Práctica 4 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina Pelton

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 4 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina Pelton"

Transcripción

1 Práctica 4 de Máquinas de Fluidos Incompresibles. Curvas características de una turbina Pelton P. Bohórquez 2 de mayo de 22 El objetivo de esta práctica es la caraterización de una turbina Pelton mediante el uso de un banco de ensayos. Tras la obtención de las medidas experimentales (dimensionales) el alumno deberá comprobar que, en efecto, las leyes adimensionales deducidas en el aula se satisfacen en el problema en consideración. Se verificarán también algunas expresiones aproximadas vistas en el aula para la velocidad de embalamiento y las colinas de isorendimientos.. Instalación y proceso de medida. Para la realización de la presente práctica se dispone de una turbina Pelton con diámetro de rodete D = 9 mm en miniatura con tobera de aguja montada sobre un bastidor marca Armfield. La potencia mecánica generada por la turbina es absorbida por un sencillo dinamómetro de fricción (freno de Prony), ver figura a, el cual dispone de diferentes posiciones de apriete. La presión p en la válvula de aguja se visualiza en un manómetro y su valor nosproporcionará la altura disponible en cada caso, H n = p/(gρ). Para determinar la velocidad del rotor se utiliza un tacómetro sin contacto. El bastidor de la turbina se apoya sobre un banco hidráulico, el cual proporciona el caudal necesario (ver figura b) que se vierte a través de una aguja que permite variar el flujo de salida mediante el giro de un tornillo. El banco dispone de un depósito con una boya que puede anclarse de forma que acumule agua, y de esa forma, poder medir el caudal impulsado por la bomba. Para ello, existe una escala de medida de volumen almacenado. En realidad son dos las escalas puesto que se corresponden con distintas áreas en planta del depósito, ya que éstas no son constantes con la altura del mismo. Para medir caudales únicamente se ha de relacionar el volumen acumulado con el tiempo real que se tarda en almacenar. En la figura c se puede observar la escala dispuesta en el lateral del banco. Se tomarán para cada régimen de caudal un total de quince medidas, aproximadamente, que corresponden a distintas velocidades de giro. Cada medida consistirá en cambiar la posición del tornillo que regula el desplazamiento del dinamómetro de fricción y se tomarán los valores de presión (manométrica) a la entrada del inyector (altura proporcionada por la bomba), los valores de fuerza en el dinamómetro (par de fricción), el caudal y la velocidad de giro de la turbina. El proceso es el siguiente:

2 (a) (b) (c) Figura : Esquema de la instalación experimental: (a) dinamómetro, (b) bastidor y (c) medidor de volumen acumulado. Se situará el tornillo de regulación de la aguja del inyector en posición completamente abierta,denotadaporα,yseregularálaalturaproporcionadaporlabombaatravés delaválvula detornillosituada enel banco hidraúlico.el cambio deposicióndeesta válvula produce inmediatamente cambios en la presión medida con el manómetro ya que regulamos el caudal impulsado. Hay que tratar de buscar las posiciones de máxima y mínima altura para promediar un total de tres posiciones intermedias de esta válvula. Para cada altura disponible H n se ejercerán diversos pares resistentes de giro actuando sobre el dinamómetro, en base al tornillo que permite imprimir una mayor o menor presión sobre la correa que roza con el eje de giro del rodete. Para cada medida se anotarán las fuerzas ejercidas por el dinamómetro F y F 2, las revoluciones del rodete Ω, el volumen acumulado V y el tiempo t que se tarda en acumular. La presión en el manómetro sólo ha de anotarse una vez ya que durante estas medidas la válvula permanece en su posición inicial y la actuación del freno no modifica este valor de presión, ya que la turbina es puramente de acción. Efectuadas las medidas, se procederá a variar la válvula que regula el caudal impulsado por la bomba, que como sabemos está directamente relacionado con la altura 2

3 C (N cm) Q = l/min Q = l/min Q = 3.99 l/min (a) Par mecánico C. 2 2 (b) Potencia hidráulica W u (c) Potencia mecánica W u. 2 2 (d) Rendimiento global. Figura 2: Curvas dimensionales para para los distintos caudales Q ensayados y la posición del inyector α. Los valores discretos obtenidos experimentalmente se muestran con símbolos y las curvas ajustadas se muestran en línea continua. proporcionada por la misma. Al aumentar el caudal, la altura disminuirá y con ello la presión indicada en el manómetro situado justo antes del inyector y viceversa. La posición de la aguja permanecerá constante, es decir, no se debe tocar aún. Realizaremos unas siete nuevas medidas, variando el apriete del dinamómetro sobre la rueda acanalada (distintos pares resistentes). Por último, durante esta primera etapa, procederemos a variar de nuevo la altura proporcionada por la bomba, actuando sobre la válvula de caudal ya comentada, y ensayando otras quince posiciones de freno. Es muy importante reseñar que hay que promediar de forma inteligente el rango de toma de datos para distintas posiciones de freno, de forma que posteriormente la nube de datos sea lo suficientemente representativa. Así se ejercerá una presión máxima de freno (velocidad de giro de la turbina muy pequeña), acotando los intervalos de medida para siguientes posiciones. Con objeto de caracterizar las pérdidas en el inyector, en particular el coeficiente de desagüe, se medirá Q, p y Ω emb (es decir, la velocidad de giro máxima) variando p en intervalos de. bar, manteniendo fija la posición del inyector. En la segunda etapa de la experiencia, se variará la posición de la aguja del inyector actuando sobre el tornillo situado en la parte posterior del mismo. A partir de 3

4 .4.3 Q = l/min Q = l/min Q = l/min 6.3 C (N cm) (a) Par mecánico C. 2 2 (b) Potencia hidráulica W u (c) Potencia mecánica W u. 2 2 (d) Rendimiento global. Figura 3: Igual que la figura 2 pera para la posición del inyector α 2. este punto, esta segunda etapa se desarrolla como la primera, es decir, tres valores de caudal o altura proporcionada por la bomba, y para cada uno, quince medidas actuando sobre el freno. Se recomienda seleccionar 3 posiciones del inyector tales que, para la altura máxima que da la bomba, la presión a la entrada sea.7 (α ),.4 (α 2 ) y. bar (α 3 ). 2. Tarea. Representación gráfica de las variables dimensionales En una turbina con una geometría dada, las dos variables de control principales son el salto de altura H (que viene dado por la ubicación geográfica de la turbina) y la velocidad de giro Ω (que se controla con alguna de las técnicas de regulación vistas en el aula). De estaformaelcaudal,lapotencia,etc.sonfuncionesdeh,ω, g,delaspropiedadesdelfluido (densidad ρ y viscosidad dinámica µ νρ) y de las dimensiones geométricas (diámetro del rotor, D, y una serie de magnitudes l, l 2,..., l N ). Por ejemplo, el par mecánico disponible en el eje, C, será una función de C = f (g,h,ω,ρ,µ,d,l,l 2,...,l N ). () Análogamente, la potencia mecánica comunicada al eje del rodete W u, la potencia hidráulica comunicada por el fluido y el rendimiento hidráulico de la máquina, son 4

5 C (N cm) Q = l/min Q = l/min Q = l/min (a) Par mecánico C (b) Potencia hidráulica W u (c) Potencia mecánica W u (d) Rendimiento global. Figura 4: Igual que la figura 2 pera para la posición del inyector α 3. funciones de los mismos parámetros: W u = f 2 (g,h,ω,ρ,µ,d,l,l 2,...,l N ), (2) = f 3 (g,h,ω,ρ,µ,d,l,l 2,...,l N ), (3) = f 4 (g,h,ω,ρ,µ,d,l,l 2,...,l N ). (4) A partir de los datos que se han obtenido en el laboratorio (velocidad de giro del rodete, caudal Q (l/s), par de frenado C = (F F 2 )D r /2 (siendo el diámetro de la rueda D r = 6 mm), presión de admisión p (bar)), se requiere: pintar las curvas experimentales C(ω), W u (ω), (ω) y (ω) para las distintas posiciones del inyector que se han ensayado en el laboratorio; realizar un ajuste polinómico de orden de las curvas C(Ω) y (Ω), y de orden para las curvas W u (Q). Pinte el rendimiento obtenido de los ajustes anteriores. Suponga que la densidad del agua es ρ = kg/m 3.

6 2. x 3 2 Q = l/min Q = l/min Q = 3.99 l/min Π C. Π Wh Π Wu Figura : Representación de las variables adimensionales descritas en la figura x 3 Q = l/min Q = l/min Q = l/min Π C 2 Π Wh Π Wu Figura 6: Representación de las variables adimensionales descritas en la figura 3. 6

7 6 x 3 4 Q = l/min Q = l/min Q = l/min Π C 3 Π Wh Π Wu Figura 7: Representación de las variables adimensionales descritas en la figura Tarea 2. Representación gráfica de las variables adimensionales Tal y como se ha demostrado en el aula, el teorema Π de Buckingham permite reducir la relación funcional () a Π C C ( ) ΩD ρghd = F 3, ΩD2 gh ν,α,α 2,,α N ; () es decir, el parámetro de par Π C es función del parámetro de giro ΩD/ gh = (Π ghn ) /2, del número de Reynolds Re ΩD 2 /ν, y de una serie de parámetros geométricos α i = l i /D. De ahora en adelante, para la turbina Pelton, escalaremos el parámetro de giro con el factor de proporcionalidad /(2 2). Es decir, definimos Π Ω /(2 2) pues la velocidad del chorro en ausencia de pérdidas es 2gH y la velocidad de la cuchara del rodete Pelton es ΩD/2. Para turbomáquinas geométricamente semejantes los parámetros α i son constantes y desaparecen explicítamente de la relación; por otra parte, la influencia del número de Reynolds suele ser pequeño ya que éste suele ser muy alto. Por tanto, en primera aproximación, la ley general de las turbomáquinas se reduce a Π C = F (Π Ω ). (6) Otras relaciones similares se obtienen para las demás magnitudes de interés. Por ejemplo, para la potencia útil W u CΩ, y para la potencia hidráulica empleada en mover el impulsor de la turbina ρqgh: 7

8 Π Wu Π Wh W u ρd 2 (gh) 3/2 = F 2(Π Ω ), (7) ρd 2 (gh) 3/2 = F 3(Π Ω ). (8) De especial interés son las relaciones funcionales para los rendimientos, ya que éstos no hay más remedio que obtenerlos empíricamente. En el caso concreto de una turbina, el rendimiento hidráulico sería (en ausencia de fugas): Se pide: h = W u = F 4 (Π Ω ). (9) Dibuje las curvas adimensionales Π C, Π Wu, Π Wh y h considerando que la longitud característica es D = 9 mm. Existe semejanza física para todos los caudales Q y velocidades de giro Ω? Determine la velocidad de giro óptima adimensional Π Ω o y describa si varía mucho o no en función del caudal Q. Calcule la velocidad Ω s y el diámetro específico D s, Ω s = Ω (W u/ρ) /2 = Π (gh n ) /4 Ω ΠWu, D s = D (gh n) 3/4 (W u /ρ) =. () /2 (Π Wu ) /2 Calcule la velocidad de embalamiento real adimensional Π Ω emb para una posición fija del inyector. Realice una regresión lineal de la curva de par Π C (Π Ω ) y calcule la velocidad de embalamiento ideal Π Ω emb,ideal. Cuánto vale Π Ω emb,ideal /Π Ω o? Pinte la curva de rendimiento (ξ), siendo ξ Ω/Ω emb,ideal = Π Ω /Π Ω emb,ideal. 4. Tarea 3. Coeficiente de desagüe y velocidad de embalamiento En las figuras 6(d) y 7(d) se observa que, para las posiciones del inyector α 2,3, existe semejanza física en un amplio abanico de caudales. Vamos a proceder a caracterizar las pérdidas del inyector en dicha posición. Recuerde que para una altura neta dada, la velocidad del chorro ideal a la salida del inyector viene dada por V,ideal = 2gH n. Dado que en el inyector existen pérdidas por fricción, la velocidad del chorro real se calcula como V = c v 2gHn, donde el coeficiente de desagüe es c v <. Puesto que V no ha sido medido en la práctica, vamos a obtener dicha velocidad de manera indirecta haciendo uso de la expresión V = Ω emb,ideal D/2. Por tanto, se obtiene V c v = = Ω emb,ideald/2 = Π Ω emb,ideal. () 2gHn 2gHn 8

9 3 α 2 2 α 2.8 Ω emb (rpm) c v / max(c v ) Q (m3/s) 4 6 x Π Q x 3 Figura 8: Evolución de la velocidad de embalamiento Ω emb frente a Q (izquierda) y de c v /máx(c v ) frente a Π Q (derecha) con el inyector colocado en las posiciones α 2,3. Así pues, c v puede ser evaluado directamente a partir de los cálculos realizados en la tarea anterior. Conocido este valor, se pide determinar el área de paso A del inyector: Se pide: A = Q V = Q c v 2gHn. (2) Evalúe la expresión (2) en los ensayos a caudal y presión constante. Calcule el diámetro del chorro d = 4A/π. En los ensayos del inyector de la Pelton, represente la velocidad de embalamiento Ω emb frente al caudal Q (ver figura 8) e identifique si depende linealmente o cuadráticamente. Dibuje la gráfica c v /máx(c v ) = f(π Q ), ver figura 8, e identifique si c v depende linealmente o cuadráticamente de Π Q Q/(D 2 gh n ). No olvide describir el procedimiento que ha seguido para realizar dicha gráfica. Finalmente, para la posición del inyector en la que conoce A, se pide dibujar la curva de c v en función de Π Q. 9

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Ingeniería Civil en Mecánica WJT/wjt INGENIERIA CIVIL EN MECANICA 15030 LABORATORIO GENERAL II NIVEL 11 GUIA DE LABORATORIO EXPERIENCIA C224 CURVAS CARACTERÍSTICA DE UNA TURBINA PELTON LABORATORIO DE TURBINA PELTON 1. OBJETIVO GENERAL Observar

Más detalles

CURVAS CARACTERÍSTICAS DE UNA BOMBA

CURVAS CARACTERÍSTICAS DE UNA BOMBA CURVAS CARACTERÍSTICAS DE UNA BOMBA 1 DESCRIPCIÓN DE LA PRÁCTICA En la siguiente práctica se determinarán las curvas características de una bomba a diferentes regímenes de giro del rodete. Conexión corriente

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Cómo leer la curva característica de una bomba?

Cómo leer la curva característica de una bomba? Cómo leer la curva característica de una bomba? Este boletín trata sobre la lectura y la comprensión de las curvas de funcionamiento de una bomba centrífuga. Se consideran tres tipos de curvas: bomba autocebante

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS

PRÁCTICA: BANCO DE ENSAYO DE BOMBAS PRÁCTICA: BANCO DE ENSAYO DE BOMBAS htttp://www.uco.es/moodle Descripción del equipo y esquema de la instalación La instalación en la que se lleva a cabo esta práctica es un banco de ensayos preparado

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos?

Bombas y Ventiladores. Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Bombas y Ventiladores Fundamentos teóricos y prácticos Cómo podemos aportar a la EE con estos equipos? Índice 1. Descripción. 2. Clasificación. 3. Curvas Características. 4. Pérdidas de Carga en Sistemas.

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

PÉRDIDAS DE CARGA EN TUBERÍAS

PÉRDIDAS DE CARGA EN TUBERÍAS Prácticas de Laboratorio PÉRDIDAS DE CARGA EN TUBERÍAS 1. INTRODUCCIÓN TEÓRICA.. DESCRIPCIÓN DE LA INSTALACIÓN E INSTRUMENTACIÓN. 3. DEFINICIÓN DE OBJETIVOS Y TRABAJO A REALIZAR. 4. EXPOSICIÓN DE RESULTADOS.

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Tecnología Eléctrica ( Ingeniería Aeronáutica )

Tecnología Eléctrica ( Ingeniería Aeronáutica ) Problema 2 Es necesario seleccionar un motor trifásico de inducción para accionar un compresor de aire. Para dicha selección se han prefijado los parámetros siguientes: El compresor debe girar a una velocidad

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores

TURBOMAQUINAS MOTORAS. Mg. Amancio R. Rojas Flores TURBOMAQUINAS MOTORAS Mg. Amancio R. Rojas Flores 1 RUEDAS HIDRÁULICAS.- Las ruedas hidráulicas son máquinas capaces de transformar la energía del agua, cinética o potencial, en energía mecánica de rotación.

Más detalles

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS

NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS NPSH: INFLUENCIA DE LA ALTURA Y TEMPERATURA DEL AGUA EN LA ASPIRACION DE LAS BOMBAS Se denomina NPSH (Net Positive Suction Head) o ANPA (Altura Neta Positiva de Aspiración) a la diferencia entre la presión

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL ASIGNATURA: GENERACIÓN DE POTENCIA INTRODUCCIÓN IMPORTANCIA DE LA GENERACIÓN DE POTENCIA ASPECTOS FUNDAMENTALES TIPOS DE PLANTAS

Más detalles

ANEXO DE CALCULOS. Fórmulas Generales. Conductos. Componentes. Emplearemos las siguientes: Pt i = Ptj + ΔPtij. Pt = Ps + Pd.

ANEXO DE CALCULOS. Fórmulas Generales. Conductos. Componentes. Emplearemos las siguientes: Pt i = Ptj + ΔPtij. Pt = Ps + Pd. ANEXO DE CALCULOS Fórmulas Generales Emplearemos las siguientes: Pt i = Ptj + ΔPtij Pt = Ps + Pd Pd = ρ/2 v² Siendo: Conductos vij = 1000 Q ij / 3,6 A ij Pt = Presión total. Ps = Presión estática. Pd =

Más detalles

DINÁMICA DE ROTACIÓN DE UN SÓLIDO

DINÁMICA DE ROTACIÓN DE UN SÓLIDO Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor

Más detalles

1.1. Análisis Dimensional

1.1. Análisis Dimensional ,.. Análisis Dimensional... Introducción El análisis dimensional es un proceso mediante el cual se examinan las dimensiones de los fenómenos físicos y de las ecuaciones asociadas, para tener una nueva

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL Sistemas hidráulicos Sistemas de transmisión de energía en los cuales el medio ese un fluido teóricamente incompresible. Funciones: Transformación de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009 00 CONVOCATORIA: JUNIO MATERIA: TECNOLOGÍA INDUSTRIAL II OPCIÓN A EJERCICIO a) Calcule el esfuerzo (σ) en GPa y la deformación

Más detalles

RESUMEN DEL PROGRAMA (parte de Hidráulica)

RESUMEN DEL PROGRAMA (parte de Hidráulica) Código de la asignatura: 68202, 60203 Nombre de la asignatura: Hidráulica y máquinas agrícolas Créditos: 6 (3 Hidráulica) Año académico: 2007-2008 Titulación: Ingeniero Técnico Agrícola (Hortofruticultura

Más detalles

PRÁCTICA 3: SELECCIÓN DE UNA BOMBA HIDRÁULICA

PRÁCTICA 3: SELECCIÓN DE UNA BOMBA HIDRÁULICA PRÁCTIC 3: SELECCIÓN DE UN BOMB HIDRÁULIC Máquina dobladora de os Una máquina dobladora de os utiliza un cilindro hidráulico para doblar os de acero de grosor considerable. La fuerza necesaria para doblar

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

MAQUINAS HIDRAULICAS: BOMBAS

MAQUINAS HIDRAULICAS: BOMBAS MAQUINAS HIDRAULICAS: BOMBAS UNA MAQUINA HIDRAULICA ES AQUELLA EN QUE EL FLUIDO QUE INTERCAMBIA ENERGIA CON LA MISMA NO MODIFICA SU DENSIDAD A SU PASO POR LA MAQUINA Y POR ENDE EN SU DISEÑO Y SU ESTUDIO

Más detalles

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales

PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales Sistemas neumáticos y oleohidráulicos. Consulta de catálogos. 1 PRÁCTICA 1: NEUMÁTICA CONVENCIONAL: Consulta de catálogos comerciales En primer término la práctica consiste simplemente en observar con

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Análisis Dimensional y Semejanza

Análisis Dimensional y Semejanza 87 Capítulo 8 Análisis Dimensional y Semejanza Dado que el número de problemas que se puede resolver en forma puramente analítica es pequeño, la gran mayoría requiere algún grado de resultados empíricos

Más detalles

Ejercicios y problemas de neumática e hidráulica

Ejercicios y problemas de neumática e hidráulica Ejercicios y problemas de neumática e hidráulica 1. Un depósito contiene aire comprimido a 4 atm. Cuál es su presión en pascales? (Sol.: 400.000 pascales). 2. Si tenemos una jeringuilla que contiene 0,02

Más detalles

CITY JET 6000 Baldeadora Compacta

CITY JET 6000 Baldeadora Compacta CITY JET 6000 Baldeadora Compacta Para la limpieza de las calzadas mas sucias. CARACTERISTICAS La City Jet 6000 de SCHMIDT es una nueva generación de baldeadora, que se beneficia del desarrollo y evolución

Más detalles

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911 FUERZA DE CORTE EN EL TORNEADO HORARIO: VIERNES 19:00 A 21:30 HORAS 1 1.- OBJETIVOS

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273)

Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273) Programa de la asignatura Curso: 2006 / 2007 INGENIERÍA FLUIDOMECÁNICA (3273) PROFESORADO Profesor/es: FERNANDO AGUILAR ROMERO - correo-e: faguilar@ubu.es JOSÉ ANTONIO BARÓN AGUADO - correo-e: jbaron@ubu.es

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

I.E.S. " HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS

I.E.S.  HERNÁN PÉREZ DEL PULGAR CIUDAD REAL MECANISMOS MECANISMOS 1. Indica el sentido de giro de todas las poleas, si la polea motriz (la de la izquierda) girase en el sentido de las agujas del reloj. Indica también si se son mecanismos reductores o multiplicadores

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

contadores 20 3/ G 1 G , ,6 0, / G 3/4 G 3/4 78 0, ,6 0, ,5 2,5 0,20 0,45 < 10 < 8

contadores 20 3/ G 1 G , ,6 0, / G 3/4 G 3/4 78 0, ,6 0, ,5 2,5 0,20 0,45 < 10 < 8 Contadores Cuando usted adquiere un Contador Hidroconta no sólo tiene un contador. Tiene una solución a medida para resolver un problema hidráulico de una forma sencilla, eficaz y adaptada a las necesidades

Más detalles

Bombas de circulación Ejecución bridada 1.1.

Bombas de circulación Ejecución bridada 1.1. 1.1. BOMBAS DE CIRCULACION SERIE FZP Y MFZP 1. GENERALIDADES La bomba de la serie FZP es una bomba bridada del tipo paletas con caudal constante. Se puede suministrar con bomba bridada (MFZP) y en standard

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

4. MAQUINARIA HIDRÁULICA

4. MAQUINARIA HIDRÁULICA 4. MAQUINARIA HIDRÁULICA Objetivos El alumno conocerá los principios del funcionamiento de las bombas hidráulicas, los diferentes tipos de Máquinas Hidráulicas existentes y aprenderá a identificar los

Más detalles

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN

SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN SISTEMA DE VENTILACIÓN LONGITUDINAL EN UN TÚNEL. INFLUENCIA DE UN INCENDIO EN EL DIMENSIONAMIENTO DE LA VENTILACIÓN Clasificación de Sistemas de Ventilación de Túneles Sistema de Ventilación n Longitudinal

Más detalles

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala.

Glosario. Agregación geométrica: modificación de la longitud típica de los planos de escurrimiento con el aumento de escala. G.1 Glosario Agregación ( up-scaling ): proceso de pasaje de descripciones de procesos (modelos) o variables de una escala menor a otra mayor (Blöshl et al., 1997). Agregación geométrica: modificación

Más detalles

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO

INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO INGENIERIA DE EJECUCIÓN EN MECANICA PROGRAMA PROSECUCION DE ESTUDIOS VESPERTINO GUIA DE LABORATORIO ASIGNATURA 9555 M85 MECÁNICA DE FLUIDOS NIVEL 03 EXPERIENCIA E-6 PÉRDIDA DE CARGA EN SINGULARIDADES HORARIO:

Más detalles

TEMA 3. ASPECTOS ESPECÍFICOS DE LOS APROVECHAMIENTOS MINIHIDROELÉCTRICOS. APLICACIONES EN CANARIAS.

TEMA 3. ASPECTOS ESPECÍFICOS DE LOS APROVECHAMIENTOS MINIHIDROELÉCTRICOS. APLICACIONES EN CANARIAS. MASTER EN ENERGÍAS RENOVABLES CURSO 2008-2010 TEMA 3. ASPECTOS ESPECÍFICOS DE LOS APROVECHAMIENTOS MINIHIDROELÉCTRICOS. APLICACIONES EN CANARIAS. CLASE 1 TEMA 3 CURSO 08-10 1 CURSO 08-10 TEMA 3. ASPECTOS

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos.

Colisiones. Objetivo. Material. Fundamento teórico. Laboratori de. Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Laboratori de Física I Colisiones Objetivo Estudiar las colisiones elásticas e inelásticas entre dos cuerpos. Material Soporte vertical, puerta fotoeléctrica, 4 cuerdas, 2 bolas de acero de 25 mm de diámetro,

Más detalles

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π

MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π 1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital

Más detalles

HIDRAULICA Y CIVIL S.A.S

HIDRAULICA Y CIVIL S.A.S I. MEMORIAS DE CÁLCULO Para el diseño de las instalaciones hidráulicas y sanitarias se adoptó el Reglamento Técnico del sector de Agua Potable y Saneamiento Básico Ambiental RAS, y la Norma Técnica Icontec

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,

Más detalles

OBRAS HIDRÁULICAS. Aprovechamientos hidroeléctricos

OBRAS HIDRÁULICAS. Aprovechamientos hidroeléctricos OBRAS HIDRÁULICAS Aprovechamientos hidroeléctricos Índice 1. INTRODUCCIÓN 2. SISTEMA ELÉCTRICO ESPAÑOL 3. APROVECHAMIENTOS HIDROELÉCTRICOS 1. Introducción 2. Análisis de la capacidad de regulación 3. Análisis

Más detalles

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados:

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados: CONTENIDOS: -Técnicas de producción, conducción y depuración de fluidos. - Caudal. Pérdida de carga. - Elementos de accionamiento, regulación y control. Simbología. - Circuitos característicos de aplicación:

Más detalles

Módulo 3: Fluidos reales

Módulo 3: Fluidos reales Módulo 3: Fluidos reales 1 Fluidos reales Según la ecuación de Bernouilli, si un fluido fluye estacionariamente (velocidad constante) por una tubería horizontal estrecha y de sección transversal constante,

Más detalles

INSTRUMENTOS DE MEDIDA MECÁNICOS I y II

INSTRUMENTOS DE MEDIDA MECÁNICOS I y II INSTRUMENTOS DE MEDIDA MECÁNICOS I y II Santiago Ramírez de la Piscina Millán Francisco Sierra Gómez Francisco Javier Sánchez Torres 1. INTRODUCCIÓN. En esta práctica se trata de familiarizar al alumno

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA:

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO DE MECÁNICA DE FLUIDOS PRESENTADO A: ING. VLADIMIR QUIROZ

Más detalles

COMPRESORES DE AIRE CON CABEZAL DE ALUMINIO

COMPRESORES DE AIRE CON CABEZAL DE ALUMINIO COMPRESORES DE AIRE CON CABEZAL DE ALUMINIO 10 640 802 Compresores portátiles de acoplamiento directo - 8 bar Electrocompresores con motor monofásico 220 V. Pistón alternativo realizado en aluminio de

Más detalles

Actualidad tecnológica y últimos avances en automatización neumática y oleohidráulica en empresas del Campo de Gibraltar

Actualidad tecnológica y últimos avances en automatización neumática y oleohidráulica en empresas del Campo de Gibraltar XXVIII Cursos de Verano SAN ROQUE Actualidad tecnológica y últimos avances en automatización neumática y oleohidráulica en empresas del Campo de Gibraltar OLEOHIDRÁULICA INDUSTRIAL. GENERALIDADES. EL CIRCUITO

Más detalles

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N

CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N 1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la

Más detalles

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA...

DOCUMENTO 1: ANEXO B: CÁLCULO DE LA RED DE DISTRIBUCION DE BIE S ÍNDICE 1. INTRODUCCIÓN CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... DOCUMENTO : ÍNDICE. INTRODUCCIÓN... 2 2. CALCULO DEL CAUDAL Y DIÁMETRO DE LA TUBERÍA... 3 3. CÁLCULO DE LA PÉRDIDA DE CARGA... 5 4. SELECCIÓN DEL GRUPO DE PRESIÓN... 8 5. CALCULO DEL ALJIBE... 9 Protección

Más detalles

PÉRDIDAS DE CARGAS POR FRICCIÓN

PÉRDIDAS DE CARGAS POR FRICCIÓN PÉRDIDAS DE CARGAS POR FRICCIÓN Objetivos Estudio de pérdidas de energía por fricción, tanto en tramos rectos de tuberías (pérdidas de carga lineales), como en diferentes s característicos de las instalaciones

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 09. Máquinas Hidráulicas (1) Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

Apunte de Análisis Dimensional

Apunte de Análisis Dimensional Carreras de Ingeniería Química e Ingeniería en Alimentos Apunte de Análisis Dimensional Escrito por: Pedrozo, Alejandro Revisado por: Rosenberger, Mario. 2015 Facultad de Ciencias Exactas. Químicas y Naturales-

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

OPTIMIZACIÓN GASTO ENERGÉTICO. Prensa de inyección horizontal. Modelo: XXXXXXXXX Máquina Nº XX

OPTIMIZACIÓN GASTO ENERGÉTICO. Prensa de inyección horizontal. Modelo: XXXXXXXXX Máquina Nº XX OPTIMIZACIÓN GASTO ENERGÉTICO Prensa de inyección horizontal Modelo: XXXXXXXXX Máquina Nº XX ÍNDICE 1. INFORMACIÓN GENERAL.. 1.1-DATOS DEL INTEGRADOR. 2. DESCRIPCIÓN DE LA MÁQUINA.... DESCRIPCIÓN DEL PROCESO

Más detalles

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ MANOSALVAS FLORES JAIME ANDRÉS SOLÍS SANTAMARÍA JAVIER MILTON

PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ MANOSALVAS FLORES JAIME ANDRÉS SOLÍS SANTAMARÍA JAVIER MILTON PROYECTO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO AUTOMOTRIZ MANOSALVAS FLORES JAIME ANDRÉS SOLÍS SANTAMARÍA JAVIER MILTON Latacunga, Agosto 2013 DISEÑO Y CONSTRUCCIÓN DE UNA SEMBRADORA DE MAÍZ Y

Más detalles

8. Neumática proporcional

8. Neumática proporcional Neumática proporcional 8-8. Neumática proporcional La técnica proporcional es novedosa en su aplicación neumática, aunque no tanto en el campo de la oleohidráulica. Está basada en el uso de válvulas proporcionales,

Más detalles

Universidad Nacional del Callao

Universidad Nacional del Callao Universidad Nacional del Callao Facultad de Ingeniería Eléctrica y Electrónica Escuela profesional de Ingeniería Eléctrica Curso: TURBOMAQUINAS Prof: ING MARIO GARCIA PEREZ Tema: DISEÑO MECANICO DE TURBINA

Más detalles

PRACTICAS DE MAQUINAS HIDRAULICAS (4º Ingeniero Industrial)

PRACTICAS DE MAQUINAS HIDRAULICAS (4º Ingeniero Industrial) PRACTICAS DE MAQUINAS HIDRAULICAS (4º Ingeniero Industrial) Normativa de las prácticas Las prácticas se impartirán en el Laboratorio de Energética, Departamento de Ingeniería Eléctrica y Energética. (S3-65);

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN

2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN . ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos

Más detalles

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G.

TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO. Ms. Sc. Ing. Jorge Briones G. TUBIFICACIÓN EN PRESAS DE MATERIALES DE PRESTAMO Ms. Sc. Ing. Jorge Briones G. jebriones@hotmail.com EJEMPLO DE EROSION INTERNA EN PRESAS DE MATERIALES DE PRESTAMO PRESAS DE MATERIALES DE PRESTAMO Presa

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA

TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA TÉCNICAS DE ANÁLISIS PARA EL AHORRO DE ENERGÍA 2ª Parte: Evaluación de Ahorros de Energía Acapulco, Gro./ Septiembre 29 del 2010 Ing. Ramón Rosas Moya 1 PROCESO DE TRANSFORMACIÓN DE LA ENERGÍA PARA EL

Más detalles

Bombas combinadas de presión normal y de alta presión NH 25,35,55 Bombas de presión normal N 25,35,55

Bombas combinadas de presión normal y de alta presión NH 25,35,55 Bombas de presión normal N 25,35,55 Bombas combinadas de presión normal y de alta presión NH 25,35,55 Bombas de presión normal N 25,35,55 Presentación N/NH Serie DI(FH) Roland Jungmair Leonding, enero 2008 N/NH 25,35,55 - Descripción: Bombas

Más detalles

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI

EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h

Más detalles

Mecánica de sólidos Sesión 23. Flujo viscoso, medición de la viscosidad

Mecánica de sólidos Sesión 23. Flujo viscoso, medición de la viscosidad Mecánica de sólidos Sesión 23 Flujo viscoso, medición de la viscosidad Reología de la corteza REOLOGIA: Estudio de la conducta mecanica (flujo) de los materiales. Elastico, Plastico, Viscoso y sus combinaciones

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA EN MECÁNICA DE FLUIDOS

ANÁLISIS DIMENSIONAL Y SEMEJANZA EN MECÁNICA DE FLUIDOS TEA 5 ANÁISIS DIENSIONA Y SEEJANZA EN ECÁNICA DE FUIDOS 5.1.- El Análisis Dimensional: Utilidad y Justificación 5..- os Fundamentos del Análisis Dimensional 5.3.- Otención de Parámetros Adimensionales

Más detalles

Pérdidas en tuberías y máquinas hidráulicas

Pérdidas en tuberías y máquinas hidráulicas Pérdidas en tuberías y máquinas hidráulicas Problema 4.1 Determinar el tiempo de vaciado de la gasolina del tanque de la figura que tiene forma de un paralelepípedo rectangular con área de la base S =

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

UNIDAD 7 Regulación y control de turbinas de vapor

UNIDAD 7 Regulación y control de turbinas de vapor UNIDAD 7 Regulación y control de turbinas de vapor 1. Introducción Es usualmente necesario controlar la potencia desarrollada por las turbinas de vapor para adaptarla a los requerimientos de la carga.

Más detalles

DISEÑO Y SIMULACIÓN DE UN BANCO DE PRUEBAS DEL SISTEMA COMMON RAIL

DISEÑO Y SIMULACIÓN DE UN BANCO DE PRUEBAS DEL SISTEMA COMMON RAIL DISEÑO Y SIMULACIÓN DE UN BANCO DE PRUEBAS DEL SISTEMA COMMON RAIL EXPOSITORES: MILTON RODRIGO CÓNDOR ROBALINO CHRISTIAN WLADIMIR ALLAICA TZETZA Suministro eléctrico Fluido a utilizar Capacidad depósito

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles