(2) Por otro lado, la carga total disponible está fija, entonces,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(2) Por otro lado, la carga total disponible está fija, entonces,"

Transcripción

1 1. Un condensdor cilíndrico de rdio interior, rdio exterior b y crg constnte Q es introducido verticlmente en un líquido dieléctrico (linel) de permitividd ɛ. El líquido puede subir por el espcio entre los dos cilindros. Suponiendo que el líquido dieléctrico h subido un ltur h: () Determine los cmpos D y E en el interior del condensdor. (b) Determine l cpcidd equivlente del condensdor en es situción. (c) Si l densidd de ms del líquido es ρ 0, determine l ltur h en que se logr el equilibrio entre l fuerz dieléctric que ctú sobre el líquido, y l grvitción.

2 Solución: () Se z un coordend verticl prlel l cilindro con z 0 coincidiendo con l superficie del líquido. Llmemos l zon del condensdor que está sin dieléctrico (h < z < L), y l zon con dieléctrico (0 < z < h). Comencemos determinndo ls densiddes de crg que hy en el cilindro interior. Ests densiddes determinn el cmpo eléctrico en el interior del condensdor. Primero notemos que ls plcs son metálics y por lo tnto equipotenciles. Esto signific que el cmpo eléctrico en debe ser igul l cmpo en. De lo contrrio y no estrín l mismo potencil. Se σ y σ ls densiddes de crg (libre) en el cilindro interior. El cmpo eléctrico en cd un de ls zons es rdil y con mgnitud E σ ɛ 0 r, E σ ɛr, (1) (El cmpo E se clcul usndo l Ley de Guss en el vcío. El cmpo E se clcul usndo l Ley de Guss en dieléctricos y relcionndo D ɛe.) Pr que E y E sen igules se debe stisfcer, σ ɛ 0 σ ɛ (2) Por otro ldo, l crg totl disponible está fij, entonces, 2π(L h)σ + 2πhσ Q 2πLσ 0. (3) Aquí hemos introducido σ 0, l densidd de crg como si Q estuvier distribuid homogénemente por todo el cilindro. Ls ecuciones (2) y (3) permiten despejr σ y σ, σ σ 0 ɛ 0 L h(ɛ ɛ 0 ) + ɛ 0 L, σ σ 0 ɛl h(ɛ ɛ 0 ) + ɛ 0 L, (4) Reemplzndo estos vlores en (1) determinmos los cmpos eléctricos en mbs zons (que son igules). El cmpo de desplzmiento se obtiene fácilmente pr cd zon, D ɛ 0 E σ r, D ɛe σ r (b) Cundo el líquido h subido un ltur h podemos interpretr está situción como dos condensdores en prlelo cuys cpciddes se sumn. Ls cpciddes solo dependen de l geometrí del sistem, y no de ls distribuciones de crg. En l zon l cpcidd es conocid C 2π(L h)ɛ 0 ln(b/) donde L es l ltur totl del cilindro (desde l superficie del líquido). Pr l zon l cpcidd será C 2πhɛ ln(b/). L cpcidd del condensdor compuesto (prlelo) entonces es: C(h) y dependen explícitmente de l ltur h. 2π ln(b/) (ɛ 0L + h(ɛ ɛ 0 ))

3 (c) L energí lmcend (con crg totl Q constnte) es: U 1 2 C(h) donde l cpcidd C(h) fue clculd ntes. L fuerz dielétric que ctú sobre el líquido es du dh 1 dc(h) 2 C(h) 2 1 2π dh 2 C(h) 2 ln(b/) (ɛ ɛ 0) El líquido logr el equilibrio cundo est fuerz es igul y opuest l fuerz grvitcionl (quí M es l ms del líquido que h subido) L ecución que determin el vlor h entonces es: Mg π(b 2 2 )hρg 1 2π 2 C(h) 2 ln(b/) (ɛ ɛ 0) π(b 2 2 )hρg Est es un ecución cúbic pr h, cuy solución es conocid pero muy extens pr escribir quí.

4 2. Considere dos cilindros coxiles conductores de longitud L mucho myor que los rdios de los cilindros; el interior de rdio y el exterior de rdio c (ver figur). En el espcio < r < b está lleno con un mteril dieléctrico de permitividd ɛ 1 ɛ r1 ɛ 0 y conductividd σ 1. De l mism form, el espcio b < r < c está lleno con otro mteril dieléctrico de permitividd ɛ 2 ɛ r2 ɛ 0 y conductividd σ 2. Entre mbos cilindros coxiles se estblece un diferenci de potencil V 0. Clcule ) l resistenci entre los electrodos. b) l densidd de crg eléctric cumuld en l interfce entre los dos mteriles dieléctricos (superficie rdio b en l figur). c) Supong hor que ls conductividdes σ 1 y σ 2 son cero. Determine l cpcitnci totl del sistem. Solución prte ) (Ver un solución lterntiv ms bjo.) Como se observ de l figur, el coxil interior, de rdio, est un myor potencil que el coxil exterior, de rdio c. Por consiguiente, los vectores cmpo eléctrico E, desplzmiento D, y densidd de corriente J se pueden sumir en el sentido positivo de l coordend rdil r, i.e. Ei E iˆr, D i D iˆr y J i J iˆr, con i { 1, < r < b 2, b < r < c. (5) L ley de Ohm pr ls diferentes regiones es: J i σ iei, (6) y l corriente eléctric est definid por l expresión J i da J i A J i 2πrL. (7)

5 En l Ec. (7) A Aˆr, donde A es l sección trnsversl pr un vlor ddo de r. De ls Ecs. (6) y (7) obtenemos E i L diferenci de potencil entre los coxiles interior y exterior es: 2πrLσ i. (8) V () V (c) V 0 2πL E d r b ( log(b/) σ 1 E 1 d r + b + log(c/b) σ 2 E 2 d r (9) ), (10) por consiguiente, R V 0 1 ( log(b/) + log(c/b) ). (11) 2πL σ 1 σ 2 Solución ltentiv pr prte (). L resistenci pr un objeto de lrgo L, sección A y conductividd σ es R L σa. Un cilindro de lrgo L, rdio interior r 1 y rdio exterior r 2 puede seprrse en cáscrs de ncho dr. L resistenci de cd elemento es: y por lo tnto l resistenci totl es R rr2 dr dr σ 2π rl rr 1 dr 1 2πσL ln(r 2/r 1 ) donde r 2 y r 1 son los rdios exterior e interior, respectivmente. Apliquemos est fórmul mbos objectos de conductividdes σ 1 y σ 2. Se obtiene, l resistenci totl entonces es: R 1 1 2πσ 1 L ln(b/), R 2 1 2πσ 2 L ln(c/b), R 1 ( ln(b/) + ln(c/b) ) 2πL σ 1 σ 2 que coincide con el vlor clculdo por el otro método. Solución prte b) Usndo l Ley de Guss pr un pequeñ cj que encierre l interfse podemos clculr l densidd de crg libre σ Q, dd por l expresión σ Q D 2 D1 ε 2 E 2 ε 1 E 1 (12) ε 2 ε 1. (13) 2πbLσ 2 2πbLσ 1

6 De l Ec. (11) observmos que V 0 /R, por tnto Solución prte c) σ Q ε 2 V 0 2RπbLσ 2 ε 1 V 0 2RπbLσ 1 (14) V ε 0 2 ( 1 log(b/) 2πL σ 1 ( V0 b 2πbLσ 2 ε 1 V 0 ) 2πbLσ 1 + log(c/b) σ 2 ) (15) ε 2 σ 1 ε 1 σ 2 log(b/)σ 2 + log(c/b)σ 1 (16) Se estim el cmpo eléctrico en l región entre los dos coxiles usndo l ley de Guss: D da SG Q, (17) SG donde Q es l crg en el coxil interior y A SG es un superficie gussin encerrndo este coxil. De l Ec. (17) se obtiene Ahor se clcul l diferenci de potencil entre los dos coxiles ε i E i 2πrL Q. (18) V () V (c) V 0 E d r b E 1 d r + b E 2 d r (19) Q ε 1 2πL log(b/) + Q log(c/b) (20) ε 2 2πL Finlmente se obtiene C πl V 1 0 ε 1 log(b/) + 1 ε 2 log(c/b). (21)

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío

ELECTRICIDAD Y MAGNETISMO. Electrostática-Vacío ELECTRCDAD Y MAGNETSMO. Electrostátic-Vcío 1) Suponiendo un nue de electrones confind en un región entre dos esfers de rdios 2 cm y 5 cm, tiene un densidd de crg en volumen expresd en coordends esférics:

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Capítulo III AGUA EN EL SUELO

Capítulo III AGUA EN EL SUELO Cpítulo III AGUA EN EL SUELO Curso de Hidrologí e Hidráulic Aplicds Agu en el Suelo III. AGUA EN EL SUELO III.1 AGUA SUBSUPERFICIAL (Cp. 4 V.T.Chow) Entre l superficie del terreno y el nivel freático (del

Más detalles

Parte I. Problemas Propuestos

Parte I. Problemas Propuestos 3 Prte I Problems Propuestos 5 CAPÍTULO 1 Electrostátic 1. Cálculo de Cmpo/Potencil Eléctrico por Definición Z Problem 1.1 Csquete Semiesférico Un disco de rdio complet un csquete semiesférico de rdio.

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m

Problema 5.154. w A. 24 kn 30 kn. 0.3 m. 1.8 m Problem 5.54 A w A 4 kn 0 kn.8 m 0. m w L vig A soport dos crgs concentrds y descns sobre el suelo el cul ejerce un crg linelmente distribuid hci rrib como se muestr. Determine ) l distnci pr l cul w A

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

AX = B. X es la matriz columna de las variables:

AX = B. X es la matriz columna de las variables: ÁLGEBR MTRICIL PRO. MRIEL SRMIENTO SESIÓN 9: METODO DE ELIMINCIÓN GUSSIN En est sesión, resolvemos sistems de ecuciones lineles de orden x y x. Pr ello escribimos el sistem en término de mtrices, por ejemplo:

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Aplicaciones de la Integral

Aplicaciones de la Integral Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS

Más detalles

ntonio Gonzá ález Fernánde ez

ntonio Gonzá ález Fernánde ez Cpcidd d y circuitos it equivlentes Antonio González Fernández Dpto. de Físic Aplicd III Universidd de Sevill Sinopsis de l presentción ntonio Gonzá ález Fernánde ez 8, A Cundo se tiene un conjunto de

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

5. Conductores en equilibrio electrostático Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

5. Conductores en equilibrio electrostático Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 5. Conductores en equilibrio electrostático Félix Redondo Quintel y Roberto Crlos Redondo Melchor Universidd de Slmnc Conductores en equilibrio electrostático Definición.- Un conductor está en equilibrio

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

Vectores en el espacio. Producto escalar

Vectores en el espacio. Producto escalar Geometrí del espcio: Vectores; producto esclr Vectores en el espcio Producto esclr Espcios vectoriles Definición de espcio vectoril Un conjunto E es un espcio vectoril si en él se definen dos operciones,

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Escuel Superior de Ingenieros Ingenierí de Telecomunicción Cmpos Electromgnéticos Cmpos Electromgnéticos. Boletín 1. Octubre de 2002 Problems básicos 1.1. Exprésense los siguientes cmpos vectoriles en

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales)

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales) CAPÍTULO 23 RESUMEN Energí potencil eléctric: L fuerz eléctric cusd por culquier conjunto de crgs es un fuerz conservtiv. El trbjo W relizdo por l fuerz eléctric sobre un prtícul con crg que se mueve en

Más detalles

Relación de problemas: Tema 9

Relación de problemas: Tema 9 Relción de prolems: Tem 9.-Un espir rectngulr de ldos y gir con un velocidd ngulr ω en el seno de un cmpo mgnético constnte, perpendiculr l eje de rotción de l espir. Clculr l fem inducid en l espir. ω

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA

Tema 2 CIRCUITOS DE CORRIENTE CONTINUA Tem CCUTOS DE COENTE CONTNU Lección : esistenci eléctric..- esistenci. Definición, representción y modelo mtemático..- Fuentes de corriente continu: tensión e intensidd...- Fuentes reles..- Conversión

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

Integrales de línea. 4.1. Integral de línea de un campo escalar

Integrales de línea. 4.1. Integral de línea de un campo escalar Lección 4 Integrles de líne 4.1. Integrl de líne de un cmpo esclr Definición. Se f : Ω R un cmpo esclr continuo, con Ω R n, y se : [,b] Ω un cmino regulr trozos. L integrl de líne de f lo lrgo de es, por

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna)

I 5 dq. 5 n 0 q 0 v d A dt. r5 E J. r 1 T 2 5r 0 31 1a1 T 2 T 0 24 V 5 IR. R 5 rl A. V ab 5 E 2 Ir (fuente con resistencia interna) CPÍTULO 25 REUMEN Corriente y densidd de corriente: Corriente es l cntidd de crg que fluye trvés de un áre especificd, por unidd de tiempo. L unidd del pr l corriente es el mpere, que es igul un coulomb

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA

CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140 ACTIVITATS DE N ESO PER A ESTIU ACTIVIDADES CON NÚMEROS ENTEROS º ESO. Reliz ls siguientes operciones. + + + d + + b + + 6 e + 6 c + f 6 + + + 6. Reliz ls siguientes operciones. ( + + ( + + ( + d + ( +

Más detalles

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n.

C u r s o : Matemática. Material N 25 GUÍA TEÓRICO PRÁCTICA Nº 20 UNIDAD: ÁLGEBRA Y FUNCIONES. Sean a, b lr {0} y m, n. C u r s o : Mtemátic Mteril N 5 GUÍA TEÓRICO PRÁCTICA Nº 0 UNIDAD: ÁLGEBRA Y FUNCIONES POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE POTENCIAS Sen, b lr {0} y m, n PRODUCTO DE POTENCIAS

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway

PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 28 FISICA TOMO 2. Tercera y quinta edición. Raymond A. Serway PROBLEMAS RESUELTOS CIRCUITOS DE CORRIENTE CONTINUA CAPITULO 8 FISICA TOMO Tercer y qunt edcón Rymond A. Serwy CIRCUITOS DE CORRIENTE CONTINUA 8. Fuerz electromotrz 8. Resstores en sere y en prlelo 8.3

Más detalles

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0

x 2 + ( x + 1 ) 2 + ( x + 2 ) 2 = 365 x 2 + x 2 + 2 x + 1 + x 2 + 4x + 4 = 365 3 x 2 + 6x 360 = 0 Ecuciones cudrátics con un incógnit Sen, 1 y los tres números nturles consecutivos uscdos. El prolem nos indic que ( 1 ) ( ) 365 Un número con misterio! El número 365 tiene l crcterístic de ser l sum de

Más detalles

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de aire delgadas junio 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Lortorio de Físic Universitri : Lentes de ire delgds junio 006 LENTES DE AIRE DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos

Más detalles

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero.

Laboratorio de Física Universitaria 2: Lentes de vidrio delgadas mayo 2006 Enrique Sánchez y Aguilera. Rodolfo Estrada Guerrero. Enrique Sánchez y Aguiler. Rodolo Estrd Guerrero. LENTES DE VIDRIO DELGADAS: DISTANCIA FOCAL Y RADIOS DE CURVATURA OBJETIVO GENERAL: Entender el concepto de distnci ocl. Entender los conceptos de convergenci

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS

UNIDAD: GEOMETRÍA PERÍMETROS Y ÁREAS u r s o : Mtemátic Mteril N 17 GUÍ TÓRI PRÁTI Nº 14 UNI: GMTRÍ PRÍMTRS Y ÁRS Perímetro de un polígono, es l sum de ls longitudes de todos sus ldos. l perímetro se denotrá por p y el semiperímetro por s.

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

Fuerzas distribuidas: centroides y centros de gravedad

Fuerzas distribuidas: centroides y centros de gravedad bee76985_ch05.qd 10/24/06 11:02 M Pge 219 PÍTUL 5 Fuers distribuids: centroides centros de grvedd En l fotogrfí se muestr l construcción de un trmo del viducto Skw, el cul cru l bhí que se encuentr entre

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución

MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

Guía Práctica N 13: Función Exponencial

Guía Práctica N 13: Función Exponencial Fuente: Pre Universitrio Pedro de Vldivi Guí Práctic N : Función Eponencil POTENCIAS ECUACIÓN EXPONENCIAL FUNCIÓN EXPONENCIAL PROPIEDADES DE LAS POTENCIAS Sen, b lr {0} m, n. Entonces: PRODUCTO DE POTENCIAS

Más detalles

Volumen de cuerpos geométricos

Volumen de cuerpos geométricos 829485 _ 0369-0418.qxd /9/07 15:06 Págin 381 Volumen de cuerpos geométricos INTRODUCCIÓN RESUMEN DE LA UNIDAD Como complemento l estudio del Sistem Métrico Deciml, inicimos est unidd con el concepto de

Más detalles