TEMA 8: DETERMINANTES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 8: DETERMINANTES"

Transcripción

1 DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros: º Clul l vlor los trnnts: [;;;-;] º Dtrn l vlor los trnnts ls trs trr orn ns oo su: j áj j ínj C j -j D j -j º Rsulv ls uons: [ -] [-] [ -] Dtrnnts orn n qu unt l orn un trnnt su álulo s opl Vos nr un trnnt orn n prtr otro orn n Pr llo nstos onor los onptos nor oplntro junto un lnto D un tr ur nn s ll nor oplntro l lnto j l trnnt orn n l sutr qu rsult l lnr l l l olun j Lo rprsntros oo M j H tntos nors oplntros oo lntos tn l tr / IR IES L NÍ

2 DETERMINNTES MTEMÁTICS II Ejplo: M S ll junto l lnto j l vlor l prsón: j M j s l nor oplntro pro por un sno o por un sno Ejplo: Rtono l jplo ntror M j Con l trnoloí qu os ntrour poos srrollr un trnnt orn n por los lnto un lín: El trnnt un tr ur orn n s ul l su los proutos los lntos un lín ulqur por sus rsptvos juntos D st oo un trnnt orn n s n prtr n trnnts orn n Ejplo: Vos srrollr l trnnt prtr los lntos l prr l Ejros: º Clul l vlor los trnnts: [-] [-] [-] Props los trnnts Ls sunts props son pr trnnts ulqur orn Pr los órns os trs pun sr ostrs srrollno os trnnts Un trnnt no vrí s s n sus ls por sus oluns s r l trnnt un tr ur on on l su trspust: t / IR IES L NÍ

3 DETERMINNTES MTEMÁTICS II L prop ntror prt justr qu tos ls props qu sn váls pr ls lo srán tén pr oluns rípront S n un trnnt s n ntr sí os líns prlls l trnnt sno pro onsrv l vlor soluto S toos los lntos un lín s ultpln por un so nº l trnnt qu ultplo por o nº Est prop prt "sr tor oún" los lntos un lín Nóts l rn on ls trs on pr ultplr por un nº s prso ultplr por él toos sus lntos α α α α α α α α α α S puo lulr S toos los lntos un lín son ro l trnnt vl ro S os líns prlls son uls l trnnt vl ro S os líns prlls son proporonls l trnnt vl ro [ ] [ ] P P S un lín s onón otrs prlls l trnnt vl ro / IR IES L NÍ

4 DETERMINNTES MTEMÁTICS II / IR IES L NÍ porqu l prr l s ul l sun ás l ol l trr S toos los lntos un lín s soponn n su os térnos l trnnt pu soponrs tén oo su os trnnts l sunt or: S un lín s l su un últplo ulqur otr prll l trnnt no vrí P P ; El trnnt l prouto os trs urs on on l prouto sus trnnts : S ultplos un tr ur orn n por un nº l trnnt l tr qu ultplo por n vs: n sno n l orn plno P n vs Ejros: º Just sn srrollrlos qu los sunts trnnts vln : º Otén splno l vlor l trnnt: [ ]

5 DETERMINNTES MTEMÁTICS II / IR IES L NÍ º S lul l vlor los sunts trnnts: º Sno qu ll l vlor sn srrollrlo usno únnt ls props los trnnts Sp- º Otnr ronnt l trnnt un tr ur qu tn utro ls qu vr l uón: sno ás qu l trnnt s postvo [] plons ls props l álulo trnnts Utlno l prop s posl onsur un lín qu tn un solo lnto no nulo; st nr l srrollr por juntos qurá sólo l junto s lnto lun nr ruos un trnnt orn n otro orn n- No s nsro r toos los lntos nos uno un lín; s s n un pr ros s srroll on trnnts orn nror s sunt Ejros: º Clul l trnnt plno ls props usno ros [] [-] [] º Dtrnnt Vnron:

6 DETERMINNTES MTEMÁTICS II º Clul l vlor los trnnts: l l l l l l º Dtrnr l vlor rl pr l qu s upl l sunt prop: l trnnt l tr s sno Jun- [] Mtr Invrs Hos rsulto n l t ntror un sr jros on uons ssts n los qu ls nónts son trs L or pror s u slr los rnts étoos utlos n l rsoluón uons nuérs spr qu l tr nónt no sté ultpl por otr tr Por jplo: C C Pr por spjr n s tpo uons nos srá u útl sr lulr l tr nvrs l stur l ultplón os trs os vsto qu s nos ltos onsrr ls trs urs orn n st un lnto nutro qu solos por I Nos plntos or s un tr ur st otr tr l qu rprsntros por - llros tr nvrs qu upl: - I - I Sólo tn snto plntrs l stn tr nvrs n l so trs urs no tos l tnrán qulls trs urs qu tnn tr nvrs s lln rulrs nvrsls o nvrtls En so ontrro s lln trs snulrs Pr lulr l nvrs un tr proros l sunt oo: Clulos L onón nsr sunt pr qu st - s qu Clulos l tr juntos: l tr qu s otn s s susttu lnto j por su junto j Trsponos l tr ntror: j t Dvos toos los lntos l tr ntror por j : t Ejros: º D l tr lul su nvrs opruélo / IR IES L NÍ

7 DETERMINNTES MTEMÁTICS II / IR IES L NÍ º Clul l nvrs ls sunts trs: α α α α os os sn sn º Dustr qu l nvrs n s n sno l tr º Sno un tr ur trr orn t su trspust ostrr qu t s sétr lulr l nvrs t º Qué rlón urn? S otén ronnt º D l tr ll los vlors pr los uls l tr no tn nvrs [ -] º Ds ls trs C Clulr l trnnt l tr otnr l vlor pr l qu o trnnt vl [] Dostrr qu l tr C no tn nvrs pr nnún vlor rl Jun- º Pr núro rl λ Mλ s l tr Mλ λ λ λ S p: Otnr l trnnt l tr Mλ justr qu pr ulqur núro rl st l tr Mλ - nvrs Mλ Clulr l tr M - S M M CM lúls ronnt l trnnt l tr prouto - C - Jun- [] º Rsulv ls sunts uons trls: / / - - C sno C

8 DETERMINNTES MTEMÁTICS II / IR IES L NÍ C sno C º Ds ls trs rls D C s p: Clulr l tr MC Sp- Justr qu st l tr D - nvrs D lulr tl tr Clulr ls trs Y qu upln DMYD Y º S onsrn ls trs urs rls orn Q P Clulr: L tr P - L tr rl ur orn tl qu P - PQ L tr PQP - Sp- º S C son trs urs C sno t pu onlurs qu C? Just l rspust º Consrr ls trs Pr qué vlors rls s nvrsl? Clulr l tr - Sp- [ ] En l ntror tr on otnr l tr rl ur orn qu sts l ul - ; º Ds ls trs T Pror qu l tr T tn tr nvrs T - lulr tr D l uón on tr nónt T - T lulr l trnnt [] Otnr los lntos l tr onsr n l prto Jun- T

9 DETERMINNTES MTEMÁTICS II / IR IES L NÍ º Ds ls trs C D E lul l tr qu sts l uón: t C t DE Sp- º Clulr los vlors qu stsn ls sunts uons: C Y Y on Y C Jun- Y º s un tr tl qu Clulr l trnnt l tr l tr nvrs [-] Clulr l tr l qu s soluón l uón trl on s l tr l [] Clulr l tr nvrs Sp- º Dspj l tr n ls sunts uons trls suponno qu tos ls trs qu ultpln son urs on trnnt stnto : MNP [N - P-M] CD [ - D-C - ] C I [C- - ] t I [/ - I t ] - [ ] C [ - C] [I - ] [ I - ] I Rsulv l uón trl sno: [ - ] º S n ls trs U on s un tr os ls os oluns qu no tn nnún lnto nulo qu vr l rlón U Otnr ronnt: Sp- Los núros rls tls qu U [ -] Los núros rls p q tls qu qu p justno qu l tr tn nvrs [p q] Otnr los vlors pr los qu s vr qu U [ -]

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO TEÁTS PRUES DE ESO L UNVERSDD DE OVEDO.- rs Drnns.- ODELO DE PRUE Prouo rs: onpo. onons pr su rlón. Es posl qu pr os rs no urs pun sr?. S D E son rs rs urs ul nsón ls qu D E S pu surr qu D E? Por qué?.

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

3.-AMORTIZACIÓN DE PRÉSTAMOS

3.-AMORTIZACIÓN DE PRÉSTAMOS .-MORTZÓ DE PRÉSTMOS..- Un prson solc un présmo. pr morzrlo n ños mn nuls consns pospgbls y un po nrés fcvo nul l 8%. Trnscurros ños y hbno bono l nul l rcr ño, curn uor y cror pr morzr l u pnn ls sguns

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

Determinantes: un apunte teórico-práctico

Determinantes: un apunte teórico-práctico Deterinntes: un punte teório-prátio Definiión d triz udrd se le soi un núero denoindo deterinnte de. El deterinnte de se denot por o por det(). Cálulo de deterinntes Pr un triz de x el deterinnte es sipleente

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores c.a.)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores c.a.) POBLEMS E ELECTÓNIC NLÓIC (Trantr.a.) Eula Plténa Suprr Prr. arí aría ríuz Trantr.a..3.- En l rut r ún la fura la part nqura, n u parátr h, h 8 y h y u parátr π, r π y 8 /V. Calular anana ntna y tnón y

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

Sector Nestlé 16965-IB-D-6 FIRMA 2012-1205-IB-D-6 CLIENTE. PLANO No. CLIENTE NOMBRE

Sector Nestlé 16965-IB-D-6 FIRMA 2012-1205-IB-D-6 CLIENTE. PLANO No. CLIENTE NOMBRE LNT PLNO No. LNT 0-0--- NOMR UO OMPRO. T.. NO NTVO SN L RM PLNO No. RVSON 9--- RM 0 0, Km SP. 0 SP. 0.. STO SLS NRO PL SPL L NOU SST È - PROT LÍN Situació global de la zona d'estudi PROP NTLTUL: RSRVOS

Más detalles

. Se apoé en la inspecc ón de la mportac ón del buque M/T Atlant c Breeze, de la empresa S.A., elcualdescargó Gasol na Super or y Regular. Vo. Bo.

. Se apoé en la inspecc ón de la mportac ón del buque M/T Atlant c Breeze, de la empresa S.A., elcualdescargó Gasol na Super or y Regular. Vo. Bo. Gu, 1 Dbr 014 nnr Lus Ar Ay Vrs. Drr Gnr Hr rburs. Mnsr n rí y Mns. Su DsDh, Sñr Dr r. n upn n áusu v nr núr DGH-4-014 br nr Drn Gnr Hrrburs y prsn, pr prsnr NORü ÍNSUAL, pr Srvss Tns, p prn 01 1 Obr prsn

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:

B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues: nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

INTRODUCCION AL METODO DE LOS ELEMENTOS FINITOS: APLICACIÓN A LA MECANICA DE SÓLIDOS

INTRODUCCION AL METODO DE LOS ELEMENTOS FINITOS: APLICACIÓN A LA MECANICA DE SÓLIDOS ITODUCCIO A METODO DE OS EEMETOS IITOS: APICACIÓ A A MECAICA DE SÓIDOS El Métoo los Elntos ntos s n étoo néro rsolón prols Mán Sólos q rslt grn portn por s tl prát. Es n hrrnt állo potnt q prt l ngnro

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS UVRS TÉ MBÍ FULT S MSTRTVS Y OÓMS RRR: MSTRÓ MPRSS TÍTULO: GRO OMRL Malla urricular 009 (ctualizada gosto 01) SGTURS VL 10 0 VL 9 VL 8 VL 7 6 VL 6 4 VL 5 SRROLLO GR L L Y RSPOSBL SOL GR VLORO MPRSS RGRÍ

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

AISLADOR SOPORTE SERVICIO INTERIOR PARA MEDIA TENSION CARACTERISTICAS TECNICAS Y DIMENSIONES DE LA SERIE "ESTANDARD" N.B.A.I.

AISLADOR SOPORTE SERVICIO INTERIOR PARA MEDIA TENSION CARACTERISTICAS TECNICAS Y DIMENSIONES DE LA SERIE ESTANDARD N.B.A.I. ISLORS MI TNSION TULIZION 2014 RTRISTIS: ISLOR SOPORT SRVIIO INTRIOR PR MI TNSION RTRISTIS TNIS Y IMNSIONS L SRI "STNR" FRIOS SUN NORMS INTRNIONLS I.273 e I.660. MOLOS N POLISTR RFORZO ON FIR VIRIO (.M..),

Más detalles

glosario de BBVA GLOSARIO -Análisis Técnico-

glosario de BBVA GLOSARIO -Análisis Técnico- BBVA GLOSARIO -Aná Tén- A (): Mn n (ún ní Pn On E) qu nn n n. Auuón (uun n): Fón nón u n un (uu íu n ). A ADX (ADX): ADX (DMI): Ín n n, un n un nn. L ín ADX W n n n n un 0 100. Un ín ADX nn n qu n nn y

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

TEMA 1. OPERACIONES BANCARIAS A CORTO

TEMA 1. OPERACIONES BANCARIAS A CORTO 1 E 6 TEMA 1. OPERACIONES BANCARIAS A CORTO PLAZO (I) 1.1. Itrouccó 1.2. Cuts corrts 1.3. Cuts corrts bcrs 1.4. Cuts créto 1.5. Cálculo los ttos fctvos 1. INTROUCCIÓN Toos los rchos rsrvos. Qu prohb l

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE CCESO L UNVERSDD L.O.G.S.E. CURSO 2001-2002 - CONVOCTOR: JUNO ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros e clfccón.- Expresón clr y precs entro el lenguje técnco y gráfco s fuer

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO Ó Ó SÍT Ó R Ó SÍT T (*) S ÓS TS "" (*-**) ST TZRS R R SRÓ R SÍT T R SST S ÓS RRÓ R - RS T S ÓS SÍT R.8-00/0 8 STT TRTT SÉS Ú T T RÍ RT Ó RÓ T Ú / / S / S TRR ÍS SÉS RÁ STS / STWR / / S / R / R(S) ST S

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son

Más detalles

'72. Asunto: Informe evaluación técnica convocatoria pública N. oo7 de Bogotá, D.C. Noviembre 07 del2o14. Respetado Doctor Lopez:

'72. Asunto: Informe evaluación técnica convocatoria pública N. oo7 de Bogotá, D.C. Noviembre 07 del2o14. Respetado Doctor Lopez: ntregno Lo mejor e los colombinos ]> '72 Bogotá, D.C. Noviembre 07 el2o14 v.o-154t14 Doctor RCARDO LOPZ ARVALO Secretrio Generl SRVCOS POSTALS NACONALS S.A. Ciu Asunto: nforme evlución técnic convoctori

Más detalles

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2

Problema 1 Calcular el equivalente Norton del circuito de la figura. E 1 = 1V; E 2 = 2V; I g = 1A; R 1 = 1 ; R 2 = 2 ; R 3 = 3 ; R 4 = 4 R 1 R 2 R 2 Exmen Finl Junio - Eletroteni Generl 1 er Cutrimestre/Teorí de Ciruitos 4º Curso de Ingenierí Industril Espeilidd Orgnizión Indsutril 11-VI-2001 Prolem 1 Clulr el equivlente Norton del iruito de l figur.

Más detalles

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x REGREION LINEAL IMPLE FORMULARIO Mdl d Rgrsó Ll mpl Jrg Glt Rsc + β + ε qu β s fjs, ε s u vrl ltr c sprz E(ε) 0 vrz V(ε) σ fj. Ls prámtrs dl mdl s, β σ. rprst l vrl dpdt, qu tm vlrs fjs dtrmds pr l prmtdr.

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Negocio desde la Visión del Cliente

Negocio desde la Visión del Cliente El MAPACnstruynd DE EMPATIA Nustr Mdl d En la antrir prsntación hablábams d mpatía y afirmábams u un prfund CONOCIMIENTO DEL CLIENTE rprsnta una vntaja cmptitiva difrncial n las rganizacins. Asimism, prsntábams

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.

Programa. COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios. Programa COLEGIO DE BIBLIOTECARIOS DE CHILE A.G. Diagonal Paraguay 383 of. 122 Santiago Telefono: 56 2 222 56 52 Mail: cbc@bibliotecarios.cl Programa XVI Conferencia Internacional de Bibliotecología Buenas

Más detalles

( ) [ ( )] ( ) PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V.1 PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término:

( ) [ ( )] ( ) PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V.1 PRODUCTOS NOTABLES. a + b se puede obtener multiplicando término a término: Pági l Colgio Mtátis l ENP-UNAM Proutos otls toriió Autor: Dr. José Mul Brr Esios PRODUCTOS NOTABLES Y FACTORIZACIÓN UNIDAD V V. PRODUCTOS NOTABLES Tto l ultiliió lgri oo l ritéti s sigu u lgorito uos

Más detalles

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS DETERMINCIÓN DE LOS ELEMENTOS DE ORIENTCION INTERIOR LS DISTORSIONES DEL OBJETIVO DE LS CÁMRS FOTOGRÁFICS NO MÉTRICS B D. Díz Ríuz, Gl Ház S S Hé Gzáls Gí Jsé Mul Cvz P GEOCUB IC,, Pl. C.P. 00, CH, Cu,

Más detalles

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x

( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Fultd de ens Eonóms onvotor de Juno Prmer Semn Mterl Auxlr: luldor fnner MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 5 de Myo de 011 1 hors Durón: hors 1. ) Préstmos que se mortzn por el método frnés (térmnos

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II CURSO 0/06 PRIMERA SEMANA Dí 24/0/06 ls 9 hors MATERIAL AUXILIAR: Cluldor finnier DURACIÓN: 2 hors 1. Préstmos ) Teorí. Estudir rzondmente los préstmos que

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

REPÚBLICA DEL ECUADOR

REPÚBLICA DEL ECUADOR INORM D RUT RÍTI DL UR D GSTOS PGIN: 1 D 8 : 01/02/ OR: 17:20:22 laboracion del Traslado I=- NTIDD 191-0000-0000 0000 1 PGO MPRS MUNIIPL D GU POTL SRVIIO D LIQUIDO VITL N NTRO INTGRDO D DIUSION ULTURL

Más detalles

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos.

Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 1 1. TEMA 1. Matrices Problemas Resueltos. Meáis (hillero e ieis) Soluioes e los proles propuesos Te wwweisjo José Mrí Mríez Meio TEM Mries Proles Resuelos Operioes o ries Ds, y, hll os úeros y pr que se verifique que Soluió Esriieo l euió exei

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE

VECTORES INGENIERO: PERCY ALFREDO AGRAMONTE LIMACHE FILIL - REQUIP VECTORES INGENIERO: PERCY LFREDO GRMONTE LIMCHE En el tem nteror hímos menondo qe ls mgntdes físs según s ntrle peden ser lsfds omo eslres o etorles MGNITUD ESCLR: Es qell mgntd qe qed en

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

10. Optimización no lineal

10. Optimización no lineal 0. Optzcó o lel Coceptos báscos Prcpos y teores pr l búsqued de óptos lobles Optzcó s restrccoes e desó Optzcó s restrccoes e desó > Modelos co restrccoes de uldd Codcoes de uh-tucker Alortos uércos báscos

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 UÍ TÓRIO PRÁTI Nº 11 UNI: OMTRÍ POLÍONOS URILÁTROS POLÍONOS INIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus puntos

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA

ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA ESTADO DE ARIZONA CONDADO DE MARICOPA COMITÉ POLÍTICO INFORME DE FINANZAS DE LA CAMPAÑA SÓLO PARA USO OFICIAL 1. Complto l Comité Dirión Tléono 3. 2. Orgnizión Ptroinor (si s pli) l Cnito y Pusto qu Soliit

Más detalles

TEMA 5.- SISTEMAS TRIFÁSICOS

TEMA 5.- SISTEMAS TRIFÁSICOS DPTO. INGENIERIA EECTRICA ESCUEA DE INGENIERÍAS INDUSTRIAES EECTROTECNIA TEMA 5.- SISTEMAS TRIFÁSICOS 5.1.- En la red trifásica de la figura 5.1, la tensión cmpuesta al final de la línea es de 380V. a

Más detalles

BASE CIRCULAR DE HORMIGÓN CON FONDO PLANO DE POLIPROPILENO ACANALADO POZO MIXTO

BASE CIRCULAR DE HORMIGÓN CON FONDO PLANO DE POLIPROPILENO ACANALADO POZO MIXTO POZOS RGISTRO SS IRULRS S IRULR HORMIGÓN ON FONO PLNO POLIPROPILNO NLO POZO MIXTO ase prefabricada de hormigón con fondo acanalado de polipropileno. Fabricación según UN-N 1917. Las conexiones estancas

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

Administración de inventarios. Ejercicio práctico.

Administración de inventarios. Ejercicio práctico. Admnstracón d nvntaros. Ejrcco práctco. La Cía. GOMA REDONDA S.A. llva n nvntaro un crto tpo d numátcos, con las sgunts caractrístcas: Vntas promdo anuals: 5000 numátcos Costo d ordnar: $ 40/ ordn Costo

Más detalles

Reglamento de D i v er s i ones y E s p ec tá c u los P ú b li c os Ayuntamiento Constitucional de Zapotlanejo 2007-2009 e n t e M u n i c i Z a t n e j o, J a o, a h a t a n t e m u n i c i o h a g o

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles