En el interior de protones y neutrones La interacción fuerte. Carlos Pena

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En el interior de protones y neutrones La interacción fuerte. Carlos Pena"

Transcripción

1 En el interior de protones y neutrones La interacción fuerte Carlos Pena Física de Partículas Elementales y Cosmología CRIF Acacias, Febrero 2013

2 Plan La composición del Universo. Materia ordinaria y componentes oscuros. El interior del núcleo atómico: nucleones y quarks. Cuál es el origen de la masa? Cromodinámica cuántica. Libertad asintótica y confinamiento. Alta energía: el régimen perturbativo. Baja energía: el régimen no perturbativo. La interacción fuerte en la Física de Altas Energías de nuestros días. Temperatura y densidad altísimas: plasma de quarks y gluones? La interacción fuerte en LHC.

3 Plan La composición del Universo. Materia ordinaria y componentes oscuros. El interior del núcleo atómico: nucleones y quarks. Cuál es el origen de la masa? Cromodinámica cuántica. Libertad asintótica y confinamiento. Alta energía: el régimen perturbativo. Baja energía: el régimen no perturbativo. La interacción fuerte en la Física de Altas Energías de nuestros días. Temperatura y densidad altísimas: plasma de quarks y gluones? La interacción fuerte en LHC.

4 Los componentes del Universo materia oscura 23% materia ordinaria 5% energía oscura 72%

5 Los componentes del Universo materia oscura 23% materia ordinaria 5% energía oscura 72%

6 Los componentes del Universo materia oscura 23% materia ordinaria 5% energía oscura 72%

7 Los componentes del Universo materia oscura 23% materia ordinaria 5% energía oscura 72%

8 Los componentes del Universo materia oscura 23% materia ordinaria 5% energía oscura 72%

9 Los componentes del Universo

10 Materia ordinaria Cuál es la estructura fundamental de la materia?

11 Materia ordinaria Cuál es la estructura fundamental de la materia? 10 kev/(hc) 100 MeV/(hc) 1 GeV/(hc) Electromagnetismo Interacciones nucleares débil y fuerte

12 Materia ordinaria Cuál es la estructura fundamental de la materia? Mendeleev 1869

13 Materia ordinaria Reducción a cuatro constituyentes fundamentales p n Boltzmann Rutherford Thomson Einstein

14 Materia ordinaria Átomo cuántico, desintegración beta p n Boltzmann Rutherford Thomson Einstein Bohr Pauli Fermi

15 Materia ordinaria Estructura interna de protones y neutrones: quarks Boltzmann Rutherford Thomson Einstein Bohr Pauli Fermi Gell-Mann Zweig

16 Materia ordinaria Corrientes neutras, cromodinámica Boltzmann Rutherford Thomson Einstein Bohr Pauli Fermi Gell-Mann Zweig Glashow Weinberg Salam Rubbia Bjorken t Hooft GPW

17 Materia ordinaria Boltzmann Rutherford Thomson Einstein Bohr Pauli Fermi Gell-Mann Zweig Glashow Weinberg Salam Rubbia Bjorken t Hooft GPW Ting Richter

18 Materia ordinaria!"#$%&'()*"++(+)!"##$%&'%'&()'*"+$('$"&,"-$!,$! µ! " $$$$$$$,$$µ " /$$$4$$$$#$$$$$$$5$$$$$$$$6$ 3$$$3$$$3$ ('%$./"&0$ %7'('*$ 8+/'*#$ 3$$$3$$$3$ 3$$$3$$$3$ 3$$$3$$$3$ 2$ $1$ $9)88#$ 9)88#$:$#,+;:5'*#)#(,*($#("*4"&4$<'4,+$:$%&,#,&=,$8"/8,$#><<,(&>

19 Materia ordinaria Principio ordenador: buscar la simetría en la naturaleza

20 Materia ordinaria W Leptonic Branching Ratios ALEPH ± 0.34 DELPHI ± 0.45 L ± 0.36 OPAL ± 0.37 LEP W!e! ± 0.20 ALEPH ± 0.32 DELPHI ± 0.34 L ± 0.38 OPAL ± 0.35 LEP W!µ! ± 0.18 ALEPH ± 0.42 DELPHI ± 0.56 L ± 0.51 OPAL ± 0.49 LEP W!"! ± 0.25 LEP W!l! ± 0.10 DELPHI L3 [ ] GeV [ ] GeV Br(W!l!) [%] Principio ordenador: buscar la simetría en la naturaleza

21

22

23 Descubriendo las piezas: el átomo planetario A Z neutrón Rutherford et al,

24 Descubriendo las piezas: protones y neutrones Descubrimiento del neutrón Chadwick 1932 Cómo se mantienen unidos los protones y los neutrones? Yukawa 1934

25 Descubriendo las piezas: quarks Three quarks for Muster Mark! Sure he has not got much of a bark And sure any he has it s all beside the mark. James Joyce, Finnegans Wake

26 Descubriendo las piezas: quarks Three quarks for Muster Mark! Sure he has not got much of a bark And sure any he has it s all beside the mark. James Joyce, Finnegans Wake El zoo de partículas se explica con una simetría basada en octetes (y decupletes): el Camino Óctuple. Gell-Mann, Ne eman 1961

27 Descubriendo las piezas: quarks El zoo de partículas se explica con una simetría basada en octetes (y decupletes): el Camino Óctuple. Gell-Mann, Ne eman 1961 Three quarks for Muster Mark! Sure he has not got much of a bark And sure any he has it s all beside the mark. James Joyce, Finnegans Wake Esto conduce de manera natural a la hipótesis de que protones y neutrones están constituidos por partículas más elementales: los quarks. Gell-Mann, Zweig 1964 Bjorken, Feynman

28 La Cromodinámica Cuántica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color mediados de 1970s muchas contribuciones; la introducción del color se remonta a Greenberg (1964)

29 La Cromodinámica Cuántica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color. La interacción fuerte entre quarks implica el intercambio de gluones, de la misma forma que las cargas eléctricas interactúan intercambiando fotones.

30 La Cromodinámica Cuántica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color. La interacción fuerte entre quarks implica el intercambio de gluones, de la misma forma que las cargas eléctricas interactúan intercambiando fotones. En la analogía electromagnetismo - interacción fuerte los nucleones son estados ligados de quarks, como los átomos lo son de núcleo y electrones. Los protones y neutrones están unidos por una fuerza similar a la de van der Waals, que une los átomos en moléculas.

31 Cuál es el origen de la masa? Masa del electrón: m e MeV/c 2 Masa del nucleón: m N 940 MeV/c 2 Casi toda la masa del átomo está en el núcleo

32 Cuál es el origen de la masa? Masa del electrón: m e MeV/c 2 Masa del nucleón: m N 940 MeV/c 2 Casi toda la masa del átomo está en el núcleo Cuál es el origen de la masa de un protón?

33 Cuál es el origen de la masa? Modelo Estándar: las partículas elementales adquieren masa a través de la rotura espontánea de la simetría electrodébil. Englert, Brout, Higgs, Guralnik, Hagen, Kibble

34 Cuál es el origen de la masa? Modelo Estándar: las partículas elementales adquieren masa a través de la rotura espontánea de la simetría electrodébil. Englert, Brout, Higgs, Guralnik, Hagen, Kibble Bosón de Higgs: partícula asociada a la generación de masa.

35 Cuál es el origen de la masa? Masa del electrón: m e MeV/c 2 Masa del nucleón: m N 940 MeV/c 2 Casi toda la masa del átomo está en el núcleo Cuál es el origen de la masa de un protón? m u 5 MeV/c 2 m d 10 MeV/c 2 (2m u + m d ) 20 MeV/c 2 electromagnetismo: interacción fuerte: E bind (H) (m e + m p )c2 E bind (proton) 3m q c 2 50

36 Cuál es el origen de la masa? Masa del electrón: m e MeV/c 2 Masa del nucleón: m N 940 MeV/c 2 Casi toda la masa del átomo está en el núcleo Más del 99% de la masa de la materia ordinaria es energía de ligadura de interacción fuerte entre quarks

37 Plan La composición del Universo. Materia ordinaria y componentes oscuros. El interior del núcleo atómico: nucleones y quarks. Cuál es el origen de la masa? Cromodinámica cuántica. Libertad asintótica y confinamiento. Alta energía: el régimen perturbativo. Baja energía: el régimen no perturbativo. La interacción fuerte en la Física de Altas Energías de nuestros días. Temperatura y densidad altísimas: plasma de quarks y gluones? La interacción fuerte en LHC.

38 La Cromodinámica Cuántica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color. La interacción fuerte entre quarks implica el intercambio de gluones, de la misma forma que las cargas eléctricas interactúan intercambiando fotones.

39 Libertad asintótica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color.

40 Libertad asintótica Los hadrones (protones, neutrones, piones,...) están constituidos por quarks, que poseen una carga de color. Fuerte a gran distancia Débil a corta distancia

41 Burbujas en el vacío Polarización del vacío E t El vacío cuántico posee estructura, revelada por los campos gauge.

42 Burbujas en el vacío Polarización del vacío E t Efecto Schwinger: creación de pares electrón-positrón en campos eléctricos muy fuertes.

43 Burbujas en el vacío Polarización del vacío E t ē e Electrodinámica: apantallamiento de la carga e ē Cromodinámica: ANTI-apantallamiento de la carga

44 Burbujas en el vacío Polarización del vacío E t ē e Electrodinámica: apantallamiento de la carga e ē Cromodinámica: ANTI-apantallamiento de la carga

45 Burbujas en el vacío Polarización del vacío E t ē e Electrodinámica: apantallamiento de la carga el fotón NO lleva carga de eléctrica e ē Cromodinámica: ANTI-apantallamiento de la carga el gluon SÍ lleva carga de color

46 Burbujas en el vacío Polarización del vacío E t Electrodinámica: apantallamiento de la carga Cromodinámica: ANTI-apantallamiento de la carga

47 Confinamiento Los quarks no existen como partículas aisladas: sólo confinados en hadrones.

48 Confinamiento Los quarks no existen como partículas aisladas: sólo confinados en hadrones. Al alejar los quarks la tensión entre ellos es suficiente para excitar un par quarkantiquark en el vacío. La cuerda se rompe y se forman dos hadrones. (Similar a lo que ocurre al intentar separar los polos de un imán.)

49 Confinamiento Los quarks no existen como partículas aisladas: sólo confinados en hadrones. La tensión de la cuerda quark-antiquark es similar a la de un cable de acero, pero está concentrada en una sección 13 órdenes de magnitud menor.

50 Confinamiento Los quarks no existen como partículas aisladas: sólo confinados en hadrones. F 10 5 N σ (0.4 GeV) 2

51 Confinamiento Los quarks no existen como partículas aisladas: sólo confinados en hadrones. F 10 5 N σ (0.4 GeV) 2

52 Física de interacción fuerte a cortas distancias

53 Física de interacción fuerte a cortas distancias

54 Física de interacción fuerte a cortas distancias medidas de la constante de acoplamiento Un electrón de alta energía ve los quarks como partículas casi libres, constituyentes del protón ( partones ).

55 Física de interacción fuerte a largas distancias Los diagramas de Feynman ( teoría de perturbaciones ) son inútiles.

56 Física de interacción fuerte a largas distancias Los diagramas de Feynman ( teoría de perturbaciones ) son inútiles. α s α 6 s α s 1, α em 0.01

57 Física de interacción fuerte a largas distancias Estudiar las propiedades de los hadrones (protones, neutrones,...) requiere una formulación nueva de la teoría cuántica de campos, capaz de afrontar el régimen de acoplamiento fuerte.

58 Física de interacción fuerte a largas distancias Estudiar las propiedades de los hadrones (protones, neutrones,...) requiere una formulación nueva de la teoría cuántica de campos, capaz de afrontar el régimen de acoplamiento fuerte. QCD en la red ( Lattice QCD ) Wilson 1974 a L Permite resolver el problema mediante el uso de superordenadores.

59 Física de interacción fuerte a largas distancias Estudiar las propiedades de los hadrones (protones, neutrones,...) requiere una formulación nueva de la teoría cuántica de campos, capaz de afrontar el régimen de acoplamiento fuerte. QCD en la red ( Lattice QCD ) Wilson a L M[MeV] E = mc 2 r K * N L S X D S* X* O p K experiment width input QCD

60 Plan La composición del Universo. Materia ordinaria y componentes oscuros. El interior del núcleo atómico: nucleones y quarks. Cuál es el origen de la masa? Cromodinámica cuántica. Libertad asintótica y confinamiento. Alta energía: el régimen perturbativo. Baja energía: el régimen no perturbativo. La interacción fuerte en la Física de Altas Energías de nuestros días. Temperatura y densidad altísimas: plasma de quarks y gluones? La interacción fuerte en LHC.

61 El diagrama de fases de la interacción fuerte Diagrama de fases del agua

62 El diagrama de fases de la interacción fuerte Diagrama de fases del agua Diagrama de fases de la interacción fuerte

63 El diagrama de fases de la interacción fuerte Diagrama de fases del agua A alta temperatura/densidad los quarks y gluones dejan de estar confinados. Diagrama de fases de la interacción fuerte

64 Buscando el plasma de quarks y gluones Relativistic Heavy Ion Collider (RHIC). Brookhaven, New York. Colisiona núcleos de oro (79 protones, 118 neutrones)

65 Buscando el plasma de quarks y gluones

66 La interacción fuerte en LHC LHC

67 La interacción fuerte en LHC

68 LHC acelera protones a altísimas energías La interacción fuerte en LHC Una colisión típica produce cientos de partículas. El objetivo de este experimento es entender la física más allá del Modelo Estándar. En particular, cuál es la estructura de simetría fundamental de la Naturaleza, y cómo las partículas elementales (quarks, electrones,...) adquieren su masa.

69 LHC acelera protones a altísimas energías La interacción fuerte en LHC Una colisión típica produce cientos de partículas. La interacción fuerte es la que domina estas colisiones. Es esencial controlar sus efectos con suficiente precisión para desentrañar la física que desconocemos.

70 La interacción fuerte en LHC Además, LHC también está explorando la física de las colisiones de iones pesados (plasma de quarks y gluones), a energías más altas que RHIC. Colisiona núcleos de plomo (82 protones, neutrones)

71 La interacción fuerte en LHC Además, LHC también está explorando la física de las colisiones de iones pesados (plasma de quarks y gluones), a energías más altas que RHIC.

72 LHC Detectores registra los productos de las colisiones en puntos concretos del acelerador Acelerador acelera partículas subatómicas a velocidades comparables a c Análisis los datos de las colisiones son estudiados para desentrañar la estructura de las interacciones a nivel microscópico

73 LHC

74 LHC

75 LHC Circunferencia Temperatura de los dipolos Número de imanes Nº de dipolos principales Nº de cuadrupolos principales Nº de cavidades de radiofrecuencia Energía nominal (protones) Energía nominal (iones) Intensidad campo magnético (dipolos) Dist. Mínima entre paquetes Luminosidad nominal Nº de paquetes por haz de protones Nº de protones por paquete Nº de vueltas por segundo Nº de colisiones por segundo Energía por nucleón

76 LHC LHCb Atlas CMS Alice 2525

77 LHC

78 LHC

79 LHC

80 LHC > /? 6.D%EFGH&% #21#3% #4%5 *1%% 6/%7%8)9 % #211% :;<%5 *1%% 6/%=%8)9 % #212% 2;2:%5 *1%% 6/%=%8)9 %!"!!"12 " 1,;)$ABC$ E$?*7%D)*$ 2% :%5 *1%% %8)9 %!"#"$!"##$!"#$%&'()*+,%)-)./0%!"#$%&$'%()*+,-%./$&01.'%2$$!"##$!"12$%&'()*+,%)-)./0%% "#$%&$'%()*+,-%./$&01.'%2$$ 34)%($(15)%$1($*1%678$ 9:;;)6<$,-%./$.*7&&'%2&$$ 34)%($(15)%$1($*1%678$ 9:;;)6<$,-%./$.*7&&'%2&$$ I) ") C)!"# I)0'J.%-6(+)%% ")K,)L/)D%/M%N)% C)6L?)D%6/%OP12 4>% Q$%%!"#!$!"#2$%&'()*+,%)-)./0%% "#$%&$'%()*+,-%./$&01.'%2$$ >%

81 LHC 12$3045*#6&,7$ '(%"13$1-%"7%028#&,43$% )**$&+,#-./,&0+($!"#$%&''($!"#$%&#%'(%)&**&"#%$+$#,-.%!/(%0&**&"#%1$23"4,%562##$*-.%

82 LHC

En el interior de protones y neutrones La interacción fuerte. Carlos Pena

En el interior de protones y neutrones La interacción fuerte. Carlos Pena En el interior de protones y neutrones La interacción fuerte Carlos Pena Física de Partículas y Cosmología: del Big Bang al Bosón de Higgs CSIC, Abril-Mayo 2015 Plan La composición del Universo. Materia

Más detalles

en el corazón de la materia

en el corazón de la materia en el corazón de la materia la frontera de la física de la interacción fuerte Carlos Pena Desafíos de la Física Fundamental Residencia de Estudiantes, 13/11/2014 [Cosmic Voyage - Smithsonian Institution,

Más detalles

Física de partículas elementales

Física de partículas elementales Física de partículas elementales David G. Cerdeño Basado en transparencias de Carlos Pena Introducción a la Física de Partículas Elemementales y Teoría de Cuerdas CTIF 3-24 Febrero 2014 Plan Introducción:

Más detalles

Aceleradores de Partículas. El Gran Colisionador de Hadrones (LHC) Carlos Pena

Aceleradores de Partículas. El Gran Colisionador de Hadrones (LHC) Carlos Pena Aceleradores de Partículas El Gran Colisionador de Hadrones (LHC) Carlos Pena Constituyentes de la materia Constituyentes de la materia Partículas fundamentales Átomos: moléculas electromagnéticas Mesones

Más detalles

UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS. Esperanza López Manzanares

UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS. Esperanza López Manzanares UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS Esperanza López Manzanares EL CORAZON DE LA MATERIA: EL NUCLEO ATOMICO átomos en un cristal EL CORAZON DE LA MATERIA: EL NUCLEO ATOMICO átomos en un

Más detalles

Introducción a la Física de Partículas: El Modelo Estándar

Introducción a la Física de Partículas: El Modelo Estándar Introducción a la Física de Partículas: El Modelo Estándar J. Martin Camalich Theoretical Physics Department, CERN jorge.martin.camalich@cern.ch Programa español del CERN para profesores 26 de Junio 2017

Más detalles

La Frontera de la Física de Partículas. Modelo Estándar, Higgs,...

La Frontera de la Física de Partículas. Modelo Estándar, Higgs,... La Frontera de la Física de Partículas. Modelo Estándar, Higgs,... Curso para profesores CSIC, 2015 Alberto Casas (IFT-CSIC/UAM, Madrid) LHC EL LHC es una máquina para acelerar y hacer chocar protones

Más detalles

El Bosón de Higgs. Un descubrimiento con contribución española. Fernando Cornet Univ. De Granada CPAN

El Bosón de Higgs. Un descubrimiento con contribución española. Fernando Cornet Univ. De Granada CPAN El Bosón de Higgs Un descubrimiento con contribución española Fernando Cornet Univ. De Granada CPAN Premio Príncipe de Asturias 2013 Premio Nobel de Física 2013 El descubrimiento teórico de un mecanismo

Más detalles

LHC : Large. Hadron. Collider. Gran colisionador de hadrones. Gabriel González Sprinberg Facultad de Ciencias, Uruguay

LHC : Large. Hadron. Collider. Gran colisionador de hadrones. Gabriel González Sprinberg Facultad de Ciencias, Uruguay LHC : Large Hadron Collider Gran colisionador de hadrones Gabriel González Sprinberg Facultad de Ciencias, Uruguay Gabriel González Sprinberg, LHC, 2008 1 LHC : Large Hadron Collider Gran colisionador

Más detalles

La Física de Partículas a Principios del Siglo XXI

La Física de Partículas a Principios del Siglo XXI La Física de Partículas a Principios del Siglo XXI Octubre 2004 John ELLIS CERN, Ginebra, Suiza Dentro de la Materia Toda la materia está hecha de los mismos constituyentes Cuáles son? Cuáles son sus interacciones?

Más detalles

La partícula de Higgs. Gabriel González Sprinberg Facultad de Ciencias, Uruguay

La partícula de Higgs. Gabriel González Sprinberg Facultad de Ciencias, Uruguay Gabriel González Sprinberg Facultad de Ciencias, Uruguay 1 1. Dónde 2. Qué 3. Cómo 4. Futuro Gabriel González Sprinberg,, Facultad de Ingeniería, 2012 2 1. Dónde CERN: Laboratorio europeo para física de

Más detalles

La física de las interacciones fundamentales

La física de las interacciones fundamentales La física de las interacciones fundamentales J. Fernando Barbero G. Instituto de Estructura de la Materia, CSIC. Semana de la Ciencia 2017 15 de noviembre de 2017. J. Fernando Barbero G. (IEM-CSIC) Int.

Más detalles

PARTÍCULAS. un mundo dentro de cada átomo

PARTÍCULAS. un mundo dentro de cada átomo PARTÍCULAS un mundo dentro de cada átomo CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? PASIÓN POR EL ORDEN PASIÓN POR EL ORDEN Las propiedades de

Más detalles

El Experimento ATLAS

El Experimento ATLAS El Experimento ATLAS Por MSc. Yohany Rodríguez García Docente Investigador Universidad Antonio Nariño Semana de la Ciencia y la Tecnología Biblioteca Luis Angel Arango Bogotá, Oct. 4 de 2012 Para qué se

Más detalles

El Higgs ha llegado. Gabriel González Sprinberg Facultad de Ciencias, Uruguay

El Higgs ha llegado. Gabriel González Sprinberg Facultad de Ciencias, Uruguay Gabriel González Sprinberg Facultad de Ciencias, Uruguay 1. Dónde 2. Qué 3. Cómo 4. Futuro 2 1. Dónde CERN: Laboratorio europeo para física de partículas, 1954 LHC: Gran Colisionador de hadrones, 2008

Más detalles

Qué es la Física de Partículas?

Qué es la Física de Partículas? Qué es la Física de Partículas? Dra. en Ciencias Físicas CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas) Marzo 2004 Qué es la Física de Partículas? La Física de Partículas

Más detalles

PARTÍCULAS. un mundo dentro de cada átomo

PARTÍCULAS. un mundo dentro de cada átomo PARTÍCULAS un mundo dentro de cada átomo CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? CAOS O CAPRICHO? PASIÓN POR EL ORDEN PASIÓN POR EL ORDEN Las propiedades de

Más detalles

Partículas fundamentales: Introducción al Modelo Estándar

Partículas fundamentales: Introducción al Modelo Estándar Capítulo 2 Partículas fundamentales: Introducción al Modelo Estándar Desde la antigüedad se ha dicho que la materia está compuesta por entidades llamadas átomos. Ahora sabemos que éstos átomos están compuestos

Más detalles

Noche de los Investigadores, Museo Ciencia VA, 2012 TODO (?) SOBRE EL BOSÓN DE HIGGS

Noche de los Investigadores, Museo Ciencia VA, 2012 TODO (?) SOBRE EL BOSÓN DE HIGGS Noche de los Investigadores, Museo Ciencia VA, 2012 1 TODO (?) SOBRE EL BOSÓN DE HIGGS Mariano Santander Universidad de Valladolid 2 CERN, 4 de Julio de 2012. 400 años de Ciencia (solamente!) 3 Desde Mysterium

Más detalles

MATERIA Y ANTIMATERIA

MATERIA Y ANTIMATERIA MATERIA Y ANTIMATERIA La materia normal está formada por partículas elementales que en su combinación forman las partículas subatómicas que conforman a su vez al átomo. Esta combinación de partículas elementales

Más detalles

El colisionador protón-protón LHC del CERN y el experimento LHCb

El colisionador protón-protón LHC del CERN y el experimento LHCb El colisionador protón-protón LHC del CERN y el experimento LHCb Arantza Oyanguren Masterclass 2 de Marzo de 2016 Arantza.Oyanguren@ific.uv.es Para entender de que está hecha la materia a la escala más

Más detalles

El bosón de Higgs. Joaquín Gómez Camacho Centro Nacional de Aceleradores (U. Sevilla- J. Andalucía CSIC)

El bosón de Higgs. Joaquín Gómez Camacho Centro Nacional de Aceleradores (U. Sevilla- J. Andalucía CSIC) El bosón de Higgs Joaquín Gómez Camacho Centro Nacional de Aceleradores (U. Sevilla- J. Andalucía CSIC) Reunido en Oviedo el Jurado del Premio Príncipe de Asturias de Investigación Científica y Técnica

Más detalles

1 Clasificación de las partículas elementales. Terminología

1 Clasificación de las partículas elementales. Terminología 1 Clasificación de las partículas elementales. Terminología Inicialmente se pretendió catalogar a las partículas elementales en función de su masa y se asignaron los nombres de leptones, mesones y bariones

Más detalles

ntonio Ferrer IFIC Universidad de Valencia-CSIC) atedrático de Física Atómica, Molecular y Nuclear

ntonio Ferrer IFIC Universidad de Valencia-CSIC) atedrático de Física Atómica, Molecular y Nuclear adrid, MNCyT, 17 de febrero de 2005 0 aniversario del CERN El mundo subnuclear en los años 50-60 (El nacimiento del CERN) ntonio Ferrer IFIC Universidad de Valencia-CSIC) atedrático de Física Atómica,

Más detalles

La física del plasma primordial del Universo en los tres primeros minutos: Un reto para la física

La física del plasma primordial del Universo en los tres primeros minutos: Un reto para la física La física del plasma primordial del Universo en los tres primeros minutos: Un reto para la física Carlos Jose Quimbay Herera Grupo de Campos y Partículas Profesor Asociado Departamento de Física Universidad

Más detalles

El descubrimiento del bosón de Higgs. Gabriel González Sprinberg Facultad de Ciencias, Uruguay

El descubrimiento del bosón de Higgs. Gabriel González Sprinberg Facultad de Ciencias, Uruguay Gabriel González Sprinberg Facultad de Ciencias, Uruguay 1 1. Dónde 2. Cómo 3. Qué 4. Futuro 2 Dónde CERN: Laboratorio europeo para física de partículas, 1954 LHC: Gran Colisionador de hadrones, 2008 Estudios

Más detalles

I / III Partículas elementales: Modelo Estándar (1974)

I / III Partículas elementales: Modelo Estándar (1974) I / III Partículas elementales: Modelo Estándar (1974) El Modelo Estándar parte de la existencia de tres clases de partículas: 1 Partículas materiales, (como electrones, protones, y quarks). 2 Partículas

Más detalles

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio.

2 La carga del electrón fue determinada por primera vez en: D Difracción de electrones a partir del papel de aluminio. Slide 1 / 32 1 Un Tubo de Crooke (un tubo que contiene gas rarificado a través del cual se hace pasar una corriente entre un cátodo y un ánodo) fue utilizado en el descubrimiento del electrón por: A R.

Más detalles

Física Nuclear y de Partículas 2005/2006 Tema 1

Física Nuclear y de Partículas 2005/2006 Tema 1 TEMA 1 INTRODUCCIÓN. CONCEPTOS BÁSICOS CONTENIDOS Breve introducción histórica. Átomos, electrones y núcleos. Quarks y leptones. Interacciones fundamentales. Escala de las fuerzas y distancias subatómicas.

Más detalles

Capítulo 1. Introducción a la física Te habías imaginado que

Capítulo 1. Introducción a la física Te habías imaginado que Capítulo 1. Introducción a la física Te habías imaginado que Una clase de partículas fundamentales: los quarks Durante mucho tiempo el ser humano consideró a los átomos los constituyentes indivisibles

Más detalles

Los grandes aceleradores y experimentos del CERN

Los grandes aceleradores y experimentos del CERN Valencia, 21 de Octubre de 2004 50 aniversario del CERN Los grandes aceleradores y experimentos del CERN Antonio Ferrer (IFIC Universidad de Valencia-CSIC) Catedrático de Física Atómica, Molecular y Nuclear

Más detalles

Física de Partículas. Curso para profesores de Bachillerato. Jesús Puerta Pelayo CIEMAT- Madrid Enero/Febrero 2015

Física de Partículas. Curso para profesores de Bachillerato. Jesús Puerta Pelayo CIEMAT- Madrid Enero/Febrero 2015 Física de Partículas Curso para profesores de Bachillerato Jesús Puerta Pelayo CIEMAT- Madrid Enero/Febrero 2015 Física de partículas Motivación Asumiendo que la naturaleza está compuesta por bloques fundamentales

Más detalles

1. El Modelo Estándar de la física de partículas. 2. Clasificación de las partículas: fermiones y bosones

1. El Modelo Estándar de la física de partículas. 2. Clasificación de las partículas: fermiones y bosones Curso 21-22 QUARKS Y LEPTONES 1. El Modelo Estándar de la física de partículas 2. Clasificación de las partículas: fermiones y bosones 3. Partículas y antipartículas 4. Sabores leptónicos 5. Sabores de

Más detalles

Desintegraciones del bosón W

Desintegraciones del bosón W Desintegraciones del bosón W Preparación para el ejercicio práctico David G. Cerdeño Partículas fundamentales Mesones y Bariones Ésta es la partícula que vamos a estudiar ATLAS Detectando las Partículas

Más detalles

Ley de Coulomb: F = Porqué el núcleo atómico no es inestable? Existen fuerzas nucleares que mantienen estable al núcleo. 1 q.

Ley de Coulomb: F = Porqué el núcleo atómico no es inestable? Existen fuerzas nucleares que mantienen estable al núcleo. 1 q. El Núcleo N Atómico Electrones con carga negativa rodean al núcleo atómico. Porqué generalmente el átomo no tiene carga? El núcleo atómico tiene cargas positivas (protones). 1 q Ley de Coulomb: F = 1 q

Más detalles

EL Proyecto LHC 1ª Parte Física Experimental de Partículas

EL Proyecto LHC 1ª Parte Física Experimental de Partículas π + p EL Proyecto LHC 1ª Parte Física Experimental de Partículas π - π - k 0 Juan A. Fuster Verdú IFIC-València Benasque, Julio 2004 π - Λ Agradecemientos (discusiones, material..) J.E. García-Navarro

Más detalles

El bosón de Higgs. Programa de formación profesores caribeños en el CERN. Daniel Domínguez Vázquez

El bosón de Higgs. Programa de formación profesores caribeños en el CERN. Daniel Domínguez Vázquez El bosón de Higgs Programa de formación profesores caribeños en el CERN Daniel Domínguez Vázquez daniel.dominguez.vazquez@cern.ch Índice 1) Historia y motivación del mecanismo de BroutEnglert-Higgs. 2)

Más detalles

LA PARTÍCULA DE DIOS. Ing. Armando Nevares

LA PARTÍCULA DE DIOS. Ing. Armando Nevares LA PARTÍCULA DE DIOS Ing. Armando Nevares CONTENIDO: 1) Homenaje a los premios Nobel de Física 2013. 1) La partícula de Dios. HOMENAJE A PREMIOS NOBEL DE FÍSICA 2013 El premio Nobel de Física 2013 corresponde

Más detalles

Premios Nobel de física 2004

Premios Nobel de física 2004 IES La Cañada 2004 Premios Nobel de física 2004 David J. Gross ITP Frank Wilzeck MIT David Politzer Caltech Por el descubrimiento de la libertad asintótica en la teoría de las interacciones fuertes M.

Más detalles

Introducción a la Física de Partículas

Introducción a la Física de Partículas Introducción a la Física de Partículas Higgs o no Higgs? No es la única pregunta que estudiamos en la física de partículas John Ellis King s College Londres (y CERN) De dónde venimos? Qué somos? Adónde

Más detalles

Qué es el bosón de Higgs? Carlos Sandoval Universidad Antonio Nariño 01/10/2012

Qué es el bosón de Higgs? Carlos Sandoval Universidad Antonio Nariño 01/10/2012 Qué es el bosón de Higgs? Universidad Antonio Nariño Semana de la ciencia y la tecnología 2012 Biblioteca Luis Angel Arango 01/10/2012 1 Contenido Motivación Partículas elementales e interacciones El modelo

Más detalles

FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS. José Luis Rodríguez Blanco

FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS. José Luis Rodríguez Blanco FÍSICA MODERNA FÍSICA NUCLEAR Y DE PARTÍCULAS José Luis Rodríguez Blanco Fenómenos radiactivos H. Becquerel (1896): Sales de uranio emiten una radiación sumamente penetrante independiente del estado de

Más detalles

De que estamos hechos?

De que estamos hechos? De que estamos hechos? Moléculas, átomos, núcleos, partículas, quarks Ricardo Piegaia Depto. de Física - FCEyN Mayo 2005 Toda la materia está formada por átomos y moléculas Hay miles de millones de moléculas

Más detalles

Plan de Estudios. Doctorado en Física

Plan de Estudios. Doctorado en Física Plan de Estudios CONTENIDOS 1) Presentación 5) Objetivos 2) Requisitos 6) Cursos Obligatorios 3) Plan de Estudios / Duración 7) Cursos Sugeridos 4) Tabla de Créditos 1) Presentación Su programa de Doctorado

Más detalles

Problemas de Partículas 2011

Problemas de Partículas 2011 Problemas de Partículas 2011 Serie 1 1. Se acelera un protón en un acelerador lineal a 0.5 GV. Calcular la longitud de onda asociada al mismo utilizando el sistema de unidades naturales. cuánto valdrá

Más detalles

El núcleo y las partículas subatómicas

El núcleo y las partículas subatómicas La radiactividad y su naturaleza En 896 el físico A. Henry Becquerel descubrió que un mineral de uranio, denominado pechblenda, era capaz de impresionar placas fotográficas protegidas de la luz solar,

Más detalles

Física Nuclear Preguntas de Opción Múltiple

Física Nuclear Preguntas de Opción Múltiple Física Nuclear Preguntas de Opción Múltiple PSI Física Nombre: 1. Un elemento químico desconocido se representa como: Z X. Cuál es el nombre de Z? A. Número de masa atómica B. Número atómico C. Número

Más detalles

El dominio de la Física Nuclear

El dominio de la Física Nuclear Tema 1 El dominio de la Física Nuclear Asignatura de Física Nuclear Curso académico 2012/2013 Universidad de Santiago de Compostela El dominio de la Física Nuclear Estudio de la materia ligada por la interacción

Más detalles

Juan Martín Maldacena. Institute for Advanced Study

Juan Martín Maldacena. Institute for Advanced Study La simetría y simplicidad de las Leyes de la Física Juan Martín Maldacena Institute for Advanced Study La bella y la bestia Simetría Simplicidad Elegancia Fuerzas de la naturaleza Electromagnetismo débil

Más detalles

Aceleradores y Partículas Elementales. Jesús Marco de Lucas, investigador del CSIC en el Instituto de Física de Cantabria (IFCA)

Aceleradores y Partículas Elementales. Jesús Marco de Lucas, investigador del CSIC en el Instituto de Física de Cantabria (IFCA) Aceleradores y Partículas Elementales Jesús Marco de Lucas, investigador del CSIC en el Instituto de Física de Cantabria (IFCA) 1 De qué esta hecho el Universo? Grecia, hace unos 2500 años: CONTINUO (Aristóteles)

Más detalles

Nacimiento de la teoría cuántica Antecedentes

Nacimiento de la teoría cuántica Antecedentes Estructura de la Materia Nacimiento de la teoría cuántica Antecedentes Martha M. Flores Leonar FQ UNAM 10 de febrero de 2016 CONTENIDO Magnitudes atómicas Nacimiento de la teoría cuántica Descubrimiento

Más detalles

La estructura atómica: el núcleo

La estructura atómica: el núcleo Tema 1 La estructura atómica: el núcleo Introducción. Modelos atómicos Composición del átomo. Partículas fundamentales Estructura del núcleo Estabilidad nuclear y energía de enlace nuclear Aplicaciones

Más detalles

BUSCANDO EL BOSÓN DE HIGGS

BUSCANDO EL BOSÓN DE HIGGS BUSCANDO EL BOSÓN DE HIGGS José Ignacio Calvo I.E.S. Condes de Saldaña Saldaña Lunes, 28 de Noviembre de 2016 FISICA MODERNA De dónde viene la materia? Átomos, Protones y Electrones Quarks y Leptones Campo

Más detalles

Aceleradores de partículas: LHC

Aceleradores de partículas: LHC Aceleradores de partículas: LHC HST WMAP HST WMAP HST WMAP HST Cada escenario de física, diagnóstico médico o terapia requiere un acelerador diferente!!! WMAP HST CERN SPS 19 Large Hadron Collider

Más detalles

La partícula invisible: El Neutrino

La partícula invisible: El Neutrino La partícula invisible: El Neutrino por Roberto A. Lineros Rodriguez. rlineros@gmail.com Pontificia Universidad Católica de Chile. Charla Colegio Santa Cecilia p. 1/15 Motivación y Temario Dar un vistazo

Más detalles

U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON

U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON M. C. Q. Alfredo Velásquez Márquez Modelo Atómico de J. J. Thomson Electrones de Carga Negativa

Más detalles

Necesidad de un acelerador lineal: grupo de nuevos aceleradores

Necesidad de un acelerador lineal: grupo de nuevos aceleradores Necesidad de un acelerador lineal: grupo de nuevos aceleradores 22 de julio de 2016 Índice Necesidad de un acelerador lineal 1 Necesidad de un acelerador lineal 2 Acelerador circular vs. acelerador lineal

Más detalles

Introducción a la Física de Partículas

Introducción a la Física de Partículas Introducción a la Física de Partículas Campus Científico de Verano 2011 Campus Vida, USC Inés Valiño Rielo El pensador (tú & yo) El hombre se ha preguntado desde hace mucho tiempo, "De qué está hecho el

Más detalles

EL BOSÓN DE HIGGS 2 4 preguntas

EL BOSÓN DE HIGGS 2 4 preguntas El Bosón de Higgs es uno de los objetos principales de estudio de la línea de investigación de Física de Altas Energías del Instituto de Física de Cantabria: tanto desde el punto de vista experimental,

Más detalles

Bosón de Higgs: qué es y por qué es tan importante

Bosón de Higgs: qué es y por qué es tan importante Bosón de Higgs: qué es y por qué es tan importante Guía para entender la importancia de la partícula que explicaría el origen de la masa Qué es el bosón de Higgs? Es un tipo de partícula elemental que

Más detalles

= FISICA MODERNA = TEMAS DE LA FISICA MODERNA ESTRUCTURA ATOMICA TEORIA CUANTICA EFECTO FOTOELECTRICO MODELO DEL ATOMO DE BOHR RADIACTIVIDAD

= FISICA MODERNA = TEMAS DE LA FISICA MODERNA ESTRUCTURA ATOMICA TEORIA CUANTICA EFECTO FOTOELECTRICO MODELO DEL ATOMO DE BOHR RADIACTIVIDAD = FISICA MODERNA = TEMAS DE LA FISICA MODERNA ESTRUCTURA ATOMICA TEORIA CUANTICA EFECTO FOTOELECTRICO MODELO DEL ATOMO DE BOHR RADIACTIVIDAD RELATIVIDAD ESTRUCTURA ATOMICA LA MODERNA INVESTIGACIÓN DE LA

Más detalles

ANÁLISIS DE MUONES CÓSMICOS CON EL DETECTOR DE MUONES DEL EXPERIMENTO CMS DEL ACELERADOR LHC

ANÁLISIS DE MUONES CÓSMICOS CON EL DETECTOR DE MUONES DEL EXPERIMENTO CMS DEL ACELERADOR LHC ANÁLISIS DE MUONES CÓSMICOS CON EL DETECTOR DE MUONES DEL EXPERIMENTO CMS DEL ACELERADOR LHC Máster en Física Fundamental Javier Santaolalla Camino CIEMAT Junio de 2008 Facultad de Ciencias Físicas Universidad

Más detalles

[ notas. FÍSICA ] El bosón de Higgs

[ notas. FÍSICA ] El bosón de Higgs [ notas. FÍSICA ] El bosón de Higgs El pasado 4 de julio, en el Laboratorio CERN, en Ginebra, Suiza, los voceros de los experimentos CMS y ATLAS anunciaron en rueda de prensa haber observado un bosón neutro

Más detalles

Contenido. Motivaciones. El Gran Colisionador de Hadrones. Los grandes experimentos. Después del Gran Colisionador de Hadrones.

Contenido. Motivaciones. El Gran Colisionador de Hadrones. Los grandes experimentos. Después del Gran Colisionador de Hadrones. Contenido Motivaciones El Gran Colisionador de Hadrones Los grandes experimentos Después del Gran Colisionador de Hadrones Resumen 28/04/2016 Lizardo Valencia Palomo 2 MOTIVACIONES El Modelo Estándar Modelo

Más detalles

Modelos atómicos. JOHN DALTON: Modelo atómico en forma de esfera

Modelos atómicos. JOHN DALTON: Modelo atómico en forma de esfera M1 Modelos atómicos JOHN DALTON: Modelo atómico en forma de esfera Muchos años después de que se planteó la existencia de los átomos y que éstos eran la parte fundamental de todo lo que fuera materia,

Más detalles

REVISTA CUBANA DE FÍSICA Vol. 22, No. 2, 2005

REVISTA CUBANA DE FÍSICA Vol. 22, No. 2, 2005 REVISTA CUBANA DE FÍSICA Vol., No., 005 EINSTEIN Y LAS TEORÍAS DE UNIFICACIÓN DE CAMPOS H. Pérez Rojas 1 and E. Rodríguez Querts Instituto de Cibernética, Matemática y Física, Ciudad de La Habana, Cuba

Más detalles

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear Esta parte de la Física estudia el comportamiento de los núcleos atómicos Física nuclear CORTEZA Electrones NÚCLEO Protones Neutrones PARTÍCULA CARGA MASA Electrón (e - ) -1,6.10-19 C 9,1.10-31 kg Protón

Más detalles

Teoría atómica de Dalton (1803)

Teoría atómica de Dalton (1803) EL ÁTOMO DIVISIBLE El átomo Desde los tiempos de la antigua Grecia,los pensadores se preguntaban cómo estaba constituida la materia en su interior? Demócrito (S.V a.c.) introduce el término de átomo como

Más detalles

Capitulo 6 La historia termica del Universo. no solo la estructura, sino tambien el origin del Universo es un topico en la cosmologia sabemos que

Capitulo 6 La historia termica del Universo. no solo la estructura, sino tambien el origin del Universo es un topico en la cosmologia sabemos que Capitulo 6 La historia termica del Universo 6.1 Temperatura, energia y particulas no solo la estructura, sino tambien el origin del Universo es un topico en la cosmologia sabemos que T ~1 z valido para

Más detalles

Graciela B. Gelmini. Department of Physics and Astronomy, University of California, Los Angeles (UCLA), 475 Portola Plaza, Los Angeles, CA 90095, USA.

Graciela B. Gelmini. Department of Physics and Astronomy, University of California, Los Angeles (UCLA), 475 Portola Plaza, Los Angeles, CA 90095, USA. El Bosón de Higgs Palabras clave: Modelo Estándar de las Partículas Elementales, Bosón de Higgs, el origen de la masa. Key words: Standard Model of Elementary Particles, Higgs Boson, origin of mass. En

Más detalles

Supersimetría: una simetría fundamental de la naturaleza?

Supersimetría: una simetría fundamental de la naturaleza? Supersimetría: una simetría fundamental de la naturaleza? Juan Carlos Sanabria Departamento de Física UNIVERSIDAD DE LOS ANDES Bogotá, Colombia Semana de la Ciencia y la Tecnología 2012. Bogotá, Octubre

Más detalles

Fuerzas. Las fuerzas que determinan la estructura del Universo son las siguientes:

Fuerzas. Las fuerzas que determinan la estructura del Universo son las siguientes: Fuerzas Las fuerzas que determinan la estructura del Universo son las siguientes: Fuerza Fuerte. Es determinante para entender la estabilidad de los nucleos atómicos Fuerza Electromagnética. Determina

Más detalles

Nombre de la signatura Fisica Nuclear y de Particulas Código Curso / Grupos 5/1. Créditos LRU Teóricos 4.5

Nombre de la signatura Fisica Nuclear y de Particulas Código Curso / Grupos 5/1. Créditos LRU Teóricos 4.5 GUÍA DE LA ASIGNATURA TÍTULO DE LA ASIGNATURA Lic. CC. Fisicas Fisica Nuclear y de Particulas Facultad Química. Titulación de Ciencias Fisicas 1-Identificación 1.1. De la asignatura Nombre de la signatura

Más detalles

Modelo atómico de Thomson

Modelo atómico de Thomson Modelo atómico de Dalton. Ésta es la primera teoría científica que considera que la materia está dividida en átomos Modelo atómico de Thomson Introduce la idea de que el átomo puede dividirse en las llamadas

Más detalles

Introducción a la Física Jorge Reyes TGT

Introducción a la Física Jorge Reyes TGT 4.3 Física de Partículas 4.3.1 Partículas Elementales * Hadrones: partículas con volumen - Hadrones pesados: Bariones (p, n, etc) - Hadrones livianos: Mesones * Leptones: partículas puntuales * Partículas

Más detalles

VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO

VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO Esperanza López Instituto de Física Teórica UAM/CSIC Materia e interacciones nuestro mundo se compone de materia e interacciones Materia

Más detalles

Bosón de Higgs, Modelo Standard y el LHC

Bosón de Higgs, Modelo Standard y el LHC Bosón de Higgs, Modelo Standard y el LHC A. Pérez Martínez and H. Pérez Rojas Instituto de Cibernética, Matemática y Física, Calle E 309, Vedado, Ciudad Habana, Cuba. (Dated: 31 de enero de 2013) Este

Más detalles

Técnico Profesional QUÍMICA

Técnico Profesional QUÍMICA Convenio Programa Técnico Profesional QUÍMICA Modelos atómicos, estructura atómica y tipos de átomos Nº Ejercicios PSU 1. Rutherford, luego de realizar pruebas con una lámina de oro bombardeada por partículas

Más detalles

FÍSICA NUCLEAR. Física 2º bachillerato Física nuclear 1

FÍSICA NUCLEAR. Física 2º bachillerato Física nuclear 1 FÍSICA NUCLEAR 1. Radioactividad. 2. Desintegración radioactiva. 3. El nucleo. 4. Las reacciones nucleares. 5. Partículas elementales. 6. Interacciones y unificación. Física 2º bachillerato Física nuclear

Más detalles

Primer criodipolo: 7 Marzo 2005

Primer criodipolo: 7 Marzo 2005 Primer criodipolo: 7 Marzo 2005 Último criodipolo: 26 Abril 2007 L. Evans EDMS Document 884743 Interconexiones en el túnel 65 000 junturas eléctricas Soldadura por inducción-térmica Soldadura ultrasónica

Más detalles

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo.

Slide 1 / 33. Slide 2 / 33. Slide 3 / El número atómico es equivalente a cuál de los siguientes? A El número de neutrones del átomo. Slide 1 / 33 Slide 2 / 33 3 El número atómico es equivalente a cuál de los siguientes? Slide 3 / 33 A El número de neutrones del átomo. B El número de protones del átomo C El número de nucleones del átomo.

Más detalles

Cuál es el origen de la masa?

Cuál es el origen de la masa? Cuál es el origen de la masa? El modelo estándar de las interacciones fundamentales de la naturaleza ha resuelto el enigma del origen de la masa de las partículas elementales. Su confirmación experimental

Más detalles

El mundo invisible. José Traver Nuevas Tecnologías Universidad para Mayores - UJI

El mundo invisible. José Traver Nuevas Tecnologías Universidad para Mayores - UJI El mundo invisible José Traver traver.correo@gmail.com Nuevas Tecnologías Universidad para Mayores - UJI De qué se componen las cosas? En la antigüedad... Tales de Mileto (siglo VII a.c.): todo estaba

Más detalles

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS

ÁTOMO ~ m NÚCLEO ~ mnucleón < m. MATERIA ~ 10-9 m. Átomo FÍSICA MATERIALES PARTÍCULAS ESTRUCTURA DE LA MATERIA Grupo D CURSO 20011 2012 EL NÚCLEO ATÓMICO DE QUÉ ESTÁN HECHAS LAS COSAS? MATERIA ~ 10-9 m Átomo FÍSICA MATERIALES ÁTOMO ~ 10-10 m NÚCLEO ~ 10-14 mnucleón < 10-15 m Electrón Protón

Más detalles

El bosón de Higgs, la última partícula

El bosón de Higgs, la última partícula El bosón de Higgs El bosón de Higgs, la última partícula La física es una ciencia experimental: solo acepta como un hecho científico aquello que es medible y reproducible experimentalmente. La historia

Más detalles

Cromodinámica Cuántica: el color de los quarks

Cromodinámica Cuántica: el color de los quarks Cromodinámica Cuántica: el color de los quarks Jorge Casaus, Javier Rodríguez y Eusebio Sánchez Departamento de Fusión y Física de Partículas Elementales. CIEMAT El premio Nobel de física del año 2004

Más detalles

PROFESORES / TUTORES. Ignacio Torres Morales Medicina 2do año Catalina Gutiérrez Derecho 2do año

PROFESORES / TUTORES. Ignacio Torres Morales Medicina 2do año Catalina Gutiérrez Derecho 2do año QUIMICA COMUN PROFESORES / TUTORES Ignacio Torres Morales Medicina 2do año itorresm@udd.cl Catalina Gutiérrez Derecho 2do año cagutierreze@udd.cl MODELOS ATÓMICOS IDEAS GENERALES ANTECEDENTES Se establece

Más detalles

TEMA 36. FUERZAS FUNDAMENTALES DE LA NATURALEZA: GRAVITATORIA, ELECTROMAGNÉTICA, FUERTE Y DEBIL. PARTÍCULAS IMPLICADAS.

TEMA 36. FUERZAS FUNDAMENTALES DE LA NATURALEZA: GRAVITATORIA, ELECTROMAGNÉTICA, FUERTE Y DEBIL. PARTÍCULAS IMPLICADAS. TEMA 36. FUERZAS FUNDAMENTALES DE LA NATURALEZA: GRAVITATORIA, ELECTROMAGNÉTICA, FUERTE Y DEBIL. PARTÍCULAS IMPLICADAS. ESTADO ACTUAL DE LAS TEORÍAS DE UNIFICACIÓN. Fuerzas fundamentales de la naturaleza:

Más detalles

Transiciones de Fase en Cosmología

Transiciones de Fase en Cosmología Transiciones de Fase en Cosmología Rodrigo Herrera C. Pontificia Universidad Católica de Chile Astronomía 1 Partículas Elementales y sus Interacciones Durante el Siglo XIX, y partir de los trabajos de

Más detalles

El Bosón de Higgs: masivo descubrimiento

El Bosón de Higgs: masivo descubrimiento El Bosón de Higgs: masivo descubrimiento Desde el 4 de julio pasado circula por todos los medios impresos, radiales, televisivos y electrónicos, la noticia del descubrimiento del Bosón de Higgs. Comentarios

Más detalles

Energía de ligadura del núcleo.

Energía de ligadura del núcleo. Energía de ligadura del núcleo. Página 1 El agregado de protones y neutrones dentro del núcleo se mantiene unido por fuertes fuerzas de atracción entre los nucleones. También existen fuerzas de repulsión

Más detalles

25 12 Mg. 1. En la especie el numero atómico corresponde a: A) 22 B) 12 C) 25 D) 13 E) ninguna de las anteriores.

25 12 Mg. 1. En la especie el numero atómico corresponde a: A) 22 B) 12 C) 25 D) 13 E) ninguna de las anteriores. MINIPRUEBA CLASE 02 25 12 Mg 1. En la especie el numero atómico corresponde a: A) 22 B) 12 C) 25 D) 13 E) ninguna de las anteriores. 25 12 Mg Z 2. Se puede afirmar que: I) La masa del electrón es aproximadamente

Más detalles

Evolución del conocimiento de la electricidad

Evolución del conocimiento de la electricidad Cargas Eléctricas Evolución del conocimiento de la electricidad 640-546 A.C. 1500 1600 1700 1800 1900 2000 B. Franklin Charles Coulomb K. F. Gauss G.S. Ohm G. R. Kirchhoff A. M. Ampère M. Faraday J. K.

Más detalles

MANUEL AGUILAR BENITEZ DE LUGO REAL ACADEMIA DE CIENCIAS FUNDACIÓN BBVA, 16 ENERO 2014

MANUEL AGUILAR BENITEZ DE LUGO REAL ACADEMIA DE CIENCIAS FUNDACIÓN BBVA, 16 ENERO 2014 EL CERN Y EL DESCUBRIMIENTO DE LAS PARTÍCULAS SUBATÓMICAS MANUEL AGUILAR BENITEZ DE LUGO REAL ACADEMIA DE CIENCIAS FUNDACIÓN BBVA, 16 ENERO 2014 ARISTÓTELES 384 a.c 322 a.c TODOS LOS HOMBRES, POR NATURALEZA,

Más detalles

Andrés Aceña. Cosmología, o... dónde estamos, de dónde venimos y a dó

Andrés Aceña. Cosmología, o... dónde estamos, de dónde venimos y a dó Cosmología o... dónde estamos, de dónde venimos y a dónde vamos? La charla Algo de Relatividad General El universo y cómo recibimos información El principio copernicano La ley de Hubble Distribución de

Más detalles

QUIMICA GENERAL. Docente : Raquel Villafrades Torres

QUIMICA GENERAL. Docente : Raquel Villafrades Torres Universidad Pontificia Bolivariana QUIMICA GENERAL Docente : Raquel Villafrades Torres TEORIA ATOMICA DE DALTON (1808) BASES Ley de conservación de la masa: La masa total de las sustancias presentes después

Más detalles

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En

Más detalles

El bosón de Higgs en el acelerador de partículas LHC (Large Hadron Collider) del CERN

El bosón de Higgs en el acelerador de partículas LHC (Large Hadron Collider) del CERN El bosón de Higgs en el acelerador de partículas LHC (Large Hadron Collider) del CERN Begoña de la Cruz CIEMAT-Madrid EUITA-ETSIA-EIAE (UPM) 30-Nov, 2012 CERN European Centre for Nuclear Research En el

Más detalles

El sabor de los neutrinos

El sabor de los neutrinos El sabor de los neutrinos Ulises Solís Hernández Nuestro planeta sufre continuamente impactos de distintos objetos que en su camino a través del espacio exterior se topan con la Tierra. Algunos de estos

Más detalles