Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x"

Transcripción

1 S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama R(x) B)Tiene 3 términos C)Es de grado 5 D)Sus coeficientes suman 1 S Dado el polinomio: : 6x 5-3x 3 + 4x 2 +2x- 7 Escribe: 1. Un nombre para él: 2. El grado del primer término: 3. El grado del segundo término: 4. El grado del tercer término: 5. El coeficiente del término de mayor grado: 6. El coeficiente del término independiente: S Dado el polinomio: : Calcula: 1. Q(3,-1) 2. Q(0, -2) 3. Q(-2, 2) Q(x,t) = -2x 2 t 3 - xt 2 +6 S Dados los polinomios: Q(x) = -2x 3-3x+ 2 P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S(x) = 2x-1 Calcula: Q(x)-2 P(x) = Q(x) S(x)- R(x) = R(x)-2[Q(x)-2P(x)]= División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente) y R (el resto) tales que P = Q. D + R Siendo grado(r) < grado(d) 1

2 Algoritmo de la división PRIMER PASO Se resta x 3. D 3x 5 + 8x 4 11x 2 3x + 6 3x 2 +2x 4 (3x 5 + 2x 4 4x 3 ) x 3 6x 4 + 4x 3 11x 2 3x + 6 Cociente de los términos de mayor grado *Pág. 95 ejercicio 8 SEGUNDO PASO 3x 5 + 8x 4 11x 2 3x + 6 3x 2 +2x 4 (3x 5 + 2x 4 4x 3 ) x 3 + 2x 2 6x 4 +4x 3 11x 2 3x + 6 (6x 4 + 4x 3 8x 2 ) Se resta 2x 2. D 3x 2 3x + 6 Cociente de los términos de mayor grado TERCER PASO 3x 5 + 8x 4 11x 2 3x + 6 3x 2 +2x 4 (3x 5 + 2x 4 4x 3 ) x 3 + 2x 2 1 6x 4 + 4x 3 11x 2 3x + 6 (6x 4 + 4x 3 8x 2 ) 3x 2 3x + 6 ( 3x 2 2x + 4) cociente Se resta ( 1). D x + 2 resto Cociente de los términos de mayor grado -10 Regla de Ruffini La regla de Ruffini nos permite realizar la división entre dos polinomios utilizando un método más sencillo, siempre y cuando se cumplan las siguientes condiciones: El divisor debe tener la forma: x-a a debe ser un número real. Regla de Ruffini Ejercicio: Cuáles de las siguientes divisiones se pueden realizar por Ruffini? (x 3-2x + 3) :(x +2) (2x 3 - x + 4) :(x -1) (x 4 - x 2 + 3x) :(-x 2-1) (2x x + 3) : (x ) Sí (x - (-2)) Sí NO Sí 2

3 Regla de Ruffini ( 2x 3 6x 2 4x + 12) :(x 2) Divide usando la regla de ruffini. Coeficientes de P a 2 Se opera: se suma r se multiplica por a Hemos obtenido que: P = 2x 3 6x 2 4x + 12 = (2x 2 2x 8) (x 2) + ( 4) Ejercicio: Halla el valor de m para que la división siguiente sea exacta: (x 3-5x 2-2x + m) :(x - 4) Si hacemos la división por ruffini tenemos que: m m-24 Por tanto la división será exacta si m=24 *Pág. 96. Ej. 16 Realiza estas operaciones usando la regla de Ruffini y escribe el cociente y el resto. 3

4 Teoremas del resto y del factor El teorema del resto permite conocer el resto de una división de un polinomio entre otro de la forma x-a, sin necesidad de realizarla Demostración del teorema del resto El teorema se puede deducir con facilidad partiendo de la definición de división. P(x) = d(x) C(x) + R El resto R de la división de un polinomio P(x) entre x-a es igual al valor numérico del polinomio en x=a, es decir: R=P(a) P(x) = (x - a) C(x) + R 0 Si calculamos P(a) P(a) = (a- a) C(a) + R P(a) = R Como queríamos demostrar Cuál es el resto de dividir P(x) entre d(x)? P(x) = x 3 + 7x 2 +12x +10 P(x) = d(x) C(x) + R x 3 + 7x 2 +12x +10 = (x + 5) C(x) + R P(-5) = (-5 +5) C(-5) + R P(-5) = R Si calculamos P(-5) d(x) = x +5 Es de la forma x-a? x-5=x-a? Sí para a=-5 x-a=x-(-5)=x+5 P(-5) = (-5) (-5) (-5) +10 = 0 R= 0 Teorema del factor El teorema del factor nos permite conocer los factores de la forma x-a de un polinomio. Este teorema es consecuencia directa del teorema del resto. Si el valor numérico del polinomio P(x) en x=a es 0, entonces P(x) tiene como factor x-a y por tanto P(x) puede escribirse de la forma P(x)=(x-a) C(x) Dado el polinomio P(x), si se cumple que P(a)=0, sabemos por el teorema del resto que el resto de dividir P(x) entre x-a es 0: P(a) = 0 Resto de dividir P(x) entre x-a es 0 (R=0) P(x) = (x - a) C(x) + R P(x) = (x - a) C(x) 0 Estudia cuáles de las siguientes divisiones son exactas, sin realizar la división: Es decir P(x) puede expresarse como un producto de factores. Uno de los cuales es (x-a) 4

5 Calcula el resto de esta división sin realizarla Usando el teorema del resto podemos asegurar que el resto de la división es: P(1)=3 Utiliza el teorema del resto para calcularlo en estas divisiones: La división de P(x) = x 3 + 2x 2 + k entre x-3 da resto 0 Cuánto vale k? P(-3) = 0 (-3) 3 +2(-3) 2 + k = 0 k = -(-3) 3-2(-3) 2 = = -45 Comprueba si x+1 es un factor de estos polinomios A(x) = 3x 4-2x 2 + x B(x) = -2x 2 + 3x Por el teorema del resto sabemos que P(a) nos dará el resto de la división de P(x) entre x-a A(-1) = 0 B(-1) = -5 SÍ NO Encuentra entre los siguientes factores los del polinomio P(x) = x 3-3x 2-6x +8 a) x -1 b) x - 3 c) x +1 d) x +2 C(x) = x 7 +1 C(-1) = 0 SÍ D(x) = 2x 3-3x +1 D(-1) = 2 NO Raíces de un polinomio Las raíces o ceros del polinomio P(x) son los valores que lo hacen cero, es decir las soluciones de la ecuación P(x)=0 Número de raíces de un polinomio Número de raíces de un polinomio: Un polinomio de grado n tiene, como máximo, n raíces reales. EJEMPLO Compruebas que las raíces del polinomio P(x)=x 2-4x+3 son x=1 y x=3 x=1->p(1)=(+1) 2-4(+1)+3=0 x=3->p(3)=(3) 2-4(3)+3=0 5

6 Factorización de polinomios Factorizar un polinomio es descomponerlo en dos o más polinomios de menor grado, de forma que su producto sea el polinomio dado. Cuando un polinomio no se puede descomponer en factores se dice que es un polinomio irreducible. A qué debemos atender para factorizar un polinomio? 1 Extraer factor común 2 Usar las identidades notables 3 Buscar las raíces enteras Buscar factores comunes entre los términos del polinomio Comprobar si el polinomio es el resultado de desarrollar alguna identidad notable: (a+b) 2, (a-b) 2, (a-b)(a+b) Probamos mediante ruffini con aquellos candidatos a raíces enteras del polinomio. Que como sabemos, son aquellos valores enteros divisores del término independiente. 6

7 Ejercicio: Factoriza P(x) = 2x 4-14x 3 +30x 2-18x 1 Extraer factor común 2 Buscar las raíces enteras 3 Usar las identidades notables Buscar factores comunes entre los términos P(x) = 2x (x 3-7x 2 +15x-9) del polinomio Probamos 1 mediante -7 ruffini +15 con aquellos -9 candidatos a raíces enteras del polinomio Que como sabemos, son aquellos valores enteros 1 divisores -6 del término +9 independiente. 0 Comprobar si el polinomio es el resultado de desarrollar (x 2-6x+ alguna 9) identidad = (x-3) 2 notable: (a+b) 2, (a-b) 2, (a-b)(a+b) P(x) = 2x (x-1)(x- 3)(x- 3) Factoriza: P(x) = 3x 5-24x x 3-84x 2 +36x P(x) = 3x (x 4-8x x 2-28x+12) (x 2-4x+ 4)= (x- 2) 2 P(x) = 3x (x-1)(x-3)(x- 2) 2 S( x) 2x 4 3 7x 5x 2 28x x 2 Raíces enteras x 2 x 2 x 3 x 3 Descomposición Q( x ) 2 x 2 x 2 x 3 2x 1 x 1/ 2 no entera 4 2 P( x) x x 9x 4x 12 x 0 x 2 P( x) x Raíces x 1 raíz doble x 3 descomposición 2 x 1 x 2 x 3 x 0 Raíz simple 4 2 x 9x 4x x x 3 x 1 x 2 POLINOMIOS DESCOMPOSICIÓN DESCOMPOSICIÓN x 0 x 2/3 x 2 x 5 raíz doble x 2 x 3 raíz doble x 3 raíz doble 7

8 Escribe en cada apartado un polinomio que cumpla: 1) Tenga grado 2 y como factor (x-5) 2) Tenga una raíz doble y grado 3 43 Escribe un polinomio P(x) con las siguientes características: x -1 Es factor de P(x) Tiene una raíz doble Tiene grado 3 45 Término independiente 12 ( x -1)( x -1) = x 2-2x +1 Þ (x 2-2x +1) (x +1) = x 3 - x 2 - x +1 ( ) =12x 3-12x 2-12x +12 Þ12 x 3 - x 2 - x +1 Hacemos que (x-1) sea factor y que tenga una solución doble. Grado 3 Si multiplicamos por 12, el polinomio es diferente pero tiene las mismas soluciones. 8

9

10 61 62 k = -3 k = 6 k =

11 75 11

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

DESCOMPOSICIÓN FACTORIAL

DESCOMPOSICIÓN FACTORIAL DESCOMPOSICIÓN FACTORIAL 1 RAÍCES DE UN POLINOMIO. TEOREMA DEL FACTOR Se dice que el valor x = a es una raíz de un polinomio P(x) si el valor numérico de P(x) para x = a es 0, es decir: x = a es raíz de

Más detalles

Suma, diferencia y producto de polinomios

Suma, diferencia y producto de polinomios I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS 53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2) 1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)

Más detalles

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:

( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio: Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1) 1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

Ejercicios de Polinomios y Fracciones Algebráicas

Ejercicios de Polinomios y Fracciones Algebráicas Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Polinomios y Fracciones Algebráicas. Pág 1/12 1. Dados los polinomios: Ejercicios de Polinomios y Fracciones Algebráicas 1. P(x) = 4x 2 1 2. Q(x) = x 3 3x 2

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo II

Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo II Carlos A. Rivera-Morales Precálculo II Tabla de Contenido 1 2 : Discutiremos: cómo llevar a cabo el proceso de división sintética de polinomios en una variable real : Discutiremos: cómo llevar a cabo el

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

Curs MAT CFGS-18

Curs MAT CFGS-18 Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios

CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios Polinomios Contenidos 1. Expresiones algebraicas De expresiones a ecuaciones Valor numérico Expresión en coeficientes. División de polinomios División División con coeficientes Regla de Ruffini Teorema

Más detalles

Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo 2

Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo 2 Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 2 : Discutiremos: la división sintética de polinomios División sintética es un método corto de dividir un polinomio P(x) en una variable por un

Más detalles

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

1.- Sean los polinomios:

1.- Sean los polinomios: . EJERCICIOS DE POLINOMIOS 1.- Sean los polinomios: A(x) = 6x 5-4x 4-4x - x + x + 8 B(x) = 5x 5 + 4x 4 - x - x + 5x - 8 C(x) = - 8x 6 + 4x 5 + x 4 - x + 4 Hallar: 1.- A(x) + B(x).- A(x) - C(x).- A(x) -

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 6 Pág. Página 86 El maestro carpintero reparte entre sus dos ayudantes la construcción de un gran armario. Y cada uno de ellos, a su vez, imagina su parte de la obra despiezada para poder construirla a

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 Página 44 Conviene recordar que: V CILINDRO πr 2 h A TOTALDEUNCILINDRO 2πr h + 2πr 2 Expresa, mediante un polinomio, el volumen de cada una de las velas cilíndricas en función del radio de su base,

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS REASO DE LA FACTORIZACIÓN DE OLINOMIOS OLINOMIO IRREDUCIBLE O RIMO.- Un polinomio ( x se llama irreducible o primo, si ( x o más polinomios con grado. Según esta definición: o Todos los polinomios de grado

Más detalles

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

TEMA 02 ÁLGEBRA Y FRACCIONES ALGEBRAICAS -

TEMA 02 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n POLINOMIOS (Versión Preliminar) Estas notas deben ser complementadas con ejercicios de la guía o de algun texto. En esta sección denotaremos por N al conjunto de los números naturales incluido el cero.

Más detalles

POLINOMIOS. Sol: a) 19; b) 0; c) -3; d) 37; e) 3; f) 133; g) -4; h) Halla "a" para que la siguiente división sea exacta: x 5-3x 3 +ax 2-4 : x-2

POLINOMIOS. Sol: a) 19; b) 0; c) -3; d) 37; e) 3; f) 133; g) -4; h) Halla a para que la siguiente división sea exacta: x 5-3x 3 +ax 2-4 : x-2 POLINOMIOS 1. Si P(x)= x -x +1 y Q(x)= x -x+, opera: a) P-Q b) P+Q c) P+Q d) P.Q Sol: a) P-Q= x -6x +x-1 b) P+Q= 1x -x -6x+7 c) P+Q= x -x+ d) P.Q= 1x 5-1x +17x -x -x+. Si P(x)= x -x -x+1, Q(x)= x -x+1

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas Tema 3: Expresiones algebraicas Monomios y polinomios Un monomio es una expresión algebraica en las que las únicas operaciones que aparecen son la multiplicación y la potenciación de exponente natural.

Más detalles

4 ESO. Mat B. Polinomios y fracciones algebraicas

4 ESO. Mat B. Polinomios y fracciones algebraicas «El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.

Más detalles

EXPRESIÓN ALGEBRAICA Monomios, Polinomios

EXPRESIÓN ALGEBRAICA Monomios, Polinomios EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0 Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

FACTORIZACIÓN. Factorizar un polinomio conociendo algunos de sus ceros Aplicar el algoritmo para dividir polinomios

FACTORIZACIÓN. Factorizar un polinomio conociendo algunos de sus ceros Aplicar el algoritmo para dividir polinomios FACTORIZACIÓN Sugerencias para quien imparte el curso Para abordar mejor este tema, quien imparte el curso debe cerciorarse de que los alumnos saben factorizar, se recomienda proporcionar una lista de

Más detalles

Operaciones con polinomios

Operaciones con polinomios 5 Operaciones con polinomios 5.1 Igualdades notables El cuadrado de una suma es igual al cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo: (a + b) a + ab + b El

Más detalles

División de polinomios

División de polinomios División de polinomios: Horner División de polinomios Es aquella operación algebraica que tiene como objetivo encontrar dos únicos polinomios llamados cociente entero q(x) y residuo R(x) a partir de otros

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

Tema 4. Polinomios Operaciones

Tema 4. Polinomios Operaciones Tema 4. Polinomios Operaciones 1. Expresiones algebraicas. Identidades y ecuaciones.. Monomios.1. Definiciones.. Operaciones con monomios. Polinomios.1. Definiciones.. Operaciones con polinomios Tema.

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO TEMA 7: FRACCIONES ALGEBRAICAS Matemáticas 3º ESO 1. Fracciones algebraicas valor numérica Una fracción algebraica es el cociente indicado de dos polinomios, el denominador debe ser un polinomio no nulo.

Más detalles

Polinomios POLINOMIOS REGLA DE RUFFINI VALOR NUMÉRICO DE UN POLINOMIO SUMA, RESTA Y MULTIPLICACIÓN DIVISORES DE UN POLINOMIO

Polinomios POLINOMIOS REGLA DE RUFFINI VALOR NUMÉRICO DE UN POLINOMIO SUMA, RESTA Y MULTIPLICACIÓN DIVISORES DE UN POLINOMIO Polinomios POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA DEL RESTO RAÍCES DE

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

POLINOMIOS. FACTORIZACIÓN

POLINOMIOS. FACTORIZACIÓN POLINOMIOS FACTORIZACIÓN JUSTIFICACIÓN Es muy fácil realizar multiplicaciones de números naturales Más dificultad entraña el problema inverso: la factorización Así, realizar la multiplicación 7 es trivial,

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

TEMA 5 EXPRESIONES ALGEBRAICAS

TEMA 5 EXPRESIONES ALGEBRAICAS 5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

GUÍA DE EJERCICIOS. Área Matemática - Polinomios GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

MATEMÁTICA BÁSICA CLASE 14 DIVISION LARGA Y SINTÉTICA TEOREMA DEL RESIDIO Y DEL FACTOR PROFESOR EFRÉN GIRALDO T.

MATEMÁTICA BÁSICA CLASE 14 DIVISION LARGA Y SINTÉTICA TEOREMA DEL RESIDIO Y DEL FACTOR PROFESOR EFRÉN GIRALDO T. MATEMÁTICA BÁSICA CLASE 14 DIVISION LARGA Y SINTÉTICA TEOREMA DEL RESIDIO Y DEL FACTOR PROFESOR EFRÉN GIRALDO T. INSTITUTO TECNOLÓGICO METROPOLITAN0 MEDELLÍN ABRIL 2012 1 2 Al final de este cap Dominar

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, septiembre 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Polinomios en R[x] - Función Polinómica

Polinomios en R[x] - Función Polinómica Polinomios en R[x] - Función Polinómica. Indicar cuáles de las siguientes expresiones son polinomios: a) A( x) = x 6x + b) B( x) = x 6x c) C( x) = x + x + x d) D( x) = + x +. Determinar el grado y el término

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental. 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles