Matemáticas UNIDAD 2 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas UNIDAD 2 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz"

Transcripción

1 CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 2 Preparado por: Héctor Muñoz Diseño Gráfico por:

2 MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES 1. DESCRIPCIÓN GENERAL DE LA UNIDAD Procedimientos de multiplicación y división de fracciones. Semejanzas y diferencias entre estos procedimientos y los correspondientes procedimientos con números naturales y entre estos procedimientos y los procedimientos de cálculo de adición y sustracción de fracciones. Identificación de casos de multiplicación en que el producto es menor que uno o ambos factores. Identificación de casos de división en que el cuociente es mayor que el dividendo. Resolución de problemas que involucran multiplicación o división de fracciones. 2. DURACIÓN APROXIMADA 4 semanas. 3. CONTENIDOS Multiplicación de fracciones. División de fracciones. 4. APRENDIZAJES ESPERADOS 4.1 Multiplicación de fracciones En º año, los estudiantes han tenido oportunidad de conocer procedimientos para comparar, sumar y restar fracciones, tanto de igual denominador como de distinto denominador. Ahora, en la segunda Unidad de 6º año, se introducen los procedimientos de cálculo de multiplicación y división de fracciones. Primero se trabaja la multiplicación de fracciones para después tratar la división. Mediante generalización de las propiedades de la multiplicación de números naturales y del significado de las fracciones, se establece el procedimiento para multiplicar fracciones (primer aprendizaje esperado). APRENDIZAJES ESPERADOS Multiplicación de fracciones Conocen y aplican procedimientos para multiplicar una fracción por un número natural y para multiplicar una fracción por otra. Identifican casos en que el producto de una multiplicación puede ser menor que uno de sus factores o que ambos. Resuelven problemas que involucran multiplicación de fracciones. Al contrastar la multiplicación de fracciones con la multiplicación de números naturales es posible constatar una notable diferencia. En el caso de la multiplicación de naturales, el producto es mayor que cualquiera de los factores. Solo se exceptúan los casos en que uno de los factores es 0 o es 1. En cambio, en el caso de la multiplicación de fracciones, hay una gran cantidad de situaciones en las que el producto es menor que uno o ambos factores. A estos casos se refiere el segundo aprendizaje esperado. Finalmente, se utilizan en la resolución de problemas los procedimientos de cálculo tratados (tercer aprendizaje esperado). FUNDACIÓN CHILE - Educación - Mejor Escuela. 1

3 4.2 División de fracciones En el tratamiento de la división de fracciones, conviene presentar primero los casos en que el dividendo es una fracción y el divisor es un número natural. Luego se presentan procedimientos de cálculo para divisiones en las que el divisor es una fracción (primer aprendizaje esperado). Para lograr una mejor comprensión y retención de los procedimientos, se establecen las relaciones entre los procedimientos de cálculo de multiplicación y de división de fracciones (segundo aprendizaje esperado). Asimismo, es muy útil comparar los procedimientos de cálculo de multiplicación y división de fracciones con los procedimientos de cálculo de adición y sustracción de fracciones. A este punto se refiere el tercer aprendizaje esperado. En forma similar a lo que ocurre en la multiplicación de fracciones, al dividir un número cualquiera por una fracción mayor que 0 pero menor que 1, el resultado es mayor que el dividendo, lo que contrasta con lo que sucede con la división de números naturales. A este punto se refiere el cuarto aprendizaje esperado. Por último, se espera desarrollar la capacidad para resolver problemas cuya solución involucra operaciones con fracciones (quinto aprendizaje esperado). APRENDIZAJES ESPERADOS División de fracciones Conocen y aplican procedimientos para dividir una fracción por un número natural, para dividir un número natural por una fracción y para dividir una fracción por una fracción. Identifican similitudes y diferencias entre el procedimiento de cálculo de la multiplicación de fracciones y el procedimiento de cálculo de la división de fracciones. Identifican similitudes y diferencias entre los procedimientos de cálculo de multiplicación y división de fracciones y los procedimientos de cálculo de la adición y sustracción de fracciones. Identifican casos en que el cuociente de una división puede ser mayor que el dividendo. Resuelven problemas que involucran operaciones con fracciones.. PROFUNDIZACIÓN DE CONTENIDOS Y RECOMENDACIONES METODOLÓGICAS.1 Fracciones y números decimales Tanto las fracciones como los números decimales cumplen la función de permitir cuantificar cantidades que corresponden a partes de una unidad. Las fracciones surgieron hace unos años en Egipto. Los números decimales, en cambio, son mucho más jóvenes: tienen menos de 00 años de antigüedad. En la práctica cotidiana y en la literatura científica las fracciones han ido perdiendo terreno y han ido siendo reemplazadas cada vez más por los números decimales. A diferencia de las fracciones, los números decimales se basan en el mismo principio de valor de posición que constituye un rasgo e de nuestro sistema de numeración. Por este motivo, los procedimientos de cálculo para los números decimales son prácticamente los mismos que para los números naturales. La única diferencia está en la necesidad de ubicar la coma en el caso de los números decimales. Los procedimientos de cálculo con fracciones, en cambio, difieren bastante de los respectivos procedimientos utilizados con números naturales. FUNDACIÓN CHILE - Educación - Mejor Escuela. 2

4 Como es fácil constatar, las calculadoras y computadores trabajan sin dificultad con números decimales, pero no con fracciones. De hecho, salvo algunas calculadoras especializadas, la mayoría de las calculadoras transforma las fracciones en números decimales y opera con estos, dando el resultado en notación decimal y no en notación de fracciones. Por estos motivos, no se justifica en estos niveles poner un énfasis excesivo en la operatoria con fracciones. Solo en educación media, en álgebra, los procedimientos de cálculo volverán a tener relevancia y será el momento de profundizar en torno a ellos..2 El procedimiento de cálculo de la multiplicación de fracciones El procedimiento para multiplicar una fracción por un número natural se puede deducir interpretando la multiplicación como una forma de representar una adición de sumandos iguales. En efecto, la multiplicación 4 3/ puede considerarse como 4 veces 3/. Es decir: 4 3_ = 3_ + 3_ + 3_ + Esta es una adición de fracciones de igual denominador. El resultado se obtiene sumando los numeradores y conservando el denominador: 3_ + 3_ + 3_ + 3_ = = Aquí vemos que para multiplicar un número natural por una fracción basta multiplicar el número natural por el denominador de la fracción y conservar el denominador. Si suponemos que la multiplicación de fracciones es conmutativa, al igual que la multiplicación de números naturales, podemos concluir que multiplicar una fracción por un número natural es similar al caso anterior. Es decir, también aquí, basta multiplicar el denominador de la fracción por el número natural y conservar el denominador. Otro caso especial es la división de una fracción por un número natural. Mediante representaciones gráficas se puede mostrar que para dividir una fracción por un número natural basta conservar el numerador y multiplicar el denominador por el número natural (ver ejemplos en la guía de trabajo nº 3). Consideremos ahora el producto de un número natural por una fracción de numerador igual a 1, por ejemplo el producto 12 1/3. De acuerdo con lo que acabamos de ver: 12 1_ = Es decir, multiplicar por 1/3 es equivalente a dividir por 3. 3_ En general, multiplicar un número natural por una fracción de numerador 1 es equivalente a dividir ese número natural por el denominador de la fracción. Ahora podemos abordar el caso general de multiplicación de una fracción por otra. Consideremos, a modo de ejemplo, el producto /8 3/4. Utilizaremos aquí el hecho que 3/4 = 3 1/4. = 3 = = 12 Y si comparamos el resultado con la multiplicación inicial, vemos que el resultado se obtiene multiplicando los numeradores entre sí y los denominadores entre sí. Podemos ver, asimismo, que si una de las fracciones que se están multiplicando tiene denominador 1, estamos en el caso de multiplicación de una fracción por un número natural. Y si ambas fracciones tienen denominador 1, estamos ante el producto de 2 números naturales. FUNDACIÓN CHILE - Educación - Mejor Escuela. 3

