Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Facultad de Ciencias UNAM. Diferenciación Numérica. Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico"

Transcripción

1 Facultad de Ciencias UNAM Tema: Diferenciación Numérica Alumno: Siddhartha Estrella Gutiérrez. Materia: Análisis Numérico Profesor: Pablo Barrera

2 2 INDICE Preliminares 3 Diferenciación numérica 5 Ejemplos 7 Ordenes superiores...9

3 3 PRELIMINARES Fórmula de Newton: Pagina (41) La fórmula de Newton puede ser escrita de manera compacta como: Donde es el polinomio de interpolación son las diferencias divididas son los puntos de interpolación con j=0,,n Las diferencias divididas son de la siguiente forma: Y así sucesivamente de manera recursiva de tal manera que la regla general es: Error Polinomial: Pagina 51 Si es una función de variable real en el intervalo tal que son n+1 puntos distintos. En el intervalo tal que es el polinomio de interpolación que interpola a la función en los puntos. Entonces el error esta dado por: Si tomamos como un punto distinto de. Si es el polinomio de grado < = n + 1 que interpola a en y en entonces tal que

4 4 A lo que sigue Por lo que para todo Por lo que el error queda en términos del siguiente término de la forma de newton Igualdad 2.37 Página 66 Si es continua para toda x y es suficientemente suave se sigue que: Para toda y no solo para Igualdad 2.38 Página 67 Además: Igualdad 2.17 Página 52 Sea f(x) una función de variable real, definida en [a,b] y k veces diferenciable en (a,b) entonces si son k+1 puntos distintos en [a,b] existe tal que Para k=1 es el teorema del valor medio.

5 5 DIFERENCIACIÓN NUMÉRICA. Se consideran algunas técnicas de aproximación para derivar una función f(x) dada. Las reglas que resultan son de grande importancia para la solución de ecuaciones diferenciales. Pueden ser utilizadas para obtener aproximaciones numéricas de una derivada a partir de los valores de la función. Pero el método de diferenciación numérica basado en interpolación numérica es un proceso inestable y no se puede esperar una buena aproximación aun cuando la información original esta bien aproximada, por lo que el error f (x) p (x) puede ser muy grande especialmente cuando los valores de f(x) tengan perturbaciones. Ahora su p(x) es un polinomio de interpolación de f(x) entonces e(x) = f(x)- p(x) es el error de aproximación, por lo que e (x)=(f(x) p(x)) = f (x) p (x) es el error de interpolación en la derivación de f(x) con respecto a la aproximación con el polinomio p(x). Tomamos una función continuamente diferenciable en el intervalo y tomamos los puntos distintos en el intervalo. De la igualdad 2.37 tomamos.(1) Donde es el polinomio de grado <= k que interpola a en y tal que Para suficientemente suave tenemos por 2.38 Por hipótesis que obtenemos: es continuamente diferenciable por lo que se puede derivar (1) por lo (2) Definiendo el operador D como la derivada tenemos: con en el intervalo [c,d], si aproximamos la derivada en f por medio de la derivada en el polinomio entonces por (2) el error en la aproximación es: O bien:

6 6..(3) con Es el error en la diferenciación numérica nos dice poco sobre el error ya que casi nunca se conocen los valores de la derivada k+2 ni de la derivada k+1 y casi nunca se conocen los argumentos, Pero la expresión puede ser simplificada eligiendo el valor de manera adecuada de tal forma que la derivada sea evaluada o bien eligiendo apropiadamente los puntos de interpolación. Si es un punto de interpolación tomamos para alguna i, como contiene el factor se sigue que y el primer término de (3) desaparece. Mas aun con Por lo que si elegimos segundo termino: para alguna i= 0,..,k tengo que (3) se reduce quedando el con.(4) Otra manera de simplificar la expresión es mediante la elección de por lo que el segundo término de (3) desaparece tal que para Cómo se logra esto? Si k es un número impar lo podemos hacerlo poniendo Xj simétricamente alrededor de de tal manera que las distancias: Por lo que.(5) En consecuencia: Así derivando los intervalos: Para todo j= 0,.. (k-1)/2 por lo que se sigue que lo que queda así (5) se cumple en (3) por

7 7 La derivada de f en (6) es de orden mayor que la de (4)..(6) EJEMPLOS 1. Si k=0 entonces por lo que el polinomio es una constante que no es una buena aproximación en la mayoría de los casos para Si elegimos k >=1 tenemos por lo que es independiente de la Si es el punto inicial entonces utilizando (2) y (4) con la fórmula de la diferencia anterior queda: Con el error.(7) 2. Si elegimos entonces son simétricos alrededor de y de (6) obtenemos junto con La diferencia central..(8) con error Si elegimos lo suficientemente cercanos entonces es una mejor aproximación a en el punto medio que si o lo cual no recuerda el teorema del valor medio para derivadas para alguna entre y

8 8 3. k=2, tenemos tres puntos de interpolación por lo que Entonces derivando: Si por (2) y (4)..(9) En particular si los tres puntos son equidistantes con espacio h entonces: Por lo que la ecuación (9) se reduce a.. (10) con para algún entre y Si entonces tenemos Diferencia central con para (11) que es la (8).

9 9 ORDENES SUPERIORES Si se desea derivar (1) dos veces tenemos: (12) Con tengo: con.(13) Si se eligen tenemos:...(14) En puntos simétricos alrededor de de orden superior en el error. con con tiene como resultado una formula con derivadas De 2.17 inferimos que = da una buena aproximación si las son lo suficientemente cercanas con. Las fórmulas de diferenciación numérica son de la forma: (15) con y con espacio entre los puntos de interpolación. Es decir la derivada de f se calcula mediante el conocimiento de sus valores en k puntos por medio de la derivada de su polinomio de aproximación a este proceso se le conoce como discretizacion de la derivada mientras que al error se le conoce como error de discretizacion. La intención además es encontrar la h optima para obtener el mejor resultado de la diferenciación. En la tabla 1 se muestra el cálculo de derivadas de la función exponencial: Calculado en una IBM 7094 se calcula como (8) y se calcula como (14) En la exponencial la primera y segunda derivada son las mismas pero los cálculos en sus aproximaciones en la discretizacion difieren.

10 10 El resultado es mejor cuando h=0.01 después de estos las aproximaciones son cada ves peores. Para analizar el fenómeno tomamos de (11) Al redondear se produce un error por lo que tomamos: en lugar de en lugar de y Para la derivada calculada en computadora: Con (11) tenemos: (16) Así el error de en consiste en dos partes: el error de redondeo y el error de discretización, el error de discretización se hace cero cuando pero el error de redondeo aumenta en la práctica pues no decrece. Así la h óptima es cuando el error de las magnitudes de los errores de redondeo y discretizacion se minimizan. Por lo que si tomamos la función exponencial en el punto cero con un error de discretizacion de entonces de (16) y un error de redondeo de Tenemos y tomando aproximadamente uno Para g mínima: por lo que así en la tabla la mejor h cae entre 0.01 y Utilizando suficiente presición aritmética se combate el error por redondeo pero el problema es intratable cuando crece significativamente el numero de puntos una buena alternativa es la interpolación con spline cúbico aunque hay otras como las de los mínimos cuadrados.

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.

Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas. Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 12

Análisis Numérico para Ingeniería. Clase Nro. 12 Análisis Numérico para Ingeniería Clase Nro. 12 Aproximación de Funciones Temas a tratar: Interpolación por Splines Cúbicos. Aproximación por ínimos Cuadrados. Criterios de elección: Tipo de Aproximación

Más detalles

APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA DIFERENCIACIÓN NUMÉRICA roberto.ortega.a@usach.cl IEM APLICACIONES COMPUTACIONALES SERIE DE TEYLOR => Serie de Taylor => Residuo SERIE DE TEYLOR

Más detalles

Aproximación funcional. Introducción

Aproximación funcional. Introducción Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender

Más detalles

Interpolación. Javier Segura. February 12, 2012

Interpolación. Javier Segura. February 12, 2012 February 12, 2012 polinómica Para cualquier conjunto de n + 1 (n 0) números distintos x 0, x 1,..., x n y cualquier conjunto de números arbitrarios y 0, y 1,..., y n, existe un único polinomio P n (x)

Más detalles

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria

Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Splines Introducción Un spline es una función polinomial definida por casos donde cada caso es un polinomio

Más detalles

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29

Interpolación. Javier Segura. Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Interpolación Javier Segura Cálculo Numérico I. Tema 3. Javier Segura (Universidad de Cantabria) Interpolación CNI 1 / 29 Contenidos: 1 Interpolación de Lagrange Forma de Lagrange Teorema del resto Diferencias

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

Presentación del curso

Presentación del curso Análisis Numérico Presentación del curso CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2010. Reproducción permitida bajo los términos

Más detalles

Interpolación. Dan Casas

Interpolación. Dan Casas Interpolación Dan Casas 1 Motivación 2 Motivación 2 Motivación 2 Motivación 3 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. 4

Más detalles

CALCULO NUMERICO REGLA DEL TRAPECIO. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la fig. 1.

CALCULO NUMERICO REGLA DEL TRAPECIO. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la fig. 1. REGLA DEL TRAPECIO La regla del trapecio o regla trapezoidal es una de las fórmulas cerradas de Newton-Cotes. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Interpolación de Newton en diferencias regresivas

Interpolación de Newton en diferencias regresivas Interpolación de Newton en diferencias regresivas Objetivos. Estudiar la contrucción del polinomio interpolante a través de las diferencias regresivas en el caso cuando las abscisas de los nodos de interpolación

Más detalles

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1

Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios

Más detalles

Observación: El método de Euler, es el método de Taylor de orden 1.

Observación: El método de Euler, es el método de Taylor de orden 1. METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un

Más detalles

Una Versión Elemental del Método de Newton para Ecuaciones Polinomiales

Una Versión Elemental del Método de Newton para Ecuaciones Polinomiales Revista del Profesor de Matemáticas, RPM No. 8 (1999) 1 Una Versión Elemental del Método de Newton para Ecuaciones Polinomiales José Paulo Q. Carneiro 1 Introducción La historia de resolución de ecuaciones

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Interpolación. 12 Interpolación polinómica

Interpolación. 12 Interpolación polinómica El objeto de este capítulo es el estudio de técnicas que permitan manejar una función dada por medio de otra sencilla y bien determinada que la aproxime en algún sentido. El lector ya conoce la aproximación

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal.

Interpolación. Tema Introducción. 8.2 Interpolación polinómica Interpolación Lineal. Tema 8 Interpolación 8.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Interpolación Spline Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Interpolación Spline Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos Equipo: 9 4 o

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

Interpolación Polinomial

Interpolación Polinomial Pantoja Carhuavilca Métodos Computacionales Agenda y Interpolacion de y Interpolacion de Dado un conjunto de datos conocidos (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ) buscamos una función f : R R que satisfaga

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación

4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación Capítulo 4 INTERPOLACIÓN 46 Interpolación mediante splines polinomios a trozos En las figuras siguientes se puede observar alguno de los problemas que la interpolación clásica con polinomios puede plantear

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Clase 9 Programación No Lineal

Clase 9 Programación No Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 9 Programación No Lineal ICS 110 Optimización Profesor : Claudio Seebach Apuntes de Clases

Más detalles

Asignaturas antecedentes y subsecuentes Análisis Numérico II

Asignaturas antecedentes y subsecuentes Análisis Numérico II PROGRAMA DE ESTUDIOS Análisis Numérico I Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes Análisis

Más detalles

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta : Unidad IV Series. 4.1 Definición de seria. Una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a 1 + a 2 +

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo X Integración numérica Introducción La integral definida I(f) = b a f(x)

Más detalles

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]:

Planteamiento del problema: Dada una función f : [a, b] R, cuyo valor se conoce en n + 1 puntos: x 0, x 1,..., x n del intervalo [a, b]: Tema 2 Interpolación 2.1 Introducción En este tema abordaremos el problema de la aproximación de funciones por medio de la interpolación, en particular nos centraremos en interpolación polinómica estándar.

Más detalles

3.4 El Teorema de Taylor. Extremos relativos

3.4 El Teorema de Taylor. Extremos relativos 3.4. EL TEOREMA DE TAYLOR. EXTREMOS RELATIVOS 103 3.4 El Teorema de Taylor. Extremos relativos La derivación está directamente relacionada con la posibilidad de aproximar localmente funciones suficientemente

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en

Más detalles

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica Cuadratura Numérica Javier Segura Tema: Integración numérica. Contenidos Fórmulas de Newton-Cotes: Error en las fórmulas de Newton-Cotes. Fórmulas compuestas de Newton-Cotes. Error; Evaluación recurrente.

Más detalles

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora:

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora: Curso de Métodos Numéricos Instituto de Matemática Práctico 1: Errores Agosto de 2005 1) Encuentre experimentalmente los siguientes valores de su calculadora: (a) El valor ɛ mach definido como el minimo

Más detalles

Derivación Numérica. 22 Derivada del polinomio interpolador

Derivación Numérica. 22 Derivada del polinomio interpolador La definición de la derivada de una función como un límite lleva implícito un método de aproximación numérica: f (x) f(x + h) f(x) h D h f(x); diremos que esta última cantidad es una derivada numérica

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

Métodos Numéricos (SC 854) Interpolación

Métodos Numéricos (SC 854) Interpolación Interpolación c M. Valenzuela 2007 2008 (26 de febrero de 2008) 1. Definición del problema de interpolación Dada una tabla de valores (x i,f i ) se desea estimar f(x) para valores de x que no se encuentran

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para

Más detalles

El método de la secante, es uno de los métodos que se conocen como abierto. Por qué se llama un método abierto?

El método de la secante, es uno de los métodos que se conocen como abierto. Por qué se llama un método abierto? METODO DE LA SECANTE El método de la secante, es uno de los métodos que se conocen como abierto. Por qué se llama un método abierto? El método se denomina abierto, ya que parte de dos valores iniciales

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS

TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las

Más detalles

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función.

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Unidad IV Derivadas 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Derivada de una función en un punto. Dada la función f(x) continúa en el intervalo abierto I, se define

Más detalles

7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL. Jorge Eduardo Ortiz Triviño

7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL. Jorge Eduardo Ortiz Triviño 7. REGRESIÓN POR MÍNIMOS CUADRADOS: REGRESIÓN POLINOMIAL Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ Introducción Los datos frecuentemente son dados para valores

Más detalles

Gráficos, Ejercicios de curvas

Gráficos, Ejercicios de curvas Gráficos, Ejercicios de curvas (PjPB, Escuela Politénica Superior, UAM). Encontrar, mediante el método de diferencias divididas de Newton, el polinomio que interpola los siguientes puntos: P 0 (, ), P

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA Ajuste de Curvas El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente e y la dependiente), se determina una función matemática

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Límites de función Polinomial

Límites de función Polinomial UNIVERSIDAD TÉCNICA NACIONAL CARRERA: INGENIERÍA TECNOLOGÍAS DE INFORMACIÓN CURSO: CÁLCULO DIFERENCIAL E INTEGRAL CÓDIGO: ITI-314 OBJETIVO: Límite de una función en un punto. Teorema sobre límites. Cálculo

Más detalles

Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto Resumen INTRODUCCIÓN

Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto Resumen INTRODUCCIÓN Una Propuesta de Uso de Tecnología en la Enseñanza del Tema: Interpolación por Splines Blanca Evelia Flores Soto bflores@gauss.mat.uson.mx Departamento de Matemáticas, Universidad de Sonora Nivel Superior

Más detalles

EL TEOREMA DE TAYLOR INTRODUCCION:

EL TEOREMA DE TAYLOR INTRODUCCION: EL TEOREMA DE TAYLOR INTRODUCCION: Sabemos que la recta tangente, como la mejor aproximación lineal a la gráfica de f en las cercanías del punto de tangencia (x o, f(x o )), es aquella recta que pasa por

Más detalles

MÉTODOS NÚMERICOS SÍLABO

MÉTODOS NÚMERICOS SÍLABO MÉTODOS NÚMERICOS SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL ASIGNATURA CÓDIGO DE ASIGNATURA PRE- REQUISITO N DE HORAS TOTALES N DE HORAS TEORÍA N DE HORAS PRÁCTICA N DE CRÉDITOS CICLO TIPO DE CURSO

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Un Método de Búsqueda Lineal Inexacta

Un Método de Búsqueda Lineal Inexacta Un Método de Búsqueda Lineal Inexacta Iván de Jesús May Cen imaycen@hotmail.com Facultad de Matemáticas, Universidad Autónoma de Yucatán Junio de 2008 Resumen Se presenta un método de búsqueda lineal inexacta

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim

Teóricas de Análisis Matemático (28) Práctica 6 L Hospital. x x. lim Teóricas de Análisis Matemático (8) Práctica 6 L Hospital Caso cero sobre cero Veamos tres problemas de límites conocidos: Práctica 6 Parte Regla de L Hospital 3 3 3 sen(3) Los límites y se resuelven mediante

Más detalles

Derivación. Aproximaciones por polinomios.

Derivación. Aproximaciones por polinomios. Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 1 2 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 16 de Enero de 201 APELLIDOS: Duración del Examen: 2 horas. NOMBRE: DNI: Titulación:

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 4. Series de Fourier. 4.1 Serie de Fourier Vamos a intentar representar algunas funciones por su serie de Fourier de senos. Tomamos

Más detalles

Interpolación y aproximación polinomial

Interpolación y aproximación polinomial Análisis Numérico Interpolación y aproximación polinomial CNM-425 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft «2010 Reproducción permitida bajo

Más detalles

La interpolación polinomial en el análisis de métodos iterativos

La interpolación polinomial en el análisis de métodos iterativos Notas La interpolación polinomial en el análisis de métodos iterativos Resumen La solución de ecuaciones no lineales es de extrema importancia en la ingeniería y ciencias. Los métodos que se estudian para

Más detalles

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones Límites de funciones Índice Presentación... 3 Concepto intuitivo de límite... 4 Concepto de límite a través de la gráfica de una función... 5 Límites laterales... 6 Ejemplo práctico... 7 Propiedades de

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos.

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. INTRODUCCION SERIES a) Seno b) e x c) Cotangente APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. EXTRAS INTRODUCCION La serie

Más detalles

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas

Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas Graficación Como modelar y/o representar objetos reales? Problema: No hay un modelo matemático del objeto Solución: Realizar una aproximación por pedazos de: Planos, esferas, otras formas simples de modelar

Más detalles

INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA.

INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA. 2.3.-Interpolacion y aproximacion.nb 1 INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA. INTERPOLACIÓN NUMÉRICA El comando InterpolatingPolynomial. Este comando permite obtener el polinomio de interpolación

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Interpolación POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Presentación del problema: Para una función dada f(x) se desea determinar un polinomio P(x) de grado m, lo más bajo posible, el cual en los puntos

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Estas funciones están definidas para todos los números reales, y constituyen una de las familias de funciones que representan la mayor cantidad de fenómenos naturales. Te recomiendo

Más detalles

Introducción al Cálculo Numérico

Introducción al Cálculo Numérico Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

Curso de Elemento Finito con el software ALGOR

Curso de Elemento Finito con el software ALGOR Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM www.algor.com M. en I. Alejandro Farah Instituto de Astronomía, UNAM www.astroscu.unam.mx/~farah Contenido general: - La teoría

Más detalles

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p).

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p). 1 PROBLEMA.1 Convergencia de esquemas iterativos para una matriz tridiagonal. Se considera una matriz tridiagonal de 3x3 del tipo siguiente: 1 a 12 A = a 21 1 a 23 a 32 1 Se pide: 1. Estudiar si los métodos

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

TEMA 6: DERIVACION NUMERICA

TEMA 6: DERIVACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 6: DERIVACION NUMERICA 1 INTRODUCCION En este tema nos ocupamos de aproximar las derivadas de orden arbitrario ν en un punto cualquier α de una función

Más detalles

Cálculo 1 _Comisión 1 Año Extremos absolutos

Cálculo 1 _Comisión 1 Año Extremos absolutos Extremos absolutos Def: f ( es un máximo absoluto de f x Df: f( f( Def: f ( es un mínimo absoluto de f x Df: f( f( Procedimiento: 1) hallar los puntos críticos de f 2) Evaluar esos puntos en la función

Más detalles

2. Derivación numérica

2. Derivación numérica Derivación numérica Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006 Resumen Introducción. Derivación numérica.

Más detalles

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor

Apuntes. Genius, a good idea in Maths Ximo Beneyto. Tema : Derivabilidad. Teorema de Taylor Apuntes Genius, a good idea in Maths Ximo Beneyto 1. Hallar el desarrollo de Taylor y la expresión del resto de Lagrange, para las siguientes funciones. 1.1 f(x) = sen x en a =, n = 3 1.2 f(x) = Ln x en

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz

Métodos numéricos. Aproximación para la solución de ecuaciones diferenciales ordinarias. Bioing. Analía S. Cherniz Métodos numéricos Aproximación para la solución de ecuaciones diferenciales ordinarias Bioing. Analía S. Cherniz Modelización de Sistemas Biológicos por Computadora 03/08/2010 Organización 1 Introducción

Más detalles

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Sea y=f(x) Contínua en [a,b] Derivable en (a,b) Cumpliendo f(a) = f(b) Se cumple que: Demostración Por el teorema de Weirstrasse, f(x)

Más detalles

Polinomios de Aproximación (Polinomios de Taylor P n )

Polinomios de Aproximación (Polinomios de Taylor P n ) Polinomios de Aproximación ( P n ) Sabemos que la recta tangente a una función en un punto es la mejor aproximación lineal a la gráca de f en las cercanías del punto de tangencia (xo, f(xo)), es aquella

Más detalles

Interpolación seccional: SPLINES

Interpolación seccional: SPLINES Interpolación seccional: SPLINES Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Motivación: problemas en

Más detalles

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno: Unidad 6 Raíces de polinomios Objetivos Al finalizar la unidad, el alumno: Comprenderá el Teorema Fundamental del Álgebra. Aplicará los teoremas del residuo y del factor en la obtención de las raíces de

Más detalles