Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D."

Transcripción

1 Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real. f : D x f(x) = y El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. El número x perteneciente al dominio de la función recibe el nombre de variable independiente. Al número, y, asociado por f al valor x, se le llama variable dependiente. La imagen de x se designa por f(x). Luego y= f(x) Se denomina recorrido de una función al conjunto de los valores reales que toma la variable y o f(x). x Conjunto inicial Dominio Conjunto final Conjunto imagen o recorrido 1

2 El dominio es el conjunto de elementos que tienen imagen. D = {x / f (x)} El recorrido es el conjunto de elementos que son imágenes. R = {f (x) / x D} Dominio de una función El dominio es el conjunto de elementos que tienen imagen. D = {x / f (x)} Conjunto inicial Dominio Conjunto final Conjunto imagen o recorrido Estudio del dominio de una función Dominio de la función polinómica entera El dominio es R, cualquier número real tiene imagen. f(x)= x 2-5x + 6 D=R Dominio de la función racional El dominio es R menos los valores que anulan al denominador (no puede existir un número cuyo denominador sea cero). 2

3 Dominio de la función irracional de índice impar El dominio es R. Dominio de la función irrracional de índice par El dominio está formado por todos los valores que hacen que el radicando sea mayor o igual que cero. 3

4 Dominio de la función logarítmica El dominio está formado por todos los valores que hacen que el radicando sea mayor que cero. Dominio de la función exponencial El dominio es R. Dominio de la función seno El dominio es R. Dominio de la función coseno El dominio es R. Dominio de la función tangente Dominio de la función cotangente 4

5 Dominio de la función secante Dominio de la función cosecante Dominio de operaciones con funciones Si realizamos operaciones con funciones, el dominio de la función resultante será: 5

6 Gráfica de funciones Si f es una función real, a cada par (x, y) = (x, f(x)) determinado por la función f le corresponde en el plano cartesiano un único punto P(x, y) = P(x, f(x)). El valor de x debe pertenecer al dominio de definición de la función. Como el conjunto de puntos pertenecientes a la función es ilimitado, se disponen en una tabla de valores algunos de los pares correspondientes a puntos de la función. Estos valores, llevados sobre el plano cartesiano, determinan puntos de la gráfica. Uniendo estos puntos con línea continua se obtiene la representación gráfica de la función. x f(x) Grafo de una función Grafo de una función es el conjunto de pares formados por los valores de la variable y sus imágenes correspondientes. G(f) = {x, f(x) /x D(f)} 6

7 Sistema de coordenadas cartesianas Un sistema de coordenadas cartesianas es un par de rectas graduadas, perpendiculares, que se cortan en un punto O(0,0), llamado origen de coordenadas. A la recta horizontal se llama eje de abscisas, y a su perpendicular por O, eje de ordenadas. Se puede representar una función en el plano haciendo corresponder a cada par del grafo un punto determinado, marcando en el eje de abscisas el valor de su variable y en el de ordenadas, su correspondiente imagen. Composición de funciones Si tenemos dos funciones: f(x) y g(x), de modo que el dominio de la 2ª esté incluido en el recorrido de la 1ª, se puede definir una nueva función que asocie a cada elemento del dominio de f(x) el valor de g[f(x)]. (g o f) (x) = g [f(x)] = g (2x) = 3 (2x) +1 = 6x + 1 (g o f) (1) = = 7 Dominio D (g o f) = {x D f / f(x) D g } Propiedades Asociativa: f o (g o h) = (f o g) o h No es conmutativa. 7

8 f o g g o f El elemento neutro es la función identidad, i(x) = x. f o i = i o f = f Ejemplo: Sean las funciones: 8

9 Función inversa o recíproca Se llama función inversa o reciproca de f a otra función f 1 que cumple que: Si f(a) = b, entonces f 1 (b) = a. Podemos observar que: El dominio de f 1 es el recorrido de f. El recorrido de f 1 es el dominio de f. Si queremos hallar el recorrido de una función tenemos que hallar el dominio de su función inversa. Si dos funciones son inversas su composición es la función identidad. f o f -1 = f -1 o f = x Las gráficas de f y f -1 son simétricas respecto de la bisectriz del primer y tercer cuadrante. 9

10 Hay que distinguir entre la función inversa, f 1 (x), y la inversa de una función,. Cálculo de la función inversa 1Se escribe la ecuación de la función con x e y. 2Se despeja la variable x en función de la variable y. 3Se intercambian las variables. Calcular la función inversa de: 10

11 Vamos a comprobar el resultado para x = 2 Calculamos ahora la inversa de: La inversa de: Estudio de una función Crecimiento y decrecimiento: Tasa de variación El incremento de una función se llama tasa de variación, y mide el cambio de la función al pasar de un punto a otro. La tasa de variación es: T.V.= f(x+h) - f(x) 11

12 Función estrictamente creciente f es estrictamente creciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple: La tasa de variación es positiva. Función creciente f es creciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple: 12

13 La tasa de variación es positiva o igual a cero. Función estrictamente decreciente f es estrictamente decreciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple: La tasa de variación es negativa. Función decreciente 13

14 f es decreciente en a si sólo si existe un entorno de a, tal que para toda x que pertenezca la entorno de a se cumple: La tasa de variación es negativa o igual a cero. Función acotada superiormente Funciones acotadas Una función f está acotada superiormente si existe un número real k tal que para toda x es f(x) k. El número k se llama cota superior. k=0.135 Función acotada inferiormente Una función f está acotada inferiormente si existe un número real ktal que para toda x es f(x) k. El número k se llama cota inferior. 14

15 k = 2 Función acotada Una función esta acotada si lo está a superior e inferiormente. k f(x) k k = ½ k = -½ Máximos y mínimos absolutos y relativos Máximo absoluto Una función tiene su máximo absoluto en el x = a si la ordenada es mayor o igual que en cualquier otro punto del dominio de la función. a = 0 15

16 Mínimo absoluto Una función tiene su mínimo absoluto en el x = b si la ordenada es menor o igual que en cualquier otro punto del dominio de la función. b = 0 Máximo y mínimo relativo Una función f tiene un máximo relativo en el punto a, si f(a) es mayor o igual que los puntos próximos al punto a. Una función f tiene un mínimo relativo en el punto b, si f(b) es menor o igual que los puntos próximos al punto b. a = 3.08 b =

17 Funciones simétricas Simetría respecto del eje de ordenadas. Función par Una función f es simétrica respecto del eje de ordenadas cuando para todo x del dominio se verifica: f( x) = f(x) Las funciones simétricas respecto del eje de ordenadas reciben el nombre de funciones pares. Simetría respecto al origen. Función impar Una función f es simétrica respecto al origen cuando para todo x del dominio se verifica: f( x) = f(x) Las funciones simétricas respecto al origen reciben el nombre de funciones impares. 17

18 Funciones periódicas Una función f(x) es periódica, de período T, si para todo número entero z, se verifica: f(x) = f(x + zt) La función f(x) = sen x es periódica de periodo 2π, ya que cumple que: sen (x + 2π) = sen x La función f(x) = tg x es periódica de periodo π, ya que cumple que: tg (x + π) = tg x 18

19 La función mantisa, f(x) = x - E(x), es periódica de periodo 1. Si tenemos una función periódica f(x) de periodo T, la función g(x) = f(kx) tiene de periodo: Ejemplos: Hallar el periodo de las funciones: 1f(x) = sen 2x 2f(x) = tg (1/2)x 3f(x) = E (1/2)x 19

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Tema 5: Funciones. Tema 5: Funciones. Funciones reales de variable real. Dominio y recorrido. Crecimiento. Concavidad. Extremos.

Tema 5: Funciones. Tema 5: Funciones. Funciones reales de variable real. Dominio y recorrido. Crecimiento. Concavidad. Extremos. Tema 5: Funciones Gráfica Enunciado Fórmula Tabla Composición de funciones Función inversa Traslaciones Simetrías se expresan mediante operaciones Funciones reales se clasifican en características Algebraicas

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

Funciones. Capítulo 1

Funciones. Capítulo 1 Capítulo Funciones En la base de muchos modelos matemáticos se halla el concepto de función. La descripción de un fenómeno que evoluciona con respecto al tiempo se realiza generalmente mediante una función

Más detalles

CUADERNO DE TRABAJO 2

CUADERNO DE TRABAJO 2 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 2 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: Continuamos con el

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3 0 FUNCINES EJERCICIS PRPUESTS 0. Halla el dominio y el recorrido de estas funciones. a) f () b) g() c) h() a) D(f) R; Recorrido (f) R b) D(g) R; Recorrido (g) [0, ) c) D(h) R; Recorrido (h) R 0. 0. Calcula

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Trigonometría Hiperbólica

Trigonometría Hiperbólica Trigonometría Hiperbólica Carlos Enrique Pino G R N u (0, b M R(x, y b F ( c, 0 V 0 V F (c, 0 b L M u (0, b N L Un gran descubrimiento resuelve un gran problema, pero en la solución de cualquier problema

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 08: FUNCIONES. 1. Correspondencia.. Funciones. 3. Representación

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

senx cos x función se indefine cuando cos x 0 lo cual permite establecer su dominio.

senx cos x función se indefine cuando cos x 0 lo cual permite establecer su dominio. DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICS Ejemplos Si es el punto en la circunferencia trigonométrica asociado a 8 x calcule el valor de la expresión sec x csc x Solución Del punto asociado a x se deducen

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

Conceptos básicos de Matemática. Recopilación de materiales

Conceptos básicos de Matemática. Recopilación de materiales Conceptos básicos de Matemática de materiales 23 de abril de 202 Índice general. Conceptos elementales del lenguaje algebraico 7.. Conjuntos, elementos y pertenencia........................ 7... Operaciones

Más detalles

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 República de Costa Rica Ministerio de Educación Pública PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 Basado en los programas de estudio en Matemáticas aprobados por el Consejo Superior de Educación

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo:

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo: --ÍNDICE-- Trigonometría 5 Razones trigonométricas 5 Coordenadas trigonométricas de un punto del plano 5 Consecuencias de esta fórmula 5 Razones exactas de ángulos 6 Otras fórmulas 6 Aplicaciones de la

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

FUNCIONES TRIGONOMÉTRICAS

FUNCIONES TRIGONOMÉTRICAS UNIDAD 3 FUNCIONES TRIGONOMÉTRICAS Concepto clave: 1. Razones trigonométricas Si A es un ángulo interior agudo de un triángulo rectángulo y su medida es, entonces: sen longitud del cateto opuesto al A

Más detalles

Funciones Reales en una Variable

Funciones Reales en una Variable Funciones Reales en una Variable Contenidos Concepto función Grafica de una función Dominio y Recorrido de una función Clasificación de la funciones Función Inversa Paridad de las Funciones Operaciones

Más detalles

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)

n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y) Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

CAPITULO 1.FUNCIÓN REAL DE VARIABLE REAL

CAPITULO 1.FUNCIÓN REAL DE VARIABLE REAL CAPITULO 1.FUNCIÓN REAL DE VARIABLE REAL Definición 1.1 Se llama función numérica a una aplicación de un conjunto A en R, f: A R.En lugar de función numérica se dice también función real. Se representa

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Funciones reales de variable real: límites y continuidad

Funciones reales de variable real: límites y continuidad Capítulo 3 Funciones reales de variable real: límites y continuidad 3.. Funciones reales de variable real 3... ntroducción Una función f : A B consiste en dos conjuntos, el dominio A = Dom(f) y el rango

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sean f : R R y g : R R las funciones definidas por f(x) = x 2 + ax + b y g(x) = c e (x+1) Se sabe que las gráficas de f y g se cortan en el punto ( 1, 2) y tienen en ese punto la

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA CAPÍTULO VI. APLICACIONES DE LA DERIVADA SECCIONES A. Crecimiento y decrecimiento. Máximos y mínimos locales. B. Concavidad. Puntos de inflexión. C. Representación gráfica de funciones. D. Problemas de

Más detalles

Funciones y gráficas (1)

Funciones y gráficas (1) Funciones y gráficas (1) Introducción Uno de los conceptos más importantes en matemática es el de función. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

1.5 Funciones trigonométricas

1.5 Funciones trigonométricas .5 Funciones trigonométricas Haciendo uso de las razones trigonométricas vistas anteriormente, se puede definir un nuevo tipo de función, que llamaremos f unciones trigonométricas. Notemos que para cada

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS Basado en los Programas de Estudio en Matemáticas aprobados por el Consejo Superior de Educación el 21 de mayo del 2012 y en el Plan de Transición

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas

CÁLCULO DIFERENCIAL. Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas CÁLCULO DIFERENCIAL Amaury Camargo y Favián Arenas A. Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas Cálculo Diferencial UNIDAD 1 2. Funciones y modelos 2.1.

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

Matemáticas. Bachillerato Internacional. Segundo curso. Curso 2014-2015. Exámenes

Matemáticas. Bachillerato Internacional. Segundo curso. Curso 2014-2015. Exámenes Matemáticas. Bachillerato Internacional. Segundo curso. Curso 04-05. Exámenes LÍMITES. CONTINUIDAD. REGLAS DE DERIVACIÓN. Límites. Continuidad. Reglas de derivación Ejercicio. Derivar las siguientes funciones:.

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Unidad 9 Propiedades globales de las funciones

Unidad 9 Propiedades globales de las funciones Unidad 9 Propiedades globales de las funciones PÁGINA 199 SOLUCIONES 1. Las soluciones pueden quedar así: a) b). Los dominios quedan: Domf Domg 3, 3 151 PÁGINA 13 SOLUCIONES 1. Designamos los colores por:

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

# Matemática/Polimodal: Funciones 1 y 2. Editorial Longseller

# Matemática/Polimodal: Funciones 1 y 2. Editorial Longseller PROGRAMA DE ANÁLISIS MATEMÁTICO E. P. E. T. N 20-2014 UNIDAD N 1: FUNCIONES REALES Estudio de funciones reales (lineal, cuadrática, cúbica, módulo, homográfica, trigonométricas, por partes) a partir de

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA I CÓDIGO ASIGNATURA: 1215-101 PRE-REQUISITO:

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS Solucionario 5 Inecuaciones ACTIVIDADES INICIALES 5.I. rdena de menor a mayor los siguientes números. a), 6 8, 4 y 7 b) 0,v,, y 0, 4 5 5 0 90 5 a) 75 ; 6 8 7 ; 4 80 y 7 70 7 6 8 4 4 00 5 00 5 00 0 00 0

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Precálculo 2130034 Prof.: Gerardo Varela

Precálculo 2130034 Prof.: Gerardo Varela Definición de función Una función con dominio D es un conjunto W de pares ordenados tales que, para cada en D, ha eactamente un par ordenado (, ) en W que tiene a en la primera posición. Terminología Definición

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

49 http://iedonboscohunter.hol.es

49 http://iedonboscohunter.hol.es 49 http://iedonboscohunter.hol.es MODULO PRECALCULO SEGUNDA UNIDAD Funciones Algebraicas Había un hombre en Roma que se parecía mucho a César Augusto; Augusto se enteró de ello, mandó buscarlo y le preguntó.

Más detalles