PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES"

Transcripción

1 PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva 3, Ejercicio, Opción A Reserva 3, Ejercicio, Opción B Reserva 4, Ejercicio, Opción A Reserva 4, Ejercicio, Opción B Septiembre, Ejercicio, Opción A Septiembre, Ejercicio, Opción B

2 b si x a) Calcule los valores de a y b para que la función f( x) x, sea ax si x derivable en el punto de abscisa x b) Para a y b, estudie su monotonía y determine las ecuaciones de sus asíntotas, si existen. SOCIALES II. 06. JUNIO. EJERCICIO. OPCIÓN A a) Como la función es derivable en x, tiene que ser continua en ese punto, luego: lim b x x lim f ( x) lim f ( x) f () b a x x lim ( ax ) a x b Calculamos la función derivada: Como la función es derivable en x, Resolviendo el sistema b) Calculamos la derivada de la función: b f '( x) ( x) ax 3 si x si x f '( ) b '( ) '( ) 3 f f b a f '( ) a3 ba, obtenemos que: a ; b ba3 si x f( x) x y la igualamos a cero. x si x si x 3 ( x) x 3 si x f '( x) 0 x 3 0 x Signo (,) 3, 3, f ' + + Función C D C 3 Luego la función es creciente en,, y decreciente en 3, Para x, calculamos las asíntotas de la función f( x) x Asíntota vertical x, pero como no está en su dominio, no tiene Asíntota horizontal lim 0 y 0 x x Para x, calculamos las asíntotas de la función una función polinómica. f ( x) x. No tiene asíntotas ya que es

3 La cantidad, C, que una entidad bancaria dedica a créditos depende de su liquidez, x, según la función: 50 5x si 0 x C( x). 00 0x si x 50 5 Donde C y x están expresadas en miles de euros. a) Justifique que C es una función continua. b) A partir de qué liquidez decrece la cantidad dedicada a créditos? Cuál es el valor máximo de C?. c) Calcule la asíntota horizontal e interprétela en el contexto del problema. SOCIALES II. 06 JUNIO. EJERCICIO. OPCIÓN B a) La función polinómica 50 5 x 00 0x es continua en. La función racional en.por lo tanto, solo tenemos que estudiar la continuidad en 50 5 x. Estudiamos la continuidad en x x lim 4 x50 00 lim lim (50) f 00 0x x50 x50 lim 4 x50 5 Por lo tanto la función es continua en el intervalo 0, 0 b) Calculamos la derivada y la igualamos a cero: C'( x) 350 (5 3 x) Vemos que la derivada no se anula para ningún valor, luego: Es continua en x 50 si 0 x 50 si x 50 es continua (0,50) (50,) Signo C'( x ) + Función C D Luego, vemos que empieza a decrecer a partir de x 50, es decir, a partir de una liquidez mayor de El valor máximo de C( x ) es para x 50 y vale c) Calculamos la asíntota horizontal 00 0x 0 0 y xlim 5 3 x 3 3 Hemos visto que C( x ) comienza a decrecer para x 50, pero C( x ) no llega a tocar el valor 0 3, por lo tanto, el crédito es siempre mayor que 0 3, es decir, superior a

4 En un ensayo clínico de 0 meses de duración, el porcentaje de células de un determinado tejido afectadas por un tipo de enfermedad en el paciente de estudio, viene dado por la función: 8t t si 0 t 6 Pt () t si 6 t 0 donde t es el tiempo en meses. a) Represente gráficamente la función Pt. () b) En qué mes empieza a decrecer el porcentaje de células afectadas de dicho tejido? Qué porcentaje hay justo en ese momento? En algún otro mes del ensayo se alcanza ese mismo porcentaje?. c) En qué mes el porcentaje de células afectadas es máximo?. Cuál es el porcentaje en ese momento? SOCIALES II. 06. RESERVA. EJERCICIO. OPCIÓN A a) Hacemos la representación gráfica de la función Pt () b) En el 4º mes comienza a decrecer el porcentaje de células afectadas. En ese momento hay un 6%. En el 8º mes se alcanza el mismo porcentaje. c) Es máximo en el 0º mes. El porcentaje es el 0%.

5 Sea la función f( x) x a) Estudie su continuidad y derivabilidad. Calcule la función derivada. b) Calcule las ecuaciones de sus asíntotas, en caso de que existan. c) Halle los puntos de la gráfica de f donde la recta tangente sea tal que su pendiente valga. SOCIALES II. 06. RESERVA. EJERCICIO. OPCIÓN B a) La función 3 x x decir:. es una función racional, por lo tanto, es continua y derivable en su dominio, es 3 ( x ) ( ) 4 Calculamos la función derivada: f '( x) ( x) ( x) b) Verticales: x, ya que: lim x x y lim x x Horizontales: y 3, ya que: Oblicuas: No tiene. c) Igualamos la derivada a lim 3 x x 4 ( x ) 4 x x x x 3 0 x ; x 3 Luego, los puntos son: (,) y (3,5)

6 Una fábrica produce entre 000 y 6000 bombillas al día. El coste diario de producción, en euros, de x bombillas viene dado por la función C( x) x con 000 x 6000 x Cuántas bombillas deberían producirse diariamente para minimizar costes? Cuál sería dicho coste? SOCIALES II. 06. RESERVA. EJERCICIO. OPCION A Calculamos la derivada y la igualamos a cero C '( x) 0'08 0 x x (000,5000) (5000,6000) Signo C'( x ) + Función D C Mínimo (5000,9800) Luego, se deben fabricar bombillas para minimizar costes y, éste sería de 9.800

7 a) Las funciones 4t y t 8t 0 por ser polinómicas, son continuas y derivables en. Estudiamos 5 primero la continuidad en t 0 : lim 4t 40 t 0 B(0) lim B( t) 40 Es continua t 0 lim t 8t 0 40 t 0 5 Estudiamos la derivabilidad en t 0 Calculamos la función derivada: 4 si 0 x 0 B'( t) y como: t 8 si 0 x 5 5 B '(0 ) 4 B'(0 ) B'(0 ) 4 Derivable en t 0 B '(0 ) 4 Luego, la función es continua y derivable en el intervalo 0,5 b) El máximo puede estar en los extremos del intervalo t 0 y t 5, y también en las soluciones de B'( t) 0. t B(0) 40 ; B(5) 55 ; B '( t) 8 0 t 0 B(0) 60 5 Luego, el máximo beneficio fue de y corresponde a t 0 La función es creciente en el intervalo (0, 0) y decreciente en el intervalo (0, 5) c) Los beneficios de una empresa, en miles de euros, han evolucionado en los 5 años de su existencia según una función del tiempo, en años, dada por la siguiente expresión: Bt () 5 4t si 0 t 0 t t si t a) Estudie la continuidad y derivabilidad de B en el intervalo 0,5. b) Estudie la monotonía de esta función y determine en qué año fueron mayores los beneficios de esta empresa y cuál fue su beneficio máximo. c) Represente gráficamente esta función. SOCIALES II. 06. RESERVA. EJERCICIO. OPCION B

8 a) Calcule las derivadas de las siguientes funciones: 3 3 ln f ( x) ( x ) ( 5 x) g( x) x e 6 b) Calcule la ecuación de la recta tangente a la gráfica de la función hx ( ) x de abscisa x. c) Determine, si existen, las ecuaciones de las asíntotas de la función hx ( ). SOCIALES II. 06. RESERVA 3. EJERCICIO. OPCION A en el punto a) f x x x x x x x x '( ) (3 5 ) 3 (3 5 ) (9 5) ( ) g'( x) 3 x x e e ln ln x x x e e b) La recta tangente en x es y h() h'() ( x ) - 9 h() 3 3 3(x) ( 6) h'( x) h'() (x ) - Sustituyendo en la ecuación, tenemos, y 3 ( x ) y x 4 c) Verticales: x, ya que: 6 lim x x y 6 lim x x Horizontales: 3 y, ya que: 6 3 xlim x Oblicuas: No tiene, ya que tiene asíntota horizontal.

9 La función de costes de una fábrica, f( x ), en miles de euros, viene dada por la expresión: f x x x ( ) donde x es la cantidad fabricada del producto, en miles de kilogramos. a) Determine la cantidad a fabricar para minimizar el coste y calcule este coste mínimo. b) A partir del signo de f '(7), qué se puede decir del coste para una producción de siete mil kilogramos? c) Dibuje la gráfica de la función de costes. Para qué cantidad o cantidades fabricadas el coste es de 00000? SOCIALES II. 06. RESERVA 3. EJERCICIO. OPCION B a) Calculamos la derivada de la función y la igualamos a cero: f '( x) 4x 36 0 x 9 (,9) (9, ) Signo f '( x ) + Función f ( x ) D C Mínimo 9,38 Se deben fabricar kg de producto y el coste mínimo es b) Vemos que f '(7) 0, por lo tanto, para 7000 kg el coste de producción decrece. c) f x x x x x x x ( ) ; 8 Luego, para x 0 kg y x kg, el coste de producción es

10 a) Las funciones x y x a al ser polinómicas son continuas y derivables en. Por lo tanto, solo a tenemos que estudiar la continuidad y la derivabilidad en x. Estudiamos la continuidad en x 4 lim x x a a a a a a a lim x a a a x Luego, la función es continua en su dominio si a 4, ya que nos dicen que a 0. Vamos a estudiar la derivabilidad en x para a 4 x si x Calculamos la función derivada: f '( x) y como: si x b) x si x Sea la función f( x) a, con a 0. x a si x a) Calcule el valor del parámetro a para que la función sea continua en su dominio. En este caso, sería derivable en su dominio? b) Para el valor a 4, represente gráficamente la función y halle la ecuación de la recta tangente a la gráfica de la función en el punto de abscisa x. SOCIALES II. 06. RESERVA 4. EJERCICIO. OPCION A f '( ) f '( ) f '( ) f '( ) ; No es derivable en x La recta tangente en x, es: y f ( ) f '( ) ( x ) f ( ) 4 f '( ) Sustituyendo, tenemos: 5 y ( x ) x 4 y 3 0 4

11 4 si x Se considera la función f( x) x x x si x a) Estudie la continuidad y la derivabilidad de esta función. b) Estudie su monotonía y su curvatura para x 0. SOCIALES II. 06. RESERVA 4. EJERCICIO. OPCION B a) La función 4 x es continua y derivable en 0. La función x x al ser polinómica es continua y derivable en. Por lo tanto, solo tenemos que estudiar la continuidad y la derivabilidad en x. Estudiamos la continuidad en x 4 lim x lim f ( x) lim f ( x) f () x x x lim x x x Vamos a estudiar la derivabilidad en x 4 si x Calculamos la función derivada: f '( x) x y como: x si x f '( ) f '( ) f '( ) f '( ) No es derivable en x Por lo tanto, la función es continua en 0 y derivable en 0, Continua en x 4 b) Calculamos la primera derivada y la igualamos a cero: f '( x) 0 No. x f '( x) x 0 x 0,, Signo f '( x ) + Función D C 0, y creciente de,. Tiene un mínimo en La función es decreciente de Calculamos la segunda derivada y la igualamos a cero: 4 f '( x) 3 x 0 No. f ''( x) 0,, Signo f ''( x ) + + Función Cx Cx La función es convexa en el intervalo 0,.,.

12 De una función continua y derivable, f, se sabe que la gráfica de la función derivada, f, es una parábola que pasa por los puntos (,0) y (3,0), y que tiene su vértice en el punto (, ). a) Determine los intervalos de crecimiento y decrecimiento de la función f, así como la existencia de extremos. b) Si f (), encuentre la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x SOCIALES II. 06. SEPTIEMBRE. EJERCICIO. OPCIÓN A a) Hacemos la representación gráfica de la función derivada. Vemos que f '( x ) es positiva en el intervalo (, ) (3, ), luego en ese intervalo f ( x ) será creciente. Vemos que f '( x ) es negativa en el intervalo (,3), luego en ese intervalo f ( x ) será decreciente. (, ) (,3) (3, ) Signo f ' + + Función C D C Máximo x mínimo x 3 b) La recta tangente en x es y f () f '() ( x ) f () f '() Sustituyendo en la ecuación, tenemos, y ( x ) y x 4

13 x x a si x 4 Sea la función f( x) si x x a) Calcule el valor de a para que la función sea continua en x. Para ese valor de a obtenido, es derivable la función en x? b) Para a 4, estudie la monotonía y calcule las ecuaciones de las asíntotas, si existen. SOCIALES II. 06. SEPTIEMBRE. EJERCICIO. OPCIÓN B a) Calculamos el valor de a para que sea continua en x lim x lim f ( x) lim f ( x) f () 4 a a 5 x x x x a a x lim ( 4 ) 4 x Calculamos la función derivada: x 4 si x f '( x) si x ( x ) f '( ) 0 f '( ) f '( ) f '( ) No es derivable en x x 4 si x b) Calculamos la derivada de la función: f '( x) y la igualamos a cero. si x ( x ) x4 0 x Signo (,), f ' Función D D Luego la función es decreciente en Para x, calculamos las asíntotas de la función f( x) x Asíntota vertical x, pero como no está en su dominio, no tiene Asíntota horizontal lim 0 y 0 x x Para x, calculamos las asíntotas de la función f ( x) x 4x 4. No tiene asíntotas ya que es una función polinómica.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 009 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Funciones 008 EJERCICIO 1A f definida mediante 1 f ( ) 1 a) (05 puntos) Determine los puntos de corte con los ejes b) (1 punto) Estudie su curvatura c) (1 punto) Determine sus asíntotas d) (05 puntos)

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Funciones 008 EJERCICIO 1A f definida mediante 1 f ( ) 1 a) (05 puntos) Determine los puntos de corte con los ejes b) (1 punto) Estudie su curvatura c) (1 punto) Determine sus asíntotas d) (05 puntos)

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 006 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

1.- Concepto de derivada de una función

1.- Concepto de derivada de una función º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

PRUEBAS DE SELECTIVIDAD.

PRUEBAS DE SELECTIVIDAD. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 1 PRUEBAS DE SELECTIVIDAD Función real de variable real Derivabilidad y Rectas tangentes EJERCICIO

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

SIMULACRO RECUPERACIÓN TERCERA EVALUACIÓN MATEMÁTICAS I ACS JUNIO 2014

SIMULACRO RECUPERACIÓN TERCERA EVALUACIÓN MATEMÁTICAS I ACS JUNIO 2014 JUNIO 04 Sobre los sucesos A y B se conoce las siguientes probabilidades: P(A) 0 7, P(B) 0 y P(A B) 0 4 Calcular P(B/A) y P(Ā B ) Una firma de perfumería cuenta con tres cadenas de producción, A, B y C,

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto:

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: 1 LA DERIVADA EN EL TRAZADO DE CURVAS Significados de los signos de la Primera y Segunda derivada. Plantearemos a través del estudio del signo de la primera derivada, las condiciones que debe cumplir una

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017

Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación Alumn@: Nota Curso: º Bacillerato Recuperación Feca: de Enero de 6 º Evaluación.- Calcule las dimensiones de tres campos cuadrados que no tienen ningún lado común y que satisfacen que el perímetro de uno

Más detalles

Representaciones gráficas

Representaciones gráficas 1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente.

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES.

EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES. IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 5, 6 y 7: LÍMITES, CONTINUIDAD Y DERIVACIÓN DE FUNCIONES 1 (001-M1;Sept-A-) Las ganancias de una empresa, en millones de pesetas, se ajustan a la 50 100 función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 5 APLICACIONES DE LAS DERIVADAS Ejercicios para Selectividad de Detalladamente resueltos Curso 2000 / 2001 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial CompartirIgual 2.5 Spain

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Representación de funciones

Representación de funciones Representación de funciones 1) Sea la función Calcule: a) Los intervalos de crecimiento y decrecimiento. Sol: La función es creciente en (0,4) y decreciente en (,0) (4, ). b) Las coordenadas de sus extremos

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, matrices, programación lineal y probabilidad Análisis, matrices, programación lineal y probabilidad Problema 1: Se considera la curva de ecuación cartesiana y = x 2 + 8x, calcular las coordenadas del punto en el que la recta tangente a la curva es

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y

Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y Tema 4: APLICACIÓN DE LAS DERIVADAS 4.1 Puntos de Corte con el eje de las Y Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: = 1 Punto de corte con el

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Estudio local de una función.

Estudio local de una función. Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina

Más detalles

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.

CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que

Más detalles