DEPARTAMENTO DE INGENIERÍA SECCIÓN INGENIERÍA MECÁNICA LABORATORIO DE ENERGÍA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DEPARTAMENTO DE INGENIERÍA SECCIÓN INGENIERÍA MECÁNICA LABORATORIO DE ENERGÍA"

Transcripción

1 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia de III. EFIGEACIÓN PO COMPESIÓN DE VAPO EN DOS ETAPAS. OBJETIVO Alicar las Leyes de la Terodiáica a u sistea de refrigeració or coresió de vaor de dos etaas, obteiedo valores cuatitativos de eergía, el coeficiete de erforace de la lata (COP) y el rediieto del coresor. Observar y aalizar las tedecias del ciclo terodiáico y coararlos co los rocesos corresodietes al ciclo teórico, ara verificar las érdidas de eergía y desviacioes que ocurre.. EUIPO A EMPLEA Se utilizará la lata de refrigeració que utiliza coo fluido de trabajo al refrigerate -ª y disoe de los siguietes equios: Coresor alterativo Tio : Deslazaieto ositivo - sile efecto Núero de istoes : Diáetro : 0 Carrera : 0 Potecia del otor : 0.75 elació de trasisió : a (Velocidad del otor/velocidad coresor) Codesador de suerficie Tio : Carcasa y seretí Efriador : Aire Válvulas de cotrol Tio :De exasió terostática Cáaras frigoríficas Aislaieto : Poliuretao exadido de 00 de esesor. Volue : 88 litros cada ua. Caletadores eléctricos esistecias eléctricas : 00 W Pael de cotrol Iterrutor del otor eléctrico Iterrutor del caletador eléctrico Variador de voltaje ara el caletador eléctrico

2 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia de Iterrutor del vetilador del codesador Iterrutor ara cada válvula soleoide. INSTUMENTACIÓN Cico (05) trasisores de resió aoétrica co sesor de cristal de silicio resoate. Seis (06) trasisores de teeratura co sesor TD PT00. Dos (0) edidores de flujo ara -a U (0) vatíetro coectado al caloríetro, co rago e dos escalas. U (0) ódulo de adquisició de datos (MV 00) E la figura se observa la vista geeral de disosició de los equios de la lata de refrigeració.. FUNDAMENTOS TEÓICOS.. Geeralidades Figura. Esquea técico de la lata de refrigeració La fució de u sistea de refrigeració es evacuar calor de u esacio cerrado y ateer su teeratura a u valor eor que la teeratura abietal. Existe diversos sisteas ara roducir refrigeració:

3 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia de Por coresió ecáica de vaor y gas. Por coresió térica y diáica de vaor y gas. Por absorció de vaor e líquidos y sólidos. Por adsorció. Por efectos teroeléctricos. Los riciales sisteas eleados coercial e idustrialete se basa e la coresió ecáica de vaor (co coresoras) y e la absorció de vaor (co itercabiadores de calor). La elecció de éste últio deede de la disoibilidad de fuetes de calor (directo o residual), si recurrir a la eergía ecáica o eléctrica. Por lo geeral, el sistea de coresió ecáica uestra ayor flexibilidad desde equeñas a grades caacidades. Otros sisteas de refrigeració se utiliza e istalacioes esecíficas: coresió y exasió de aire e cliatizació de cabias de aeroaves, y coresió de gases e eyectores (térica y diáica) e istalacioes de recueració de destilados de etróleo uy volátiles. Los sisteas co efecto teroeléctrico (efectos Peltier, Seebeck) se usa co baja caacidad de refrigeració, a ivel doéstico y e ivestigació. No está uy difudidos a ivel coercial... efrigeració or coresió ecáica de vaor - - Figura. Plata de refrigeració or coresió de vaor Este sistea se basa e dos riciios terodiáicos básicos: Cuado u fluido se evaora, absorbe calor Cuado u fluido se codesa, cede calor.. efrigerates Para trasferir calor desde u abiete a baja teeratura acia otro a alta teeratura,

4 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia de se requiere la alicació de u ciclo terodiáico que utilice u fluido, el refrigerate, que evaore a baja teeratura. El refrigerate debe absorber calor del abiete a refrigerar, or lo que su teeratura de evaoració debe ser eor a la de dico abiete. Luego debe ceder calor, or lo que su teeratura de codesació debe ser ayor a la del abiete al cual se cede calor. Así, ediate u coresor se icreeta la resió del fluido ara que su teeratura de saturació (Tsat) corresodiete sea ayor que la del abiete al cual se cede calor. Y ediate ua válvula de exasió se reduce la resió del fluido ara que su Tsat sea lo suficieteete baja ara roducir refrigeració. De los ocos fluidos que uede ser utilizados coo refrigerates, las características ideseables de alguos de ellos (toxicidad, exlosividad, iflaabilidad) los descarta, quedado ricialete los idrocarburos alogeados (Hidro y Cloro Fluorocarboos HFC y CFC y sus couestos... Cooetes de la lata de refrigeració Los cooetes riciales de la lata uede ser aalizados e base a odelos terodiáicos; ero, dado que ocurre desviacioes resecto del ciclo terodiáico ideal, es ecesario estudiar exerietalete el ciclo utilizado cooetes reales.... Coresor El coresor eleado e este esayo es tio alterativo, de ua sola etaa de coresió. Utiliza u istó que se deslaza alterativaete detro de u cilidro, reduciedo el volue ara coriir al refrigerate. E este tio de coresor existe u esacio libre, el volue uerto, sobre el cual o se uede actuar ara seguir reduciedo el volue de coresió. P Sobreresió de descarga.. WT Volue uerto P v = Cte Deresió de carga v Figura. Esquea del coresor y Diagraa -V

5 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 5 de El vaor refrigerate es caletado durate la coresió debido a la fricció e el fluido. Alicado la riera ley de la terodiáica: = W t + H Por ser el cabio e la eergía ciética y otecial o sigificativo, ara facilitar el cálculo se desreciará esta variació. El exoete olitróico de coresió () del refrigerate vaorizado uede ser deducido a artir de la siguiete relació: Si se cosidera que los cabios de eergía ciética y otecial so desreciables, la ecuació de balace de eergía viee a ser: vd ( w Dode la itegral uede ser evaluada cosiderado u roceso olitróico de sustitució. Por lo tato:. W vd e e t k vd v v La cuatificació del trabajo técico que recibe el coresor del otor eléctrico se realiza de la siguiete aera:. W t T.w ) Dode: T = Torque (N.) w = Velocidad agular de giro del otor eléctrico (rad/s) El calor que se roduce or el rozaieto del fluido co las aredes del coresor es el calor de fricció. Así, suoiedo FEES, y desreciado EK, EP, la ecuació de eergía ara el ortador se tiee: w vd... Codesador Es u itercabiador de calor que costa de u seretí or dode circula el refrigerate (-A) y es efriado or el aire del edio abiete.

6 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 6 de Flujo de refrigerate Figura. Priera Ley e el Codesador Por la riera ley, al o aber trabajo de cabio de volue ( W 0 ) y desreciado los cabios de eergía ciética (E K = 0) y otecial (E P = 0) se obtiee la siguiete exresió: = s s i i + W + E k + E. = ( ) Dode: = flujo ásico de -a (kg/s)... Válvula de exasió Es ua válvula de regulació de resió. Al asar or ella, el refrigerate líquido es estragulado, reduciedo su resió y su teeratura ara así oder absorber calor a baja teeratura. Tabié erite regular el flujo de refrigerate. El roceso a través de la válvula de exasió, se asuirá isoetálico: 7 Nota: Para que el roceso e la válvula sea isoetálico se deberá cosiderar desreciables los cabios de eergía ciética (E K = 0) y otecial (E P = 0) adeás de que o se desarrolla trabajo técico y cosiderar al roceso adiabático.

7 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 7 de... Cáaras frigoríficas (Evaorador) Costituido or aeles aislates de 00 de esesor Costa de u seretí de cobre (evaorador) y u caletador eléctrico El suiistro de calor ara la evaoració del refrigerate es roorcioado ediate el caletador eléctrico (esistecias) Tabié se roduce trasferecia de calor etre la cáara y el abiete exterior a través de las aredes. Luego, alicado Priera Ley ara el sistea etero resulta: t 5 t = ( 5 ) W E WE Figura. Esquea de la cáara de efrigeració.5. ediietos Coeficiete de Perforace: COP Plata ( ) W t 5. POCEDIMIENTO 5.. Pruebas a ealizar Esayar el equio a diferetes cargas téricas (P r {00 W, 00 W y 500 W.}). Eserar a que la lata estabilice ara toar lecturas de: Presió y teeratura e cada uto. Flujos de refrigerate. Fuerza e el diaóetro. Velocidad de rotació del otor. Potecia eléctrica e las resistecias.

8 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 8 de 5.. Ates del Esayo Cuidar que todos los iterrutores se alle e osició de aagado. Asegurarse del bue estado de los istruetos. Verificar la coexió a tierra del equio. Coectar el equio al suiistro geeral de corriete. 5.. Durate el Esayo Arracar el otor eléctrico ulsado el botó ON. evisar que Eceder el caletador colocado la llave esis e la osició ON. Ajustar la otecia eléctrica e las resistecias aciedo uso del variador de voltaje (00W, 00 W, 500 W) ara cada cáara de refrigeració. 5.. Precaucioes Durate el Esayo Se debe toar las siguietes recaucioes durate la oeració del equio: La teeratura de la tubería de asiració del coresor debe ser tal que o se fore escarca al exterior. Esto idica que el refrigerate está e estado de vaor saturado y odría arrastrar líquido que dañar al coresor. E ese caso, la edida a adotar sería verificar la carga eléctrica suiistrada e el caloríetro y auetarla ara roorcioar sobrecaletaieto e el vaor refrigerate asirado or el coresor. Notar que la caída de resió e el codesador suele ser íia, ietras que e el evaorador se roduce u flujo de ezcla líquido-vaor, or lo cual la caída de resió es ayor. Para aagar el equio Bajar toda la carga de las resistecias Aagar el caloríetro, colocado la llave esis e la osició OFF. Aagar el otor eléctrico, ulsado el botó OFF. Descoectar el equio. 6. CÁLCULOS Y GÁFICOS Evaluar ara cada carga: El balace de eergía e el coresor, el codesador y las cáaras. El trabajo técico etregado al sistea. El flujo ásico de agua y refrigerate que circula or el sistea. El coeficiete de erforace (COP) de la lata. Graficar los rocesos e u úico diagraa - del -A, ara las tres cargas. Graficar los siguietes aráetros versus la caacidad de refrigeració, ara las tres cargas: El trabajo técico e el coresor.

9 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 9 de El flujo ásico circulate del refrigerate -A. El coeficiete de erforace (COP). 7. HOJA DE DATOS PAÁMETOS Síbolo Uidad P r = 00 W P r = 00W P r = 500 W Presioes: Etrada al Coresor barg Salida del Coresor barg Salida del Codesador barg Salida de la Válvula de Alta barg Salida de la Válvula de Baja 7 barg Teeraturas: Etrada al Coresor T C Salida del Coresor T C Salida del Codesador T C Salida de la Válvula de Alta T C Salida de la Válvula de Baja T7 C Teeratura Abietal Ta= T5 C Teeraturas suerficiales iteras cáara de Alta Teeraturas suerficiales iteras cáara de Alta Teeraturas suerficiales iteras cáara de Baja Teeraturas suerficiales iteras cáara de Baja Fuerza: Velocidad rotacioal: Flujos: T9 T0 T T C C C C Torque Mt N- Motor eléctrico r efrigerate V l/i Carga térica e las cáaras Potecia e resistecias de Alta Pra W Potecia e resistecias de Baja Prb W

10 W E V I 000 COP W t DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia 0 de 8. HOJA DE CÁLCULOS Exresió Uidades P r = 00 W P r = 00W P r = 500 W Presió absoluta etrada coresor kpa Presió absoluta salida coresor Presió absoluta salida codesador Presió absoluta salida válvula Etalía esecífica etrada de coresor Etalía esecífica salida de coresor Etalía esecífica salida de codesador kpa kpa kpa Etalía esecífica salida de válvula de Alta 5 Etalía esecífica salida de válvula de Baja 7 Volue esecífico etrada de coresor ν Volue esecífico salida de coresor ν Volue esecífico salida de codesador ν Velocidad agular del eje del otor π 0 Trabajo técico e el coresor W t T 000 Exoete olitróico edio /kg /kg /kg rad/s -

11 DEPATAMENTO DE INGENIEÍA SECCIÓN INGENIEÍA MECÁNICA LABOATOIO DE ENEGÍA Págia de Exresió Uidades P r = 00 W P r = 00W P r = 500 W Trabajo esecífico olitróico Flujo de refrigerate de Alta kg/s Flujo de refrigerate de Baja kg/s Calor trasferido e el coresor Calor trasferido e el codesador Caacidad de refrigeració de alta Caacidad de refrigeració de baja Calor trasferido e la cáara de alta Calor e la cáara de alta v vd 5 6 A v vd t W 5 A E C W V A A v E 7 C W 7 B V B B v

Compresión múltiple. Alcance

Compresión múltiple. Alcance Coresión últile. Alcance PRODUCCION DE FRIO Alicaciones con fuertes diferencias de teeratura entre condensación y evaoración (tasas elevadas de coresión): Refrigeración a baja teeratura. Bobas de calor

Más detalles

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos

Propuesta de un modelo para la gestión de los neumáticos de una flota de vehículos 5 th Iteratioal oferece o Idustrial Egieerig ad Idustrial Maageet XV ogreso de Igeiería de Orgaizació artagea, 7 a 9 de Setiebre de 2 Prouesta de u odelo ara la gestió de los euáticos de ua flota de vehículos

Más detalles

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor

Tema 7. El transistor. El transistor bipolar de unión. Tema 7. El Transistor Tema 7. l trasistor Tema 7. l trasistor Objetivos: teder cualitativamete el fucioamieto de los trasistores de uió y de efecto camo. oocer alguas alicacioes de trasistores. hockley, ardee, rattai (1948)

Más detalles

Máquinas de Balanceo Dinámico

Máquinas de Balanceo Dinámico LGM-0-04 00-abril Máquias de Balaceo Diáico La Guía MetAs E esta edició del boletí La Guía MetAs resetaos los eleetos que costituye las áquias de balaceo de soortes flexibles y rígidos. Así coo los odelos

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Semiconductores. Dr. J.E. Rayas Sánchez

Semiconductores. Dr. J.E. Rayas Sánchez Semicoductores Alguas de las figuras de esta resetació fuero tomadas de las ágias de iteret de los autores del texto: A.R. Hambley, Electroics: A To-Dow Aroach to Comuter-Aided Circuit Desig. Eglewood

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA ANÁISIS IENSIONA Y SEEJANZA INÁICA PROOIPOS Y OEOS os procediietos aalíticos basados e las ecuacioes geerales de la ecáica de los fluidos, o perite resolver, adecuadaete, todos los probleas que se preseta

Más detalles

P en su plano, siendo C las correspondientes

P en su plano, siendo C las correspondientes PRINIPIO DE OS TRBJOS VIRTUES El Pricipio de los Trabajos Virtuales se expresa diciedo: Para ua deforació virtual ifiitaete pequeña de u cuerpo que se ecuetra e equilibrio, el trabajo virtual de las fuerzas

Más detalles

El Transistor de Efecto de Campo (FET)

El Transistor de Efecto de Campo (FET) El Trasistor de Efecto de Camo (FET) J.I.Huirca, R.A. Carrillo Uiversidad de La Frotera. ecember 10, 2011 Abstract El FET es u disositivo activo que oera como ua fuete de corriete cotrolada or voltaje.

Más detalles

Símbolo del inversor autónomo.

Símbolo del inversor autónomo. CAPITULO II TORIA D LOS INRSORS D TNSION Itroducció Los iversores de tesió so coversores estáticos, destiados a cotrolar el flujo de eergía eléctrica etre ua fuete de tesió cotiua y ua fuete de corriete

Más detalles

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA

ESTIMACIÓN DE VARIANZAS Y PROPORCIONES POBLACIONALES MEDIANTE INTERVALOS DE CONFIANZA UNP-Facultad de Igeiería Carreras: Ig. Electróica y Electricista CAPÍTUO 6 ESTIMACIÓN DE VARIANZAS PROPORCIONES POBACIONAES MEDIANTE INTERVAOS DE CONFIANZA 6.1 Itervalo de cofiaza ara la variaza de ua

Más detalles

6. COMPRESIÓN DE GASES

6. COMPRESIÓN DE GASES 6. COMPRESIÓN DE GASES 6.1 INTRODUCCIÓN Este capitulo trata del aálisis eergético de los compresores para gases, los cuales so dispositivos e los que se efectúa trabajo sobre u fluido gaseoso, elevado

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

UNIONES ATORNILLADAS

UNIONES ATORNILLADAS PROBLEMA Nº4 Diseñar ediate torillos resistetes al deslizaieto e ELU la uió últiple de la pieza co secció e cajó y plata e T a la placa frotal, teiedo e cueta las diesioes y la solicitació de servicio

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

El Transistor de Juntura Bipolar (BJT)

El Transistor de Juntura Bipolar (BJT) l Trasistor de Jutura iolar (JT) J,I. Huircá, R.A. arrillo Uiversidad de La Frotera December 9, 2011 Abstract l Trasistor de Jutura iolar (JT) es u disositivo activo de tres termiales, ase, olector y misor,

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

Sistemas Energéticos (Master I.I.)

Sistemas Energéticos (Master I.I.) Sistemas Eergéticos (Master I.I.) S.E. T.- Vetiladores Las trasparecias so el material de apoyo del profesor para impartir la clase. No so aputes de la asigatura. Al alumo le puede servir como guía para

Más detalles

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL

DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL DETERMINACIÓN DEL COEFICIENTE DE DEFORMACIÓN ELÁSTICA EN ENSAMBLES PISTÓN CILINDRO DE BALANZAS DE PRESIÓN TIPO INDUSTRIAL Pablo Olvera Araa Cetro Nacioal de Metroloía, CENAM Resume E el esamble istó cilidro

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm SIGNUR GI MECÁNIC DE FLUIDOS CURSO KURSO NOMBRE IZEN FECH D 8//00 0 L 0, V B 8 L 0V 0V 0 L 0, ubería de retorno al tanque 0 L 0Z B 0Z M 0 8 L Esquea de fijación del cilindro y vástago S El circuito hidráulico

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

TEMA 4: POLINOMIOS EN UNA INDETERMINADA.

TEMA 4: POLINOMIOS EN UNA INDETERMINADA. I.E.S. Salvador Serrao de Alcaudete Deartameto de Matemáticas º ESO 0 / TEMA : POLINOMIOS EN UNA INDETERMINADA.. Eresioes Algebraicas. Las EXPRESIONES ALGEBRAICAS se usa ara traducir al leguaje matemático,

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO

CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO CONTROL DE TEMPERATURA POR HISTERESIS USANDO UN TRIAC Y UN DETECTOR DE CRUCE POR CERO OBJETIOS: Se pretede cotrolar la temperatura de u ambiete reducido (e este caso la cabia de ua icubadora para eoatos),

Más detalles

Sistemas de Segundo Orden

Sistemas de Segundo Orden Apute I Departameto de Igeiería Eléctrica Uiversidad de Magallaes Aputes del curso de Cotrol Automático Roberto Cárdeas Dobso Igeiero Electricista Msc. Ph.D. Profesor de la asigatura Este apute se ecuetra

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

Tema 5: Organización de la memoria: memoria principal.

Tema 5: Organización de la memoria: memoria principal. Objetivos: Tea 5: Orgaizació de la eoria: eoria pricipal Coocer las características geerales de los diferetes tipos de eoria que aparece e u coputador digital y aalizar la ecesidad de su orgaizació jerárquica

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos.

OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos. TEMA 7 OPTICA EOMÉTRICA Otica eométrica La trasmisió de la luz: Rayos de luz La Ótica eométrica describe la Trasmisió de la luz basádose E la aroximació de los rayos Ω Haz de luz Rayo Rayo lim Haz de luz

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

TEMA 5 LA ACTIVIDAD PRODUCTIVA DE LA EMPRESA

TEMA 5 LA ACTIVIDAD PRODUCTIVA DE LA EMPRESA Adiistració de Eresas y Orgaizació de la roducció TEMA 5 LA ACTIVIDAD RODUCTIVA DE LA EMRESA 5.. LA UNCIÓN DE RODUCCIÓN. E el setido ás alio del tério, la ució roductiva de la eresa se relacioa co el eleo

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s.

Donde el par Tm a la salida del motor se expresa en N.m y la velocidad del motor w se expresa en rad/s. U automóvil (Citroe XM V6) tiee la geometría idicada e la figura. Su masa total es.42 Kg. Dispoe de u motor cuya relació par-velocidad puede expresarse mediate la relació: Tm=-,52.-3.w2+,38.w-5,583 N.m

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.

Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato. UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

FEH02-15 FÓRMULAS Y EJEMPLOS. Incluye al producto: - Hipotecario 1. GLOSARIO DE TÉRMINOS

FEH02-15 FÓRMULAS Y EJEMPLOS. Incluye al producto: - Hipotecario 1. GLOSARIO DE TÉRMINOS FÓRMULAS Y EJEMPLOS Icluye al producto: - Hipotecario. GLOSARIO DE TÉRMINOS a. Préstao: Sua de diero etregada al prestatario o usuario del préstao por u plazo deteriado, coproetiédose a pagar ua sua adicioal

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted:

REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted: REFRACCIÓN OBJETIVOS Después de copletar el estudio de este tea podrá usted:. Defiir el ídice de refracció y expresar tres leyes que describe el coportaieto de la luz refractada.. Aplicar la ley de Sell

Más detalles

GUÍA NÚMERO 18 CUERPOS POLIEDROS: Están limitados por superficies planas y de contorno poligonal. Se clasifican en: > Regulares > Irregulares

GUÍA NÚMERO 18 CUERPOS POLIEDROS: Están limitados por superficies planas y de contorno poligonal. Se clasifican en: > Regulares > Irregulares Sait Gaspar College MISIONEROS DE L PRECIOS SNGRE Forado Persoas Ítegras Departaeto de Mateática RESUMEN PSU MTEMTIC GUÍ NÚMERO 8 CUERPOS POLIEDROS: Está liitados por superficies plaas y de cotoro poligoal.

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

MACROECONOMÍA III EL MODELO DE SOLOW

MACROECONOMÍA III EL MODELO DE SOLOW MACROECONOMÍA III E MODEO DE SOOW Blaca Sachez-Roble Equema de la preetació. Supueto del modelo. Dicuió 3. Implicacioe 4. co proreo técico Supueto:. Fució de producció: < < (). o idividuo ahorra ua taa

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz

(10K) (12K) (470) (c) A v = 190 (d) f c = 53 MHz 3. AMPIFICADORES Y MEZCADORES 1. E el circuito de la figura: a) Determiar el puto de trabajo de ambos BJT. b) Represetar el circuito e pequeña señal idicado los valores de cada elemeto. c) Hallar la gaacia

Más detalles

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos

ITM, Institución universitaria. Guía de Laboratorio de Física Mecánica. Práctica 3: Teoría de errores. Implementos ITM, Istitució uiversitaria Guía de Laboratorio de Física Mecáica Práctica 3: Teoría de errores Implemetos Regla, balaza, cilidro, esfera metálica, flexómetro, croómetro, computador. Objetivos E esta práctica

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

3 Capítulo 3. UN NUEVO PROTOCOLO MAC: DQRAP/CDMA (Distributed Queueing Random Access Protocol)

3 Capítulo 3. UN NUEVO PROTOCOLO MAC: DQRAP/CDMA (Distributed Queueing Random Access Protocol) 3 Caítulo 3. UN NUEVO ROTOCOLO MAC: DQRA/CDMA Distriuted Queueig Rado Access rotocol 3. Itroducció E 99, W. Xu y G. Caell, del Illiois Istitute o Techology, rousiero u esquea de cotrol de acceso al edio

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)

21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2) EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )

Más detalles

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN

RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES RENDIMIENTO ESTACIONAL TECNOLOGÍA DE LA COMBUSTIÓN RENDIMIENTO INTRODUCCIÓN BALANCE DE ENERGÍA RENDIMIENTO DE COMBUSTIÓN TABLAS DE COMBUSTIBLES REAL DECRETO 275/1995 DE 24 DE FEBRERO DIRECTIVA DEL CONSEJO 92/42/CEE RENDIMIENTO ESTACIONAL 1 INTRODUCCIÓN

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation

Un comentario sobre New exact solutions for the combined sinh-cosh-gordon equation Lecturas Mateáticas Volue 32 (2011), págias 23 27 ISSN 0120 1980 U coetario sobre New exact solutios for the cobied sih-cosh-gordo equatio Jua Carlos López Carreño & Rosalba Medoza Suárez Uiversidad de

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE

IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE IDENTIFICACIÓN DE LA FUNCION DE TRANSFERENCIA USANDO EL DIAGRAMA DE BODE Determiació de la fució de trasferecia de lazo abierto de u sistema a partir de la curva asitótica de magitud del Diagrama de Bode.

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h

Práctica 5. Aproximar numéricamente la derivada de una función a partir de valores conocidos de la función. f a h f a h PRÁCTICA DERIVACIÓN NUMÉRICA Prácticas Matlab Objetivos Práctica 5 Aproximar uméricamete la derivada de ua fució a partir de valores coocidos de la fució. Comados de Matlab eps Es el epsilo máquia, su

Más detalles

ETAPAS GENERALES. Etapa 1. PASO 1 PARA DOCENTES DE AULA. Consentimiento informado. ETAPA 1. ETAPA 4 Entrega de resultados

ETAPAS GENERALES. Etapa 1. PASO 1 PARA DOCENTES DE AULA. Consentimiento informado.  ETAPA 1. ETAPA 4 Entrega de resultados ETAPAS GENERALES PARA DOCENTES DE AULA EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2015 Las cuatro etapas geerales que hace parte de la ECDF so las siguietes: ETAPA 1 Práctica educativa

Más detalles

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL?

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Rev. 12/26/12 DATOS Por qué? Qué? QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Las istitucioes fiacieras elige la maera e que comparte su iformació persoal. La ley federal otorga a los

Más detalles

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES

SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES SEGUNDA PARTE PRESENTACIÓN DEL MÉTODO DE ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES L. GENERALIZACIÓN DEL A.F.C. : ANÁLISIS FACTORIAL DE CORRESPONDENCIAS MÚLTIPLES 1. Itroducció Las «ecuestas» se

Más detalles

10 Cálculo de las tasas centrales de mortalidad a partir de los dos años de edad. 10 Cálculo de las probabilidades de muerte.

10 Cálculo de las tasas centrales de mortalidad a partir de los dos años de edad. 10 Cálculo de las probabilidades de muerte. INDICE Págias Presetació. 2 I. La costrucció de las tablas de ortalidad para Cuba y provicias 2005-2007. 5 - Iforació básica utilizada. 5 - Aspectos relacioados co el étodo de costrucció de las tablas

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

Diagramas de Bode. Respuesta En Frecuencia

Diagramas de Bode. Respuesta En Frecuencia Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

Electrónica de Potencia (Especialidad de Electricidad)

Electrónica de Potencia (Especialidad de Electricidad) Electróica de Potecia (Especialidad de Electricidad). Itroducció PRÁCICA DEERMINACIÓN DE LA HD Y EL FACOR DE POENCIA MEDIANE PSPICE Y SIMPOWERSYSEM oda fució periódica que cumple ciertas propiedades puede

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Artículo técnico CVM-NET4+ Cumple con la normativa de Eficiencia Energética. Nuevo analizador de redes y consumos multicanal Situación actual

Artículo técnico CVM-NET4+ Cumple con la normativa de Eficiencia Energética. Nuevo analizador de redes y consumos multicanal Situación actual 1 Artículo técico Joatha Azañó Divisió Gestió Eergética y Calidad de Red CVM-ET4+ Cumple co la ormativa de Eficiecia Eergética uevo aalizador de redes y cosumos multicaal Situació actual Las actuales ormativas

Más detalles

PROBLEMA DIRECTO ELECTROENCEFALOGRÁFICO PARA FUENTES EN LA CORTEZA CEREBRAL ASOCIADOS A FOCOS EPILÉPTICOS.

PROBLEMA DIRECTO ELECTROENCEFALOGRÁFICO PARA FUENTES EN LA CORTEZA CEREBRAL ASOCIADOS A FOCOS EPILÉPTICOS. PROBLEMA DIRECTO ELECTROENCEFALOGRÁFICO PARA FUENTES EN LA CORTEZA CEREBRAL ASOCIADOS A FOCOS EPILÉPTICOS. M.M. Morí-Castillo *, J.J. Oliveros-Oliveros **, C. Netzahualcoyotl Bautista **, G. García Aguilar

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

TEMA 6: DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal TEMA : DISOLUCIONES Sistema material Sustacias puras Elemeto Compuesto Homogéea Heterogéea coloidal Suspesió 1.- DISOLUCIÓN (CONCEPTO) Es ua mezcla homogéea de dos o mas sustacias químicas tal que el tamaño

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

Economía a de la Empresa I

Economía a de la Empresa I Ecoomía a de la Empresa I Tema 7: El Ciclo de Explotació e la Empresa. Iersioes e circulate Liceciatura Cojuta e Derecho y Admiistració y Direcció de Empresas Tercer Curso Prof. Dr. Jorge Otero Rodríguez

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

RepublicofEcuador EDICTOFGOVERNMENT±

RepublicofEcuador EDICTOFGOVERNMENT± RepublicofEcuador EDICTOFGOVERNMENT± Iordertopromotepubliceducatioadpublicsafety,equaljusticeforal, abeteriformedcitizery,theruleoflaw,worldtradeadworldpeace, thislegaldocumetisherebymadeavailableoaocommercialbasis,asit

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles