SISTEMAS DE ECUACIONES LINEALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE ECUACIONES LINEALES"

Transcripción

1 SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas que sirven para encontrar soluciones de sistemas de ecuaciones. Normalmente estos temas tienen procesos largos y por ello son ideales para programar por computadora y no solamente para hacerlos sobre el papel. Programar estos temas permite incluso obtener una mejor comprensión de la teoría aquí presentada. DESCOMPOSICIÓN LU Su nombre se deriva de las palabras inglesas Lower" y Upper, que en español se traducen como Inferior y Superior. Estudiando el proceso que se sigue en la descomposición LU es posible comprender el por qué de este nombre, analizando cómo una matriz original se descompone en dos matrices triangulares, una superior y otra inferior. La descomposición LU involucra solo operaciones sobre los coeficientes de la matriz [A], proporcionando un medio eficiente para calcular la matriz inversa o resolver sistemas de álgebra lineal. Primeramente se debe obtener la matriz [L] y la matriz [U]. [L] es una matriz diagonal inferior con números 1 sobre la diagonal. [U] es una matriz diagonal superior en la que sobre la diagonal no necesariamente tiene que haber números 1. El primer paso es descomponer o transformar [A] en [L] y [U], es decir obtener la matriz triangular inferior [L] y la matriz triangular superior [U]. 1

2 PASOS PARA ENCONTRAR LA MATRIZ TRIANGULAR SUPERIOR (MATRIZ [U]) 1. Hacer cero todos los valores abajo del pivote sin convertir este en Para lograr lo anterior se requiere obtener un factor el cual es necesario para convertir a cero los valores abajo del pivote. 3. Dicho factor es igual al número que se desea convertir en cero entre el número pivote. 4. Este factor multiplicado por -1 se multiplica luego por el pivote y a ese resultado se le suma el valor que se encuentra en la posición a cambiar (el valor en la posición que se convertirá en cero). Esto es: - factor * pivote + posición a cambiar PASOS PARA ENCONTRAR LA MATRIZ TRIANGULAR INFERIOR (MATRIZ [L]) Para encontrar la matriz triangular inferior se busca hacer ceros los valores de arriba de cada pivote, así como también convertir en 1 cada pivote. Se utiliza el mismo concepto de factor explicado anteriormente y se ubican todos los factores debajo de la diagonal según corresponda en cada uno. Esquemáticamente se busca lo siguiente: Debido a que [A] = [L][U], al encontrar [L] y [U] a partir de [A] no se altera en nada la ecuación y se tiene lo siguiente: Por lo tanto, si Ax = b, entonces LUx = b, de manera que Ax = LUx = b. 2

3 PASOS PARA RESOLVER UN SISTEMA DE ECUACIONES POR EL MÉTODO DE DESCOMPOSICIÓN LU 1. Obtener la matriz triangular inferior L y la matriz triangular superior U. 2. Resolver Ly = b (para encontrar y). 3. El resultado del paso anterior se guarda en una matriz nueva de nombre y. 4. Realizar Ux = y (para encontrar x). 5. El resultado del paso anterior se almacena en una matriz nueva llamada x, la cual brinda los valores correspondientes a las incógnitas de la ecuación. EJEMPLO 1 DE DESCOMPOSICIÓN LU PROBLEMA: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: NOTA: Recuérdese que si la matriz es 2x2 se hará 1 iteración; si es 3x3, 2 iteraciones; si es 4x4, 3 iteraciones; y así sucesivamente. SOLUCIÓN: ITERACIÓN 1 factor 1 = (a21 / a11) = 5 / 4 = 1.25 factor 2 = (a31 / a11) = 1 / 4 = 0.25 Encontrando [U] fila 2 = - (factor 1) * (fila 1) + (fila 2) fila 3 = - (factor 2) * (fila 1) + (fila 3) a11 = a11 a12 = a12 a13 = a13 a21 = - (1.25) * (4) + (5) = 0 a22 = - (1.25) * (- 2) + (1) = 3.5 a23 = - (1.25) + (- 1) + (- 1) = 0.25 a31 = - (0.25) * (4) + (1) = 0 a32 = - (0.25) * (- 2) + (2) = 2.5 a33 = - (0.25) * (- 1) + (- 1) =

4 Encontrando [L] ITERACIÓN 2 factor 3 = (u32 / u22) = 2.5 / 3.5 = Encontrando [U] fila 3 = - (factor 3) * (fila 2) + (fila 3) a31 = - (2.5 / 3.5) * (0) + (0) = 0 a32 = - (2.5 / 3.5) * (3.5) + (2.5) = 0 a33 = - (2.5 / 3.5) * (0.25) + (- 0.75) = Encontrando [L] Ahora ya se tiene la matriz [U] y la matriz [L]. El siguiente paso es resolver Ly = b para encontrar la matriz y. En pocas palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de y1, y2 y y3: Al resolver el sistema anterior, se obtienen los siguientes valores para y1, y2 y y3: 4

5 El último paso es resolver Ux = y para encontrar la matriz x. En otras palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de x1, x2 y x3: La solución del sistema es: Este es finalmente el valor de x1, x2 y x3; es decir, la respuesta del ejercicio utilizando la descomposición LU. EJEMPLO 2 DE DESCOMPOSICIÓN LU PROBLEMA: Encontrar los valores de x1, x2 y x3 para el siguiente sistema de ecuaciones: SOLUCIÓN: ITERACIÓN 1 factor 1 = (a21 / a11) = 5/11 = factor 2 = (a31 / a11) = 4/11 = Encontrando [U] fila 2 = - (factor 1) * (fila 1) + (fila 2) 5

6 fila 3 = - (factor 2) * (fila 1) + (fila 3) a11 = a11 a12 = a12 a13 = a13 a21 = - ( ) * (11) + (5) = 0 a22 = - ( ) * (- 3) + (- 2) = a23 = - ( ) + (- 2) + (- 8) = a31 = - ( ) * (11) + (4) = 0 a32 = - ( ) * (- 3) + (- 7) = a33 = - ( ) * (- 2) + (2) = Encontrando [L] ITERACIÓN 2 factor 3 = (u32/u22) = / = Encontrando [U] fila 3 = - (factor 3) * (fila 2) + (fila 3) a31 = - ( ) * (0) + (0) = 0 a32 = - ( ) * ( ) + ( ) = 0 a33 = - ( ) * ( ) + ( ) = Encontrando [L] Ahora ya se tiene la matriz [U] y la matriz [L]. El siguiente paso es resolver Ly = b para encontrar la matriz y. En pocas palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de y1, y2 y y3: 6

7 Al resolver el sistema anterior, se obtienen los siguientes valores para y1, y2 y y3: El último paso es resolver Ux = y para encontrar la matriz x. En otras palabras es como que se pidiera resolver el siguiente sistema de ecuaciones, encontrando los valores de x1, x2 y x3: La solución del sistema es: Este es finalmente el valor de x1, x2 y x3; es decir, la respuesta del ejercicio utilizando la descomposición LU. MÉTODO DE GAUSS-SEIDEL El método de Gauss-Seidel es un método iterativo y por lo mismo resulta ser bastante eficiente. Se comienza planteando el sistema de ecuaciones con el que se va a trabajar: De la ecuación 1 despejar x1, de la ecuación 2 despejar x2,, de la ecuación n despejar xn. Esto da el siguiente conjunto de ecuaciones: 7

8 Este último conjunto de ecuaciones son las que forman las fórmulas iterativas con las que se va a estar trabajando. Para comenzar el proceso iterativo, se le da el valor de cero a las variables x2,, xn; esto dará un primer valor para x1. Más precisamente, se tiene que: Enseguida, se sustituye este valor de x1 en la ecuación 2, y las variables x3,, xn siguen teniendo el valor de cero. Esto da el siguiente valor para x2: Estos últimos valores de x1 y x2, se sustituyen en la ecuación 3, mientras que x4,, xn siguen teniendo el valor de cero; y así sucesivamente hasta llegar a la última ecuación. Todo este paso arrojará una lista de primeros valores para las incógnitas, la cual conforma el primer paso en el proceso iterativo. Para una mejor comprensión esto se simbolizará de esta forma: Se vuelve a repetir el proceso, pero ahora sustituyendo estos últimos datos en vez de ceros como al inicio. Se obtendrá una segunda lista de valores para cada una de las incógnitas, lo cual se simbolizará así: En este momento se pueden calcular los errores aproximados relativos, respecto a cada una de las incógnitas. La lista de errores se presenta a continuación: El proceso se vuelve a repetir hasta que: donde se debe prefijar convenientemente. 8

9 EJEMPLO 1 DEL MÉTODO DE GAUSS-SEIDEL PROBLEMA: Usar el método de Gauss-Seidel para aproximar la solución del sistema: hasta que: SOLUCIÓN: Primero se despejan las incógnitas x1, x2 y x3 de las ecuaciones 1, 2 y 3 respectivamente. Se tiene: Estas últimas son el juego de fórmulas iterativas que se estará utilizando. Puesto que todavía no se puede calcular ningún error aproximado, se repite el proceso pero ahora con los últimos datos obtenidos para las incógnitas: Es así como se tiene la segunda lista de valores de aproximación a la solución del sistema: 9