5 _ 8 3 1_ 1 1_ = 3 = = Y si comparamos el resultado con la multiplicación inicial, vemos que el resultado se obtiene multiplicando los numeradores entre sí y los denominadores entre sí. Podemos ver, asimismo, que si una de las fracciones que se están multiplicando tiene denominador 1, estamos en el caso de multiplicación de una fracción por un número natural. Y si ambas fracciones tienen denominador 1, estamos ante el producto de 2 números naturales..3 El procedimiento de cálculo de la división de fracciones El cálculo de la división de fracciones suele resultar difícil de entender para muchos estudiantes para quienes el procedimiento que se les enseña aparece como arbitrario y sin justificación. Esto es así especialmente cuando se habla de multiplicación cruzada en que el numerador de una fracción se multiplica por el denominador de la otra y el denominador de la primera se multiplica por el numerador de la segunda. El concepto de inverso multiplicativo proporciona una buena forma de presentar el procedimiento de cálculo de división de fracciones. En los números naturales no se habla de inverso multiplicativo porque no existen pares de números cuyo producto sea 1, con la sola excepción del producto 1 1. En tal sentido, una novedad que presentan las fracciones es que toda fracción tiene su inverso multiplicativo, es decir, para cada fracción existe otra fracción tal que el producto de ambas es igual a 1. Solo se exceptúan las fracciones de numerador 0, ya que ningún número multiplicado por 0 puede ser igual a 1. El inverso multiplicativo de un número se define como aquel número que multiplicado por el primero es igual a 1. Conviene destacar dos propiedades del inverso multiplicativo. Por una parte, el inverso multiplicativo de una fracción es la misma fracción, pero invertida. Es decir su numerador es el denominador de la primera y su denominador es el numerador de la primera. Por otra parte, dividir un número cualquiera por una fracción es equivalente a multiplicar el número por el inverso multiplicativo de la fracción. De acuerdo con esto último, cualquier división en que el divisor es una fracción puede convertirse en una multiplicación. Y como ya sabemos multiplicar fracciones, el problema queda resuelto. Los estudiantes encontrarán más adelante un razonamiento análogo en el caso de la sustracción de números negativos. Entonces se utilizará el hecho que restar un número es equivalente a sumar su inverso aditivo. FUNDACIÓN CHILE - Educación - Mejor Escuela. 4

6 .4 Multiplicación y división con fracciones y con números naturales La introducción de las fracciones implica varias novedades en relación con los números naturales. Por una parte están las fracciones equivalentes. Para cada fracción existe una cantidad infinita de otras fracciones que se escriben distinto pero que representan el mismo valor. Otra novedad es la existencia de inverso multiplicativo, mencionado más arriba. Una tercera diferencia tiene que ver con multiplicaciones en que el producto es menor que los factores o con divisiones en que el cuociente es mayor que el dividendo. Esta propiedad de las operaciones con fracciones debe ser destacada ya que suele resultar extraña y difícil de entender para muchos estudiantes. Si en un producto a b uno de los factores es una fracción mayor que 1, entonces el producto es mayor que el otro factor. Es decir, sucede algo similar a lo que sucede en el caso de la multiplicación por un número natural. Si uno de los factores es 1 o es una fracción igual a 1, el producto será igual al otro factor, lo que una vez más es similar a lo que sucede con los números naturales. Pero si uno de los factores es mayor que 0 pero menor que 1, entonces el producto es menor que el otro factor. Así, por ejemplo, 30 1/ = 6. Con la división sucede algo parecido. Si el divisor es mayor que 1, el cuociente es menor que el dividendo. Si el divisor es igual a 1, el cuociente es igual al dividendo. Y si el divisor es mayor que 0 pero menor que 1, el cuociente es mayor que el dividendo. Así, por ejemplo, 2 : 1/ = DESCRIPCIÓN DEL MATERIAL DE TRABAJO PARA EL AULA GUÍA DE TRABAJO Nº 1 (TRABAJO INDIVIDUAL) REVISIÓN DE CONOCIMIENTOS ACERCA DE FRACCIONES En este guía se revisan algunos conocimientos básicos relativos a fracciones. En especial, se revisa el significado del numerador y del denominador de una fracción, la interpretación de fracciones cuyo numerador es igual al denominador o cuyo numerador es mayor que el denominador, la relación que existe entre las fracciones y los números naturales, la relación que existe entre las fracciones y la división, la amplificación y simplificación de fracciones y, finalmente, los procedimientos de suma y resta de fracciones de igual y distinto denominador. GUÍA DE TRABAJO Nº 2 (TRABAJO INDIVIDUAL) CÓMO MULTIPLICAR UNA FRACCIÓN POR UN NÚMERO NATURAL En este guía se introduce la multiplicación de una fracción por un número natural. Se hace referencia a la interpretación de la multiplicación como una adición de sumandos iguales y a la asociación entre la preposición de y la operación de multiplicación en el lenguaje de fracciones. El procedimiento de cálculo es simple: basta multiplicar el numerador de la fracción por el número natural y conservar el denominador. También es posible dividir el número natural por el denominador de la fracción y conservar el numerador, siempre que el número natural sea divisible por el denominador de la fracción. Ambos procedimientos dan resultados equivalentes, lo que se hace evidente mediante las simplificaciones que corresponda. FUNDACIÓN CHILE - Educación - Mejor Escuela.

7 GUÍA DE TRABAJO Nº 3 (TRABAJO INDIVIDUAL) CÓMO DIVIDIR UNA FRACCIÓN POR UN NÚMERO NATURAL En este guía se introduce la división de una fracción por un número natural. Se establece un procedimiento general para dividir una fracción por un número natural: conservar el numerador y multiplicar el denominador de la fracción por el número natural. GUÍA DE TRABAJO Nº 4 (TRABAJO GRUPAL) CÓMO MULTIPLICAR UNA FRACCIÓN POR OTRA A partir de los casos presentados en las guías anteriores, en esta guía se establece un procedimiento general para multiplicar dos fracciones: multiplicar los numeradores entre sí y los denominadores entre sí. Conviene subrayar que este es un procedimiento general, válido para cualquier caso. El procedimiento puede complementarse simplificando el resultado si es posible. GUÍA DE TRABAJO Nº (TRABAJO INDIVIDUAL) EL INVERSO MULTIPLICATIVO DE UN NÚMERO Esta guía introduce la noción de inverso multiplicativo como una paso previo a la presentación de un procedimiento para dividir un número natural o una fracción por una fracción. GUÍA DE TRABAJO Nº 6 (TRABAJO GRUPAL) UN PROCEDIMIENTO PARA DIVIDIR POR UNA FRACCIÓN Esta guía introduce y ejercita el procedimiento para dividir por una fracción. Se muestra con un ejemplo simple que dividir por un número natural es equivalente a multiplicar por su inverso multiplicativo y luego se generaliza esta propiedad a la división por una fracción. GUÍA DE TRABAJO Nº 7 (TRABAJO GRUPAL) ALGUNAS PROPIEDADES DE LA MULTIPLICACIÓN Y DE LA DIVISIÓN DE FRACCIONES En esta guía se analizan distintas propiedades de la multiplicación y de la división de fracciones. En especial, se consideran: la conmutatividad de la multiplicación, el comportamiento del 0, los casos de multiplicaciones en que el producto es menor que los factores, los casos de divisiones en que el cuociente es mayor que el divisor, la posibilidad de representar un número natural mediante una fracción de denominador 1 y, finalmente, la distributividad de la multiplicación con respecto a la adición. GUÍA DE TRABAJO Nº 8 (TRABAJO GRUPAL) APLICACIONES DE LAS OPERACIONES CON FRACCIONES Esta guía ofrece varios ejemplos en los que los estudiantes podrán aplicar los conocimientos adquiridos acerca de los procedimientos de multiplicación y división de fracciones. FUNDACIÓN CHILE - Educación - Mejor Escuela. 6

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 5 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl LA RELACIÓN DE PROPORCIONALIDAD 1. DESCRIPCIÓN GENERAL DE

Más detalles

Matemáticas UNIDAD 3 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 3 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 3 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl MÚLTIPLOS Y DIVISORES DE NÚMEROS NATURALES 1. DESCRIPCIÓN

Más detalles

HOJAS DE TRABAJO SECTOR. Matemáticas. Material de apoyo para el docente UNIDAD 1. Preparado por: Héctor Muñoz

HOJAS DE TRABAJO SECTOR. Matemáticas. Material de apoyo para el docente UNIDAD 1. Preparado por: Héctor Muñoz HOJAS DE TRABAJO SECTOR Material de apoyo para el docente UNIDAD 1 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl 1. BREVE PRESENTACIÓN DE LA UNIDAD INTRODUCCIÓN A LOS NÚMEROS ENTEROS

Más detalles

Matemáticas UNIDAD 4 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 4 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 4 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl 1. DESCRIPCIÓN GENERAL DE LA UNIDAD EMPLEO DE ECUACIONES EN

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 2. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 2. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 2 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Guía de Trabajo N 1 REVISIÓN DE CONOCIMIENTOS ACERCA DE FRACCIONES

Más detalles

MATEMÁTICA 8 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE INTRODUCCIÓN A LOS NÚMEROS ENTEROS

MATEMÁTICA 8 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE INTRODUCCIÓN A LOS NÚMEROS ENTEROS MATEMÁTICA 8 BÁSICO INTRODUCCIÓN A LOS NÚMEROS ENTEROS Material elaborado por: Héctor Muñoz Adaptación: Ernesto Alabarce V. 1. DESCRIPCIÓN GENERAL DE LA UNIDAD Si bien las bases curriculares proponen para

Más detalles

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 8 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 8 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl VOLUMEN DE CUERPOS GEOMÉTRICOS 1. DESCRIPCIÓN GENERAL DE LA

Más detalles

Matemáticas UNIDAD 7 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 7 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 7 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl CÁLCULO DE ÁREAS 1. DESCRIPCIÓN GENERAL DE LA UNIDAD La Unidad

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl SISTEMATIZACIÓN DE CONOCIMIENTOS ACERCA DE FIGURAS Y CUERPOS

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez.

COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez. COLEGIO DE LA IGLESIA EVANGELICA EL DIOS DE ISRAEL GUION DE CLASE Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 7º Grado A y B Asignatura: Matemática Tiempo: Periodo: UNIDAD 2. OPEREMOS CON

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

MATEMÁTICA 8 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE ECUACIONES EN LA RESOLUCIÓN DE PROBLEMAS

MATEMÁTICA 8 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE ECUACIONES EN LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICA 8 BÁSICO ECUACIONES EN LA RESOLUCIÓN DE PROBLEMAS Material elaborado por: Héctor Muñoz Adaptación: Ernesto Alabarce V. 1. DESCRIPCIÓN GENERAL DE LA UNIDAD La unidad aborda desde el empleo de

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte

Más detalles

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág.

PROGRAMACIÓN DE AULA MATEMÁTICAS 4º EP CENTRO EDUCATIVO LA AMISTAD. PLAN DE TRABAJO TRIMESTRAL MATEMÁTICAS 4º EP TRIMESTRE 1º REG0801 Pág. GRUPO: 4ºEP PLAN DE TRABAJO Y ACTIVIDADES PROGRAMADAS 1 er TRIMESTRE CURSO 2016-17 Temas: 1, 2, 3, 4 Y 5 ÁREA: MATEMATICAS CONTENIDOS CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE COMPETENCIAS TEMA

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a

RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a UD : Los números reales RADICALES. CONCEPTO Y OPERACIONES. Concepto de raíz. - La raíz cuadrada de un número a es otro número b, que al elevarlo al cuadrado te da a (que es lo mismo que decir que a b si

Más detalles

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN

ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA OBJETIVOS CONTENIDOS CRITERIOS DE EVALUACIÓN ÁREA: MATEMÁTICAS UNIDAD : 1 TEMPORALIZACIÓN: OCTUBRE 1ª QUINCENA Conocer los nueve primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta nueve cifras.

Más detalles

Actividad introductoria: Repartición de dos pasteles en una familia

Actividad introductoria: Repartición de dos pasteles en una familia Grado 6 Matemáticas De los símbolos a la búsqueda del concepto: El conjunto de los números naturales TEMA: USO DE LA FRACCIÓN EN DIFERENTES CONTEXTOS Nombre: Grado: Actividad introductoria: Repartición

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B

Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 6 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 6 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl TEMAS DE GEOMETRÍA 1. DESCRIPCIÓN GENERAL DE LA UNIDAD La

Más detalles

Identificación. Propuesta didáctica: unidad Didáctica. Resumen: QUINTO de primaria matemática. Nivel: Primario. Grado: Quinto

Identificación. Propuesta didáctica: unidad Didáctica. Resumen: QUINTO de primaria matemática. Nivel: Primario. Grado: Quinto 1. Identificación Nivel: Primario Área: Matemática Grado: Quinto SC 3: Multiplicación y división de números naturales Resumen: En esta unidad didáctica se desarrollan los procedimientos para efectuar operaciones

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 5. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 5. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Unidad GUÍA DE TRABAJO Nº (TRABAJO INDIVIDUAL) REVISIÓN DE CONOCIMIENTOS

Más detalles

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS

UNIDAD 1: NÚMEROS NATURALES OBJETIVOS UNIDAD 1: NÚMEROS NATURALES Realizar las operaciones con números naturales (suma, resta, multiplicación y división) y operaciones combinadas de las anteriores. Diferenciar entre división exacta y entera,

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura

Más detalles

Proyecto de Innovación y Mejora de la Calidad Docente nº 21 Departamento de Didáctica de las Matemáticas, Facultad de Educación,

Proyecto de Innovación y Mejora de la Calidad Docente nº 21 Departamento de Didáctica de las Matemáticas, Facultad de Educación, ENCUESTA PARA MAESTROS DE PRIMARIA EN EJERCICIO Octubre 2014 Introducción La presente encuesta tiene ocho cuestiones y forma parte de un Proyecto de Innovación Docente en el que participan varios profesores

Más detalles

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 Anexo Anexo Los números decimales en los programas de Educación Primaria Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 1 2 3 4 Introducción al estudio de las

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

Apuntes de los NÚMEROS REALES

Apuntes de los NÚMEROS REALES Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES

Más detalles

FRACCIONES: MULTIPLICACIÓN Y DIVISIÓN

FRACCIONES: MULTIPLICACIÓN Y DIVISIÓN ACTIVIDADES FRACCIONES: MULTIPLICACIÓN Y DIVISIÓN CONTENIDO. Representación de la multiplicación de fracciones como suma de sumandos iguales. Fracción de un número entero mayor que la unidad. Visualización

Más detalles

COLEGIO ALEXANDER DUL

COLEGIO ALEXANDER DUL PRIMER BIMESTRE CICLO ESCOLAR 2016 2017 MATEMÁTICAS ESTRUCTURA DEL APRENDIZAJES ESPERADOS PROGRAMA REALIZACIÓN 1-8 TEMA 1 2. Tema: Problemas aditivos. Tema: Problemas multiplicativos. impliquen sumar o

Más detalles

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS

COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS COLEGIO AUGUSTO WALTE INFORMACIÓN DE ASIGNATURA I PERÍOD DESCRIPCIÓN DE CONTENIDOS GRADO: 5 ASIGNATURA: Matemática PERIODO: I PROFESOR: María Raquel Vigil. UNIDAD Nº 1 NOMBRE DE LA UNIDAD: JUGUEMOS CON

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE

ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS : ½ CREDITO : 1 SEMESTRE ESCUELA INES MARIA MENDOZA PROGRAMA DE MATEMATICAS CURSO VALOR DURACIÓN MAESTRA :MATEMATICA ACTUALIZADA 1 : ½ CREDITO : 1 SEMESTRE : Everis Aixa Sánchez Introducción El Programa de Matemáticas del Departamento

Más detalles

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales.

Mapa conceptual. Programa Acompañamiento. Matemática (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = CUACAC027MT22-A16V1. Racionales. Programa Acompañamiento Cuadernillo de ejercitación Ejercitación Números racionales Mapa conceptual Cómo representar un número con muchos decimales? Racionales Matemática Por ejemplo, aproximando a la

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Operaciones con números racionales. SUMA/RESTA.

Operaciones con números racionales. SUMA/RESTA. http//www.colegiovirgendegracia.org/eso/dmate.htm ARITMÉTICA Números racionales.9. Operaciones con números racionales. SUMA/RESTA. (A) Reducción a común denominador 4 y 7 4 4 y 7 6 y 4 80 80 80 80 (B)

Más detalles

CRITERIOS EVALUACIÓN MATEMÁTICAS

CRITERIOS EVALUACIÓN MATEMÁTICAS CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración

Más detalles

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

Fracciones equivalentes

Fracciones equivalentes Fracciones equivalentes Las fracciones equivalentes representan la misma parte de la unidad. Si dos fracciones son equivalentes, los productos de sus términos en cruz son iguales.. En cada caso, escribe

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

CONTENIDOS Y APRENDIZAJES ESPERADOS DOCENTE DE AULA: SR. BERNARDO ORTEGA

CONTENIDOS Y APRENDIZAJES ESPERADOS DOCENTE DE AULA: SR. BERNARDO ORTEGA Programa de Estudio 2º Año Medio CONTENIDOS Y APRENDIZAJES ESPERADOS DOCENTE DE AULA: SR. BERNARDO ORTEGA Unidades y Cuadro Sinóptico Unidad 1 Nociones de Probabilidades Juegos de azar sencillos; representación

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

1. NUMEROS REALES a. Los Números Reales

1. NUMEROS REALES a. Los Números Reales 1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

El Sistema de los Números Naturales. L. Rico

El Sistema de los Números Naturales. L. Rico Estructura Conceptual: El Sistema de los Naturales L. Rico J. L. Lupiáñez A. Marín Departamento Didáctica de la Matemática Universidad de Granada Las ideas que se encuentran en un primer listado, según

Más detalles

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL

INSTITUTO CHAPULTEPEC MIDDLE SCHOOL MATEMÁTICAS VII. (1er BIMESTRE) INSTITUTO CHAPULTEPEC MIDDLE SCHOOL. 2009-2010 1) SIGNIFICADO Y USO DE LOS NÚMEROS a) Lectura y escritura de números naturales. - Operaciones con números naturales. - Problemas

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

Matemática. Guía didáctica del profesor. Aplicando las operaciones y conociendo sus significados

Matemática. Guía didáctica del profesor. Aplicando las operaciones y conociendo sus significados Guía didáctica del profesor Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Aplicando las operaciones y conociendo sus significados Guía didáctica del profesor Módulo

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

UNIDAD 1. Los números racionales

UNIDAD 1. Los números racionales Matemática UNIDAD 1. Los números racionales 1 Medio En esta Unidad se sistematizan y profundizan los conocimientos acerca del conjunto de los racionales, tomando como base los conocimientos que el estudiante

Más detalles

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales

Opuesto de un número +3 + (-3) = (+5) = 0. N = 0,1, 2,3,4, Conjunto de los números naturales Números enteros Opuesto de un número Los números enteros son una extensión de los números naturales, de tal forma, que los números enteros tienen signo positivo (+) ó negativo (-). Los números positivos

Más detalles

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 4 A B LOS FRACCIONARIOS

PLAN DE REFUERZO NOMBRE ESTUDIANTE: Nº GRADO: 4 A B LOS FRACCIONARIOS COLEGIO BETHLEMITAS PLAN DE REFUERZO Fecha: Dia Mes 06 Año 0 META DE COMPRENSIÒN: La estudiante desarrolla comprensión acerca de las operaciones básicas entre fraccionarios heterogéneos DOCENTE: Alexandra

Más detalles

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos CONJUNTOS NUMÉRICOS Estudiemos los conjuntos numéricos sin su estructura y la forma como poco a poco se van formando nuevos conjuntos por la necesidad de resolver algunos problemas. 0.1. Los conjuntos

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico

Materia: Matemática de 5to Tema: Método de Cramer. Marco Teórico Materia: Matemática de 5to Tema: Método de Cramer Marco Teórico El determinante se define de una manera aparentemente arbitraria, sin embargo, cuando se mira a la solución general de una matriz, el razonamiento

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo

PLANIFICACIÓN ANUAL. SUBSECTOR: Matemática HORAS SEMANALES: NIVEL: 2 Medio. Título Subtítulo PLANIFICACIÓN ANUAL SUBSECTOR: Matemática HORAS SEMANALES: 4 0 5 NIVEL: 2 Medio OBJETIVOS Objetivos Fundamentales Objetivos Transversales Unidades Contenidos Título Subtítulo Aprendizaje Esperado Tiempo

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 3. Preparado por: Héctor Muñoz

GUÍAS DE TRABAJO. Matemáticas. Material de trabajo para los estudiantes UNIDAD 3. Preparado por: Héctor Muñoz GUÍAS DE TRABAJO Material de trabajo para los estudiantes UNIDAD 3 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl Responde en tu cuaderno las siguientes preguntas. GUÍA DE TRABAJO

Más detalles

MATRIZ CURRICULAR ASOCIACIÓN COMPETENCIAS CLAVES DE MAPA DE PROGRESO NÚMEROS Y OPERACIONES Y APRENDIZAJES ESPERADOS DE SUBSECTOR EDUCACIÓN MATEMÁTICA

MATRIZ CURRICULAR ASOCIACIÓN COMPETENCIAS CLAVES DE MAPA DE PROGRESO NÚMEROS Y OPERACIONES Y APRENDIZAJES ESPERADOS DE SUBSECTOR EDUCACIÓN MATEMÁTICA MATRIZ CURRICULAR ASOCIACIÓN COMPETENCIAS DE MAPA DE PROGRESO NÚMEROS Y OPERACIONES Y APRENDIZAJES ESPERADOS DE SUBSECTOR EDUCACIÓN MATEMÁTICA Subsector: Educación Matemática Mapa de Progreso: Números

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números

Más detalles

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.

Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. . G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura

Más detalles

Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS

Proyecto Guao ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS ADICIÓN Y SUSTRACCIÓN DE FRACCIONES ALGEBRAICAS Un modelo a escala de un auto de carreras está en proporción 1:x a un auto de carreras real. La longitud del modelo es unidades y la longitud del automóvil

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).

DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57). DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número

Más detalles

Matemáticas financieras

Matemáticas financieras Matemáticas financieras MATEMÁTICAS FINANCIERAS 1 Sesión No. 2 Nombre: Fundamentos matemáticos Contextualización Para concluir con la unidad introductoria a las matemáticas financieras, en la que estamos

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

Números. 1. Definir e identificar números primos y números compuestos.

Números. 1. Definir e identificar números primos y números compuestos. MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Un optimista ve una oportunidad en toda calamidad, un pesimista ve una calamidad en toda oportunidad Winston Churchill TABLA DE

Más detalles

TEMA 1 NÚMEROS NATURALES

TEMA 1 NÚMEROS NATURALES TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO

CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución

Más detalles