matemáticas Actividades de recuperación 2º ESO (Pendientes 1º) FICHA 1 NÚMEROS I Fecha límite de entrega: 17 de octubre 1. Rellena el cuadro: Nº en cifra Nº en letra 2.345.018 Ocho millardos 310.023 Dos billones, mil doscientos 2. Escribe en número o en letra: Tres

Más detalles

$ 2500 9000 5000 9000 : ; x 18000

$ 2500 9000 5000 9000 : ; x 18000 1 de 10 MAGNITUDES DIRECTAMENTE PROPORCIONALES Descripción matemática: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 1 / 09 / 15 Guía Didáctica 4-1 Desempeños: Reconoce, establece relaciones de

Más detalles

ACTIVIDADES DEL TEMA 6

ACTIVIDADES DEL TEMA 6 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DEL TEMA 6 1. En un libro de cocina nos hemos encontrado la siguiente receta: Bizcocho de chocolate (receta

Más detalles

LOS INSTRUMENTOS DE MEDICIÓN

LOS INSTRUMENTOS DE MEDICIÓN LOS INSTRUMENTOS DE MEDICIÓN INTRUMENTO MAGNITUD UNIDAD Cinta métrica Regla Longitud: es la distancia entre dos puntos; por ejemplo, alto, ancho, grosor, largo. Metro (m). Múltiplos, para grandes distancias,

Más detalles

Ejercicios Aritmética - Álgebra. Elementos de Aritmética Operaciones aritméticas con números racionales

Ejercicios Aritmética - Álgebra. Elementos de Aritmética Operaciones aritméticas con números racionales Ejercicios Aritmética - Álgebra Elementos de Aritmética Operaciones aritméticas con números racionales 1. Simplifica las siguientes fracciones: 1.0 a). 00.00 b) 6 18 c) 1. 0. Escriba como decimal finito

Más detalles

LOS NUMEROS Y LAS OPERACIONES

LOS NUMEROS Y LAS OPERACIONES LOS NUMEROS Y LAS OPERACIONES Sistema de numeración decimal. Lectura de números 1. Escribe los números siguientes: Medio millón:... Cuatro millones cuatrocientos... Tres millones y medio:... Seis millones

Más detalles

3 Proporcionalidad directa e inversa

3 Proporcionalidad directa e inversa 3 Proporcionalidad directa e inversa ACTIVIDADES INICIALES 3.I. Con la ayuda de tus amigos, estima cuántas personas caben en un metro cuadrado. Con ese dato, copia y completa la tabla hallando cuánta gente

Más detalles

PROBLEMAS RESUELTOS Regla de 3 SIMPLE

PROBLEMAS RESUELTOS Regla de 3 SIMPLE PROBLEMAS RESUELTOS Regla de SIMPLE 1. Dos Kg y medio de patatas cuestan 1.75. Cuánto cuestan tres Kg y medio?.5 Kg 1.75.5 Kg.5 1.75 5 175 5 7 5 7 45.5.5 1.75; ; ; ; ; ; =.45.5 500 5 100 100 100. Un coche

Más detalles

unidad 8 Funciones lineales

unidad 8 Funciones lineales Cuando dos magnitudes son proporcionales Página Dos magnitudes son proporcionales cuando los valores de una de ellas se obtienen a partir de los de la otra, multiplicándolos por un número fijo llamado

Más detalles

CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO

CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO CUESTIONARIO 4 GRADO III BIMESTRE CIENCIAS NATURALES DOCENTE: YULIS FONTALVO MEJÍA COLEGIO ROSARIO DE SANTO DOMINGO 1. La materia es aquello que constituye los objetos y ocupa un lugar en el espacio, las

Más detalles

4 Problemas aritméticos

4 Problemas aritméticos 008 _ 07-000.qxd 9/7/08 9:06 Página 77 Problemas aritméticos INTRODUCCIÓN En la vida real, la mayor parte de las relaciones entre magnitudes son relaciones de proporcionalidad directa o inversa. Es importante

Más detalles

Curso de Matemática Básica. Acción Emprendedora USA

Curso de Matemática Básica. Acción Emprendedora USA Curso de Matemática Básica Acción Emprendedora USA Curso de preparación para el Emprendedor ACCION EMPRENDEDORA - USA BIENVENIDOS al curso de Matemáticas básicas para el micro emprendedor de Acción Emprendedora

Más detalles

SOLUCIONES CONCEPTOS. centenas centésimas decenas. se escribe se lee parte entera parte decimal fracción. 0,023 Veintitrés milésimas 0 023

SOLUCIONES CONCEPTOS. centenas centésimas decenas. se escribe se lee parte entera parte decimal fracción. 0,023 Veintitrés milésimas 0 023 SOLUCIONES CONCEPTOS 1.- Coloca cada número en el lugar adecuado: 103.578,9 décimas Unidades de millar centenas centésimas decenas Centenas de millar unidades Decenas de millar 3 5 9 7 1 8 0. Escribe con

Más detalles

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad

IES CUADERNO Nº 4 NOMBRE: FECHA: / / Proporcionalidad Proporcionalidad Contenidos 1. Proporción numérica Razón y proporción 2. Proporcionalidad directa Razón de proporcionalidad Regla de tres directa Reducción a la unidad 3. Proporcionalidad inversa Constante

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. ENUNCIADOS Resuelve: a) b) 4 c) d) 4 4 e) f ) 7 g) h) Resuelve las ecuaciones siguientes: a) b) 7 c) d) 4 Resuelve las ecuaciones siguientes: a) b) ( ) ( ) ( ) ( 4) 7 c) [( ) ( ) ] d) 4 ( ) e) 0,(

Más detalles

ÓMNIBUS 3. c) ptas b) ptas

ÓMNIBUS 3. c) ptas b) ptas ÓMNIBUS 3 1. Si cada uno de los miembros de una familia de 4 personas ahorran 2 duros y 3 pesetas al día, cuánto ahorraría al cabo de un año? a) 18.000 ptas c) 18.980 ptas b) 25.000 ptas d) 13.250 ptas

Más detalles

Operaciones con fracciones

Operaciones con fracciones Operaciones con fracciones SUMA Y RESTA DE FRACCIONES DEL MISMO DENOMINADOR Para sumar fracciones del mismo denominador se suman los numeradores se deja el mismo denominador. Para restar fracciones del

Más detalles

6 Proporcionalidad numérica

6 Proporcionalidad numérica 85 _ 0-0.qxd 7//07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Es muy importante que los alumnos sean capaces de discernir si dos magnitudes son proporcionales. A veces cometen el error de pensar

Más detalles

PROBLEMAS. 1. Realiza las siguientes operaciones.

PROBLEMAS. 1. Realiza las siguientes operaciones. PROBLEMAS 1. Realiza las siguientes operaciones. 9 6 5 8 7 8 8 0 9 4 6 3 8 7 1 6 8 4 8 5 2 1 4 6 2. Queremos hacer una visita a la Alpujarra y el autobús cuesta 475.Este dinero lo tenemos que pagar entre

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales

IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales SOLUCIONES PROBLEMAS DE NÚMEROS NATURALES 1.- Francisco tiene 75. Roberto tiene 13 más que Francisco. Luis tiene 21 menos que Roberto. Cuánto tienen entre los tres? Francisco: 75 Roberto: 75 + 13 = 88

Más detalles

8. Proporcionalidad SOLUCIONARIO 1. RAZÓN Y PROPORCIÓN 2. PROPORCIONALIDAD DIRECTA. 5. Calcula el cuarto proporcional o medio en: x 16.

8. Proporcionalidad SOLUCIONARIO 1. RAZÓN Y PROPORCIÓN 2. PROPORCIONALIDAD DIRECTA. 5. Calcula el cuarto proporcional o medio en: x 16. SOLUCIONARIO 61. Proporcionalidad 1. RAZÓN Y PROPORCIÓN PIENSA Y CALCULA Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 10 km en horas. En qué unidades epresarías la velocidad?

Más detalles

UNIDAD 4 Proporcionalidad y porcentajes

UNIDAD 4 Proporcionalidad y porcentajes Pág. 1 de 5 Diferencias magnitudes directa e inversamente proporcionales? 1 Indica, para cada par de magnitudes, si son directamente proporcionales (D), inversamente proporcionales (I), o no proporcionales

Más detalles

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999.

Nombre: 90 X 40= 640+ 230= Calcula el termino que falta en cada operación. Escribe el número anterior y el posterior 1.000.000 9.386.999 599.999. Calcula el termino que falta en cada operación.8 + = 87..7 =.7 +.7 =.87. =.7 X = 8. : = X 0 =.00.7 : = Escribe el número anterior y el posterior.000.000.8... 0.000.000 00.000.000 0 X 0= 0+ 0= Escribe con

Más detalles