10 Ahora se pueden calcular los errores absolutos para cada una de las incógnitas: Puesto que no se ha logrado el objetivo, se debe repetir el mismo proceso con los últimos valores obtenidos de cada una de las incógnitas. Nótese que aunque el error aproximado ya cumple con ser menor al 1%, esto se debe cumplir para los tres errores aproximados. Por lo tanto se repite el mismo proceso. Omitiendo los pasos intermedios, se obtiene: En este caso se tienen los siguientes errores aproximados: Se puede observar que ahora se ha cumplido el objetivo para cada uno de los errores aproximados. Por lo tanto, se concluye que la solución aproximada es: Importante observación respecto al método de Gauss-Seidel: Es lógico preguntarse si siempre el método de Gauss-Seidel converge a la solución del sistema de ecuaciones y también es lógico esperar que la respuesta es NO. Un resultado de Análisis numérico da una condición suficiente para la convergencia del método. Teorema: El método de Gauss-Seidel converge a la solución del sistema si se cumple la condición de que la matriz de coeficientes del sistema sea una matriz diagonalmente dominante, es decir, si se cumple la siguiente condición: La condición de ser una matriz diagonalmente dominante simplemente significa que los elementos de la diagonal son mayores (en valor absoluto) que la suma de los valores absolutos de los demás elementos del mismo renglón. Nótese 10

11 que en el ejemplo anterior, la matriz sí es diagonalmente dominante y por lo tanto, el método de Gauss-Seidel sí converge a la solución del sistema. Sin embargo, la condición de la matriz diagonalmente dominante, solamente es una condición suficiente pero no necesaria, es decir, existen sistemas de ecuaciones que no cumplen con la condición y que sí convergen a la solución y también existen sistemas de ecuaciones que no cumplen con la condición y que no convergen a la solución. Finalmente, obsérvese que aunque un sistema no cumpla con la condición de ser diagonalmente dominante, es posible a veces, lograr que sí se cumpla con esta condición mediante un intercambio de renglones, como se verá en el siguiente ejemplo: EJEMPLO 2 DEL MÉTODO DE GAUSS-SEIDEL PROBLEMA: Usar el método de Gauss-Seidel para aproximar la solución del sistema: SOLUCIÓN: En este caso se puede observar que el sistema no es diagonalmente dominante, lo cual se comprueba con los siguientes cálculos: Primera fila: a11 > ( a12 + a13 ) 5 > ( ) 5 > 4.1; es cierto. La condición se cumple para la primera fila. Segunda fila: a22 > ( a21 + a23 ) 2.5 > ( ) 2.5 > 15.7; no es cierto. La condición no se cumple para la segunda fila. a33 > ( a31 + a32 ) 4.4 > ( ) 4.4 > 14.3; no es cierto. La condición no se cumple para la tercera fila. Para que el sistema sea diagonalmente dominante, la condición debe cumplirse para todas las filas. Por lo tanto, el sistema anterior no es diagonalmente dominante. NOTA: Recuérdese que la diagonal principal está compuesta por a11, a22 y 11

12 a33. Sin embargo, al hacer el intercambio del renglón 2 por el renglón 3, se tiene el siguiente sistema: En este caso se puede observar que el sistema sí es diagonalmente dominante, lo cual se comprueba con los siguientes cálculos: Primera fila: a11 > ( a12 + a13 ) 5 > ( ) 5 > 4.1; es cierto. La condición se cumple para la primera fila. Segunda fila: a22 > ( a21 + a23 ) 11 > ( ) 11 > 7.7; es cierto. La condición se cumple para la segunda fila. a33 > ( a31 + a32 ) 15 > ( ) 15 > 3.2; es cierto. La condición se cumple para la tercera fila. Para que el sistema sea diagonalmente dominante, la condición debe cumplirse para todas las filas. En este caso efectivamente la condición se cumple para todas las filas, por lo cual el sistema anterior es diagonalmente dominante. Por lo tanto se procede a despejar x1, x2 y x3 de las ecuaciones 1, 2 y 3 respectivamente: Se comienza el proceso iterativo sustituyendo los valores de x2 = 0 x3 = 0 en la ecuación 1 para obtener x1: Ahora se sustituye x1 = y x3 = 0 en la ecuación 2 para obtener x2: Por lo tanto los valores obtenidos en la primera iteración son: 12

13 Puesto que sólo se tiene la primera aproximación de la solución del sistema, se debe seguir avanzando en el proceso iterativo. Sustituyendo x2 = y x3 = en la ecuación 1, se obtiene x1 = ; sustituyendo x1 = y x3 = en la ecuación 2, se obtiene x2 = ; sustituyendo x1 = y x2 = en la ecuación 3, se obtiene x3 = Por lo tanto, la segunda aproximación es: Ahora se pueden calcular los errores aproximados para cada una de las incógnitas: Puesto que no se ha cumplido el objetivo, se debe seguir avanzando en el proceso iterativo. Se resumen los resultados de esta manera: Tercera iteración: Cuarta iteración: Así, el objetivo se ha logrado hasta la cuarta iteración y se tiene que los valores aproximados de la solución del sistema son: 13

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES

1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES 1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES OBJETIVO.- Conocer y manejar las operaciones definidas entre funciones así como conocer la clasificación de éstas y sus características. 1.6.1.- Operaciones

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo

SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo SISTEMAS NUMERICOS SISTEMAS NUMERICOS Si bien el sistema de numeración binario es el más importante de los sistemas digitales, hay otros que también lo son. El sistema decimal es importante porque se usa

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

Las Tasas de Interés Efectiva y Nominal

Las Tasas de Interés Efectiva y Nominal 1 Las Tasas de Interés Efectiva y Nominal En el presente documento se explican los diferentes tipos de tasas de interés que normalmente se utilizan en el mercado financiero. Inicialmente veremos la diferencia

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología.

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología. Aplicaciones de las Matrices a la Solución de Problemas de Redes Eléctricas Resumen Se muestra como obtener, sistemas de ecuaciones lineales que permitan calcular intensidades de corrientes en los ramales

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

4 Pruebas y análisis del software

4 Pruebas y análisis del software 4 Pruebas y análisis del software En este capítulo se presentan una serie de simulaciones donde se analiza el desempeño de ambos sistemas programados en cuanto a exactitud con otros softwares que se encuentran

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

UNIDAD 4 PROCESOS DE MARKOV

UNIDAD 4 PROCESOS DE MARKOV UNIDAD 4 PROCESOS DE MARKOV Anteriormente se han cubierto modelos estáticos, esto es, modelos cuyos parámetros permanecen sin cambio a través del tiempo. Con excepción de programación dinámica donde se

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR

EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR er. Grado Universidad de La Punta Consideraciones Generales: En este año es necesario realizar un trabajo específico que favorezca la construcción

Más detalles

Apéndice Álgebra lineal con wxmaxima

Apéndice Álgebra lineal con wxmaxima Apéndice Álgebra lineal con wxmaxima Objetivos 1. Definir matrices con wxmaxima. 2. Aplicar con wxmaxima operaciones con matrices. 3. Aplicar transformaciones elementales de matrices. 4. Calcular el determinante

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJECICIO Nº Páginas OPTATIVIDAD: EL ALUMNO DEBEÁ ESCOGE UNA DE LAS DOS OPCIONES

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

1. Lección 5 - Comparación y Sustitución de capitales

1. Lección 5 - Comparación y Sustitución de capitales Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Sistemas de ecuaciones lineales. Métodos iterativos

Sistemas de ecuaciones lineales. Métodos iterativos Lección F Sistemas de ecuaciones lineales. Métodos iterativos Los métodos iterativos tienen la desventaja de que no se pueden aplicar, por lo menos de forma elemental, a cualquier sistema de ecuaciones

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1)

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1) EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte ) ELABORADO POR: RICARDO DOMÍNGUEZ GARCÍA IET 70 ACADEMIA DE MATEMÁTICAS ESCUELA DE INGENIERÍA EN COMPUTACIÓN Y ELECTRÓNICA UNIVERSIDAD DE LA SALLE

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES

MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES CAPÍTULO 4 EJERCICIOS RESUELTOS: MÉTODOS DIRECTOS PARA LA RESOLUCIÓN DE ECUACIONES ALGEBRAICAS LINEALES Ejercicios resueltos 1 1. Determine el número de operaciones aritméticas necesarias para calcular

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría 2 Matrices 1. Tipos de matrices Piensa y calcula Escribe en forma de tabla el siguiente enunciado: «Una familia gasta en enero 400 en comida y 150 en vestir; en febrero, 500 en comida y 100 en vestir;

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles