Programación por restricciones clase 10

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programación por restricciones clase 10"

Transcripción

1 Programación por restricciones clase 10 Camilo Rueda Universidad Javeriana-Cali Programación por restriccionesclase 10-- p.1/23

2 Consistencia local Nodo consistencia Arco consistencia hiper-arco consistencia arco consistencia direccional Camino consistencia Camino consistencia direccional k-consistencia k-consistencia fuerte consistencia relacional Programación por restriccionesclase 10-- p.2/23

3 Nodo consistencia Un CSP es nodo consistente si para toda variable x, toda restricción unaria sobre x coincide con su dominio Ejemplos: Suponga que C no contiene restricciones unarias: < C, x 1 0,..., x n 0; x 1 N,..., x n N > es nodo consistente < C, x 1 0,..., x n 0; x 1 N,..., x n 1 N, x n Z > NO es nodo consistente NODO_CONS : < C; x D > < C; x C D > Programación por restriccionesclase 10-- p.3/23

4 Arco consistencia Una restricción C sobre x, y, con dominios X, Y (o sea, C X Y ) es arco consistente si a X b Y. (a, b) C b Y a X. (a, b) C un CSP es arco consistente si todas sus restricciones binarias lo son Ejemplos: < x < y; x [2.,6], y [3.,7] > es arco consistente < x < y; x [2.,7], y [3.,7] > no es arco consistente Programación por restriccionesclase 10-- p.4/23

5 Consideraciones Arco consistencia no implica consistencia Ejemplo: x = y, x y; x {a, b}, y {a, b} > Consistencia no implica arco consistencia Ejemplo: < x = y; x {a, b}, y {a} > Para algunos CSP s, arco consistencia SI implica consistencia Programación por restriccionesclase 10-- p.5/23

6 Reglas de prueba de AC AC1 : < C; x D x, y D y > < C; x D x, y D y > donde D x = {a D x b D y. (a, b) C} AC2 : < C; x D x, y D y > < C; x D x, y D y > donde D y = {b D y a D x. (a, b) C} NOTA: Un CSP es arco consistente ssi es cerrado bajo aplicación de AC1 y AC2 Programación por restriccionesclase 10-- p.6/23

7 Hiper-arco consistencia Una restricción C sobre x 1,..., x n, con dominios D 1,..., D n es hiper-arco consistente si i [1..n] a D i d C. a = d[x i ] un CSP es hiper-arco consistente si todas sus restricciones lo son Ejemplos: < x y = z; x = 1], y {0, 1}, z {0, 1} > es hiper-arco consistente < x y = z; x {0, 1}, y {0, 1}, z = 1 > no es hiper-arco consistente Programación por restriccionesclase 10-- p.7/23

8 Reglas de prueba de HAC HAC : < C; x 1 D 1,..., x n D n > < C;..., x i D i,... > donde C es restricción sobre x 1,..., x n y, para i [1..n], D i = {a D i d C. a = d[x i ]} NOTA: Un CSP es hiper-arco consistente ssi es cerrado bajo aplicación de HAC Programación por restriccionesclase 10-- p.8/23

9 Arco consistencia direccional Asumir un ordenamiento sobre las variables Una restricción C sobre x, y con dominios D x, D y es direccionalmente arco consistente c.ra. si a D x. b D y. (a, b) C, cuando x y b D y. a D x. (a, b) C, cuando y x Un CSP es arco consistente direccional si todas sus restricciones lo son. Ejemplo: < x < y; x [2.,7], y [3.,7] > es: NO arco consistente, direccionalmente arco consistente c.r.a. y x NO direccionalmente arco consistente c.r.a. x y Programación por restriccionesclase 10-- p.9/23

10 AC direccional (2) Definición: P es el problema P con las variables ordenadas de acuerdo a Ejemplo: Sea P el poblema x < y, y = z; x [2.,10], y [3.,7], z [3.,6] >, con y x z, entonces: P es: < y > x, y = z; y [3.,7], x [2.,10], z [3.,6] > NOTA: Un CSP P es direccionalmente arco consistente ssi el CSP P es cerrado bajo aplicación de la regla AC1 Programación por restriccionesclase 10-- p.10/23

11 Limitaciones de AC El problema: < x < y, y < z, z < x; x, y, z 1., > es inconsistente. Cuando se aplica AC1, se obtiene: < x < y, y < z, z < x; x 1.,99999, y, z 1., >, etc. Desventajas: Demasiados pasos El número de pasos depende del tamaño de los dominios Puede resolverse directamente: Usar transitividad de <. Camino consistencia generaliza este razonamiento a relaciones binarias arbitrarias. Programación por restriccionesclase 10-- p.11/23

12 CSP s normalizados Un CSP está normalizado si existe a lo sumo una restricción C x,y sobre x, y, para cada par de variables x, y. Para dos relaciones binarias R, S, recuerde que: R 1 = {(b, a) (a, b) R} (transposición) R; S = {(a, b) c. ((a, c) R (c, b) S} (composición) Programación por restriccionesclase 10-- p.12/23

13 Camino consistencia Un CSP normalizado es camino consistente si para cada subconjunto {x, y, z} de sus variables, se tiene que, C x,z C x,y ; C y,z De manera equivalente, un CSP normalizado es camino consistente ssi para cada subsecuencia x, y, z de sus variables: C x,y C x,z ; C 1 y,z C x,z C x,y ; C y,z C y,z C 1 x,y; C x,z Programación por restriccionesclase 10-- p.13/23

14 Camino consistencia: Ej < x < y, y < z, x < z; x [0.,4], y [1.,5], z [6.,10] > es camino consistente: C x,y = {(a, b) a < b, a [0.,4], b [1.,5]} C x,z = {(a, c) a < c, a [0.,4], c [6.,10]} C y,z = {(b, c) b < c, c [6.,10], b [1.,5]} Programación por restriccionesclase 10-- p.14/23

15 Camino consistencia: Ej2 < x < y, y < z, x < z; x [0.,4], y [1.,5], z [5.,10] > NO es camino consistente: C x,z = {(a, c) a < c, a [0.,4], c [5.,10]} y para 4 [0.,4] y 5 [5.,10], no hay b [1.,5] tal que 4 < b b < 5 Programación por restriccionesclase 10-- p.15/23

16 CC, Reglas CC1 : C x,y, C x,z, C y,z C x,y, C x,z, C y,z Donde C x,y = C x,y C x,z ; C 1 y,z CC2 : C x,y, C x,z, C y,z C x,y, C x,z, C y,z Donde C x,z = C x,z C x,y ; C y,z CC3 : C x,y, C x,z, C y,z C x,y, C x,z, C y,z Donde C y,z = C y,z C 1 x,y; C x,z Programación por restriccionesclase 10-- p.16/23

17 CC direccional Un CSP normalizado es direccionalmente camino consistente si para cada subconjunto {x, y, z} de sus variables, se tiene que, C x,z C x,y ; C y,z cuando x, z y De manera equivalente, un CSP normalizado es direccionalmente camino consistente ssi para cada subsecuencia x, y, z de sus variables: C x,y C x,z ; C 1 y,z cuando x, y z C x,z C x,y ; C y,z cuando x, z y C y,z C 1 x,y; C x,z cuando y, z x Programación por restriccionesclase 10-- p.17/23

18 CCD: Ej < x < y, y < z, x < z; x [0.,4], y [1.,5], z [5.,10] > Entonces, C x,y = {(a, b) a < b, a [0.,4], b [1.,5]} C x,z = {(a, c) a < c, a [0.,4], c [5.,10]} C y,z = {(b, c) b < c, c [5.,10], b [1.,5]} Es direccionalmente CC con respecto al orden en que x, y z Es direccionalmente CC con respecto al orden en que y, z x Un CSP es direccionalmente CC c.r.a ssi P es cerrado bajo aplicación de la regla CC1 Programación por restriccionesclase 10-- p.18/23

19 Instanciación Instanciación: Función que asigna un valor de su dominio a cada variable de un subconjunto de las variables de P Notación: {(x 1, d 1 ),..., (x k, d k )} La instanciación I = {(x 1, d 1 ),..., (x k, d k )} satisface C (sobre variables x 1,..., x k ) si (d 1,..., d k ) C Denotamos I Y, con Y dom(i), la restricción de I a Y I con dominio X es consistente si para toda restricción C (sobre variables Y, con Y X) de P, se tiene que I Y satisface C. Una I consistente, con k variables, se dice k-consistente. I es solución a P si es consistente y dom(i) = V ars(p) Programación por restriccionesclase 10-- p.19/23

20 Ejemplo Considere: P =< x < y, y < z, x < z; x [0.,4], y [1.,5], z [5.,10] > y sea I = {(x, 0), (y, 5), (z, 6)} I {x, y} = {(x, 0), (y, 5)} satisface x < y I {x, z} = {(x, 0), (z, 6)} satisface x < z I {y, z} = {(y, 5), (z, 6)} satisface y < z O sea que I es 3-consistente y solución a P Programación por restriccionesclase 10-- p.20/23

21 k consistencia Un CSP es 1-consistente si es nodo consistente Un CSP es k-consistente (para k > 1) si cada instanciación (k 1)-consistente puede extenderse a una instanciación k consistente, sin importar cuál nueva variable se escoja. Observar que: Un CSP nodo consistente es arco consistente si es 2-consistente Un CSP binario, normalizado y nodo consistente, es camino consistente si es 3-consistente Programación por restriccionesclase 10-- p.21/23

22 k consistencia (2) Existe un CSP que es (k 1)-consistente, pero no k-consistente < x y, x z, y z; x [0.,1], y [0.,1], z [0.,1] >, para k = 3 Existe un CSP que no es (k 1)-consistente, pero es k-consistente < x 1 x 2, x 1 x 3 ; x 1 {a, b}, x 2 = a, x 3 = a,...x k = a >, La instanciación (k 2)-consistente {(x 1, a), (x 4, a), (x 5, a),..., (x k, a) no puede extenderse, pero toda instanciación (k 1)-consistente es extendible. Programación por restriccionesclase 10-- p.22/23

23 Tarea implemente nodo, arco y camino consistencia. Pruebe los efectos de los anterior en SEND+MORE=MONEY Programación por restriccionesclase 10-- p.23/23

PRODUCTO CARTESIANO RELACIONES BINARIAS

PRODUCTO CARTESIANO RELACIONES BINARIAS PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Conjuntos y relaciones

Conjuntos y relaciones Conjuntos y relaciones Introducción Propiedades de las relaciones Sobre un conjunto Reflexivas Simétricas y transitivas Cerradura Relaciones de equivalencia Órdenes parciales Diagramas de Hasse Introducción

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la

Más detalles

Semántica de Primer Orden. Semántica de Primer Orden

Semántica de Primer Orden. Semántica de Primer Orden Para interpretar una fórmula de la lógica de predicados de primer orden: determinar qué objetos representan los términos (Dominio) definir las funciones y qué propiedades/relaciones representan los predicados

Más detalles

Funciones de Varias Variables

Funciones de Varias Variables Funciones de Varias Variables 1. Funciones de dos Variables Sea Ω un subconjunto del plano x, y, esto es Ω R 2. Una función real f de dosvariablesesunareglaqueasociaacadaparordenado (x,y) Ω unúniconúmeroreal

Más detalles

Álgebra Relacional. Unidad 5

Álgebra Relacional. Unidad 5 Álgebra Relacional Unidad 5 Definición Álgebra es un sistema matemático que está formado por: Operandos. Valores o variables con los cuáles se pueden construir nuevos valores o variables Operadores. Símbolos

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

Problemas de satisfacción de restricciones.

Problemas de satisfacción de restricciones. Problemas de satisfacción de restricciones. In whitch we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA

Tema IX: TOPOLOGÍA. Tema IX: TOPOLOGÍA Tema IX: TOPOLOGÍA IX.1. Distancia euclídea en R n. Propiedades Definición DEF. Dados x, y R n, se define la distancia euclídea como: d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2 + + (x n y n ) 2 = xy n = 1:

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

Representación basada en Restricciones

Representación basada en Restricciones Representación basada en Restricciones Asunción Gómez-Pérez asun@fi.upm.es Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo sn, 28660

Más detalles

Conjuntos, relaciones y funciones

Conjuntos, relaciones y funciones Conjuntos, relaciones y funciones Matemáticas Discretas para el Diseño Geométrico Teoría de conjuntos Representación y manipulación de grupos 2 1 Motivación Las nociones que estudiaremos constituyen fundamentos

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.

Más detalles

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS E. SÁEZ Una Ecuación Diferencial Partial (E.D.P.) de Primer Orden, en dos variables, es simplemente una expresión de la forma

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

Programación con Restricciones Constraint Programming

Programación con Restricciones Constraint Programming Programación con Restricciones Constraint Programming Introducción basada en Roman Barták: Guide to Constraint Programming http://kti.ms.mff.cuni.cz/~bartak/constraints/index.html Constraint Programming

Más detalles

Temario. Índices simples Árboles B Hashing

Temario. Índices simples Árboles B Hashing Temario Introducción y fundamentos Introducción a SQL Modelo Entidad / Relación Modelo relacional Diseño relacional: formas normales Consultas Cálculo relacional Álgebra relacional Implementación de bases

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Algebra Lineal: Aplicaciones a la Física

Algebra Lineal: Aplicaciones a la Física Algebra Lineal: Aplicaciones a la Física Resumen del curso 2014 para Lic. en Física (2 o año), Depto. de Física, UNLP. Prof.: R. Rossignoli 0. Repaso de estructuras algebraicas básicas Un sistema algebraico

Más detalles

Programación por restricciones clase 7

Programación por restricciones clase 7 Programación por restricciones clase 7 Camilo Rueda Universidad Javeriana-Cali Programación por restriccionesclase 7-- p.1/20 Resolvedores completos Son reglas que transforman CSP s < C; D > < C ; D >

Más detalles

OPERACIONES FUNDAMENTALES DEL ÁLGEBRA RELACIONAL. Bases de Datos Ingeniería de Sistemas y Computación Universidad Nacional de Colombia 2007

OPERACIONES FUNDAMENTALES DEL ÁLGEBRA RELACIONAL. Bases de Datos Ingeniería de Sistemas y Computación Universidad Nacional de Colombia 2007 OPERACIONES FUNDAMENTALES DEL ÁLGEBRA RELACIONAL Bases de Datos Ingeniería de Sistemas y Computación Universidad Nacional de Colombia 2007 Álgebra Relacional Álgebra Relacional El álgebra relacional es

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Funciones de dos variables. Gráficas y superficies.

Funciones de dos variables. Gráficas y superficies. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Funciones de dos variables. Gráficas y superficies. Puede ser conveniente la visualización en pantalla

Más detalles

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios

Más detalles

Restricciones. Inteligencia Artificial. Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Restricciones. Inteligencia Artificial. Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Restricciones Ingeniería Superior en Informática, 4º Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani 1 Tema 2: Agentes basados en Búsqueda Resumen: 2. Agentes basados en búsqueda

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

1. Definición y representaciones gráficas

1. Definición y representaciones gráficas Universidad Nacional de La Plata Facultad de Ciencias Exactas ANÁLISIS MATEMÁTICO II (CiBEx - Física Médica) 2014 Segundo Semestre GUÍA Nro. 3: FUNCIONES ESCALARES DE VARIAS VARIABLES 1. Definición y representaciones

Más detalles

Dep. Multivaluadas y Cuarta F.N.

Dep. Multivaluadas y Cuarta F.N. Dep. Multivaluadas y Cuarta F.N. Dependencia Multivaluada (dmv)» Idea intuitiva» Definición formal de dmv Dmv Trivial Reglas de inferencia para dfs y dmv Cuarta Forma Normal Descomposición con JSP (Propiedad)

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES Ing. Juan Sacerdoti Facultad de Ingeniería Departamento de Matemática Universidad de Buenos Aires 2002 V 2.01 INDICE 4.- RELACIONES Y FUNCIONES 4.1.- PAR ORDENADO (PO) 4.1.1.- DEFINICIÓN

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

Números Reales y Fundamentos de Álgebra

Números Reales y Fundamentos de Álgebra CONARE Proyecto RAMA Números Reales y Fundamentos de Álgebra Master Pedro Díaz Navarro Temas de pre-cálculo Enero 2007 Master. Pedro Díaz Navarro 31 de julio de 2007 Índice 1. Los Números Reales 1 1.1.

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Para manipular relaciones completas, el álgebra relacional proporciona una serie de operadores que podemos clasificar en:

Para manipular relaciones completas, el álgebra relacional proporciona una serie de operadores que podemos clasificar en: 1.4 ÁLGEBRA RELACIONAL El modelo relacional lleva asociado a su parte estática, estructura y restricciones) una dinámica que permite la transformación entre estados de la BD. Esta transformación de un

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Teoría formal de la normalización de esquemas relacionales. Definición formal de las tres primeras Formas Normales

Teoría formal de la normalización de esquemas relacionales. Definición formal de las tres primeras Formas Normales Teoría formal de la normalización de esquemas relacionales. Definición formal de las tres primeras Formas Normales Normalización de esquemas relacionales Motivación Sea la BD de proveedores y partes, con

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

MER MR Bases de Datos

MER MR Bases de Datos Those who are enamored of practice without theory are like a pilot who goes into a ship without rudder or compass and never has any certainty where he is going. Practice should always be based on a sound

Más detalles

Razonamiento. con. Restricciones. Esquema Global. Tutorial IBERAMIA 2002. 1. Introducción - Definiciones - Ejemplos

Razonamiento. con. Restricciones. Esquema Global. Tutorial IBERAMIA 2002. 1. Introducción - Definiciones - Ejemplos Esquema Global Razonamiento con Restricciones Tutorial IBERAMIA 2002 Javier Larrosa Dep. LSI, UPC, Barcelona Pedro Meseguer IIIA, CSIC, Bellaterra 1. Introducción - Definiciones - Ejemplos 2. Métodos de

Más detalles

Hoja de Problemas Tema 6 Búsqueda con estados estructurados: Restricciones

Hoja de Problemas Tema 6 Búsqueda con estados estructurados: Restricciones Ejercicio 1: 1.1. Si se resuelve un problema de satisfacción de restricciones mediante búsqueda con asignaciones parciales, entonces (a) (b) (c) (d) (e) Un estado siempre asigna un valor a todas las variables

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Algoritmos para CSP 1

Algoritmos para CSP 1 Algoritmos para CSP 1 1. Técnicas de Consistencia, o Inferenciales I. Inferencia, o consistencia completa Proceso que permite la síntesis de todas las restricciones de un problema en una única restricción

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Tema 3. El modelo Relacional

Tema 3. El modelo Relacional Tema 3. El modelo Relacional Juan Ignacio Rodríguez de León Resumen Presenta el modelo entidad-relación. Visión de alto nivel de las cuestiones referentes a diseño de bases de datos y los problemas encontrados

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA

GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA E. SÁEZ En general los textos de Cálculo, por ejemplo en [1,2,3,4], introducen el Teorema de la Función Implícita bajo el punto de vista del Análisis y su

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

1 FUNCIONES DE R N EN R.

1 FUNCIONES DE R N EN R. 1 FUNCIONES DE R N EN R. 1. Idea de función. Si A R N, una función f : A R es una regla que asigna a cada punto x A un número f( x ) R. Ejemplos: Si x R 2 podemos considerar la función f( x )=(distancia

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA

GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA UNIDAD EDUCATIVA COLEGIO LOS PIRINEOS DON BOSCO INSCRITO EN EL M.P.P.L N S991D03 RIF: J-09009977-8 GUIA DE EJERCICIOS MATEMATICA 5to LINEA RECTA - CIRCUNFERENCIA Asignatura: Matemática Año Escolar: 013-014

Más detalles

Funciones de varias variables: problemas resueltos

Funciones de varias variables: problemas resueltos Funciones de varias variables: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Integrales dobles. Integrales dobles

Integrales dobles. Integrales dobles Integrales dobles Integrales iteradas b g2 (x) a g 1 (x) f(x, y) dydx ó d h2 (y) c h 1 (y) f(x, y) dxdy Los límites interiores de integración pueden ser variables respecto a la variable exterior de integración,

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

EL TEOREMA DE CANTOR-BERNSTEIN Y LA COMPARABILIDAD PARA LOS CONJUNTOS BIEN ORDENADOS

EL TEOREMA DE CANTOR-BERNSTEIN Y LA COMPARABILIDAD PARA LOS CONJUNTOS BIEN ORDENADOS EL TEOREMA DE CANTOR-BERNSTEIN Y LA COMPARABILIDAD PARA LOS CONJUNTOS BIEN ORDENADOS J. CLIMENT VIDAL Resumen. Una vez definidas las nociones y establecidas las proposiciones necesarias de la teoría de

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Tema 3: Problemas de Satisfacción de Restricciones

Tema 3: Problemas de Satisfacción de Restricciones Tema 3: Problemas de Satisfacción de Restricciones Universidad de Granada Tema 3: Satisfacción de Restricciones Contenido Problemas de satisfacción de restricciones Métodos de búsqueda Búsqueda local para

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES

1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES Capítulo 1 SISTEMAS DE ECUACIONES LINEALES Y MATRICES 1.1 INTRODUCCIÓN Este libro trata del álgebra lineal. Al buscar la palabra lineal en el diccionario se encuentra, entre otras definiciones, la siguiente:

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

Lógica de Predicados de Primer Orden

Lógica de Predicados de Primer Orden Lógica de Predicados de Primer Orden La lógica proposicional puede ser no apropiada para expresar ciertos tipos de conocimiento. Por ejemplo: Algunas manzanas son rojas Esta afirmación no se refiere específicamente

Más detalles

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia.

Haydee Jiménez Tafur Grupo de Algebra. Universidad Pedagógica Nacional Estudiante de maestría en Matemáticas. Universidad Nacional de Colombia. "Otras Alternativas Para La Definición De Relación En Teoría De Conjuntos" Carlos Julio Luque Arias Profesor Universidad Pedagógica Nacional Grupo de Algebra. Universidad Pedagógica Nacional Haydee Jiménez

Más detalles

Sistemas de Bases de Datos I. Modelo Lógico Modelo Relacional

Sistemas de Bases de Datos I. Modelo Lógico Modelo Relacional Sistemas de Bases de Datos I Modelo Lógico Modelo Relacional Modelo Lógico Modelo Relacional Esquema Relacional (E- R) Es la representación de un DER mediante tablas. Algebra Relacional Modelo Relacional

Más detalles

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por.

{} representa al conjunto vacío, es decir, aquel que no contiene elementos. También se representa por. 2. Nociones sobre Teoría de Conjuntos y Lógica Para llevar a cabo nuestro propósito de especificar formalmente los problemas y demostrar rigurosamente la correctitud de nuestro programas, introduciremos

Más detalles

Algebra Lineal XIII: Operaciones con Transformaciones Lineales.

Algebra Lineal XIII: Operaciones con Transformaciones Lineales. Algebra Lineal XIII: Operaciones con Transformaciones Lineales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

1 Función real de dos variables reales

1 Función real de dos variables reales Cálculo Matemático. Tema 10 Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 10: Funciones de dos variables. Curso 008-09 1 Función real de dos variables reales Hasta el momento

Más detalles

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I

UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I UNIVERSIDAD ESTATAL A DISTANCIA VICERRECTORÍA ACADÉMICA DIRECCIÓN DE EXTENSIÓN TÉCNICO UNIVERSITARIO EN COMPUTACIÓN E INFORMÁTICA GUÍA DE ESTUDIO MATEMÁTICA PARA INFORMÁTICA I CÓDIGO 50287 Elaborada por

Más detalles

Clase 8 Sistemas de ecuaciones lineales

Clase 8 Sistemas de ecuaciones lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Considere el siguiente sistema de dos ecuaciones lineales con dos incógnitas x e y:

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles