CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍAS UPB FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍAS UPB FÍSICA II: Fundamentos de Electromagnetismo PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN"

Transcripción

1 1 1. OBJETIVOS: PRÁCTICA 7: RELACIÓN CARGA MASA DEL ELECTRÓN Medir la relación carga masa de un electrón (e/m), usando un campo magnético uniforme para desviar un haz de electrones, previamente acelerados por una diferencia de potencial aplicada entre el cátodo y ánodo de un tubo de Thomson.. PREINFORME.1 Resumen de la base teórica: Fuerza magnética Movimiento de partículas cargadas en campos eléctricos y magnéticos Campo magnético producido por las bobinas de Helmholtz Fuentes de luz... Cálculos y justificaciones: Demostrar que el campo magnético en el interior de las bobinas de Helmholtz está dado por la ecuación (1), donde N es el número de espiras, I es la corriente de las bobinas, a es el radio de las bobinas y µ o, es la permeabilidad magnética del vacío B Z 8µ 0 N I 0, 7µ o N I Weber = 3 = Tesla (1) a 5 a m A partir de consideraciones teóricas, sobre los fenómenos físicos que tienen lugar en el experimento con el tubo de Thomson (ver figura ), encuentre la expresión mostrada en la ecuación () y que se utilizará como modelo de cálculo, para hallar la relación entre la carga (e) y la masa del electrón (m). e Va = () m B R Donde Va es el voltaje acelerador, B la intensidad del campo magnético y R es el radio de la trayectoria circular de los electrones. 3. MATERIALES Y EQUIPO: Equipo Tubo de Thomson para e/m (55) Bobinas de Helmohltz (50) Conectores Fuente de voltaje d. c. (800) Fuente de voltaje (813) Interruptor

2 4. MONTAJE Y DIAGRAMAS ELÉCTRICOS: Figura 1. Montaje completo Figura 3 Figura. Esquema del Montaje completo

3 3 4.1 DESCRIPCIÓN DEL EQUIPO: Visualización de la trayectoria del electrón En este montaje se usa el tubo de thomson 3B (55), en él se desprenden electrones del cátodo por efecto termoiónico, esto ocurre cuando la fuente Vf, calienta el filamento para que el cátodo suministre los electrones, los cuales son luego acelerados por la diferencia de potencia entre el cátodo y el ánodo (Va). Lo electrones acelerados salen a un tubo de vidrio transparente, en el cual son interceptados por una delgada hoja de mica, que se convierte en una pantalla luminiscente cuando es excitada por la colisión con los electrones, haciendo visible la trayectoria de los electrones dentro del tubo. Las especificaciones del tubo de thomson son: Voltaje de filamento (Vf) 6,0 V ac/dc ( 8,0 V máximo) Voltaje de ánodo o acelerador (Va) de 000 a 5000 V dc ( 6000 V Máximo) Corriente de ánodo (Ia) 0, ma a 4000 V Determinación del campo magnético: El tubo está montado en un stand universal (501) que contiene las bobinas de Helmohltz (50) al máximo espaciamiento El tubo debe estar rotado 5 para optimizar la intercepción del rayo con la pantalla. Cada bobina tienen 30 vueltas de alambre de cobre calibre swg. El diámetro medio de la bobina es de 138x10-3 m. los extremos de los alambres de la bobina están etiquetados con A el inicio y Z el final (ver figura 3). Las bobinas de Helmohltz, conectadas en serie, resisten una corriente máxima de Amperios siempre y cuando el tiempo de duración de esta corriente no exceda los 3 minutos. Se puede operar a 1,5 A pero en un tiempo no mayor de 10 minutos. Para uso continuo se recomienda una corriente en las bobinas de 1 Amperio. Figura 3. Terminales de las Bobinas LA configuración de bobinas Helmohltz, se logra cuando el borde externo de la bobina coincide con la doble raya del símbolo H que está en la base del tubo como se muestra en la figura 4 Figura 4. Base del tubo Cuando se logra la configuración, se obtiene un campo magnético uniforme entre las dos bobinas, para calcularlo se usa la expresión de la ecuación 3, donde Ih es el valor de la corriente que circular por las bobinas de Helmholtz. 3 B = (4,17x10 ) Ih T (3)

4 4 El campo magnético uniforme generado, desvía la trayectoria de los electrones, como se muestra en la Figura 5. Determinación del radio de la trayectoria circular: Según el manual del fabricante el valor del radio de la trayectoria, cuando este pasa por cualquier punto, se determina de acuerdo a la expresión (5), de acuerdo con la ilustración de la figura 5. Por ejemplo cuando el rayo electrónico se deflecta y llega al punto F el valor del radio es R F = 300x10-6 m. Si la deflexión hace que el rayo llegue al punto E entonces el radio es R E = 800x10-6 m. De la misma manera para el cuando pasa por el punto medio del lado el radio es R 40 =0000X10-6 m L R A = (5) 80 L El valor de L se lee directamente en la placa del tubo, según figura 4 Figura 5. Determinación del Radio de la Trayectoria Determinación de la relación e/m: El valor de la relación carga masa del electrón se determina con la ecuación que resulta de combinar la ecuación () y la ecuación (3), esto es: e m Va = (4) 3 ( 4,17 x10 I ) ( R ) h

5 5 El fabricante del equipo certifica que el equipo operado en las condiciones indicadas se determina la relación carga masa del electrón por un valor de ( ± ), lo que da una precisión del,7417 x 10-3 % 5. PROCEDIMIENTO E INFORME Conecte el montaje como se muestra en el esquema del montaje (ver figura1) Conecte primero la fuente 813 a las terminales del tubo, Tenga en cuenta lo siguiente: Figura 5. Alimentación del Tubo de Thomson Luego haga la conexión de las bobinas como se ilustra en la parte derecha del esquema del montaje de la figura 1 Haga revisar las conexiones de su profesor antes de encender las fuentes de voltaje. No exceda los valores de voltajes y corrientes mencionados en la descripción del montaje Verifique que la configuración de las bobinas si corresponde con lo exigido para las bobinas de Helmholtz Tome los datos necesario para llenar la tabla 1, inicie con un voltaje acelerador de 1,500V Calcule para cada caso la relación e/m con la ecuación (4) Haga un análisis estadístico y reporte la precisión del trabajo experimental De algunos argumentos sobre la discrepancia entre el valor e/m teórico y el experimental. Tabla 1. Determinación de la relación carga masa del electrón Va (V) I h (A) (I h ) (A ) R (m ) e/m Va = Voltaje acelerador I h = Corriente en las bobinas

Cálculo aproximado de la carga específica del electrón Fundamento

Cálculo aproximado de la carga específica del electrón Fundamento Cálculo aproximado de la carga específica del electrón Fundamento La medida de la carga específica del electrón, esto es, la relación entre su carga y su masa, se realizó por vez primera en los años ochenta

Más detalles

RELACIÓN CARGA - MASA DEL ELECTRÓN

RELACIÓN CARGA - MASA DEL ELECTRÓN Práctica 5 RELACIÓN CARGA - MASA DEL ELECTRÓN OBJETIVO Determinar la relación carga-masa del electrón (e/m e ), a partir de las trayectorias observadas de un haz de electrones que cruza una región en la

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME

DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME DINAMICA DE UN ELECTRON EN UN CAMPO ELECTRICO UNIFORME D. Giraldo a, E. Valdes a J. Rodriguez a y A. Duarte a a Facultad de Ingeniería mecánica Universidad Pontificia Bolivariana de Medellín. Colombia

Más detalles

Práctica 3 Relación carga/masa del electrón

Práctica 3 Relación carga/masa del electrón Práctica 3 Relación carga/masa del electrón I.-Objeto de la práctica: Determinar la relación carga-masa de un electrón. II.-Fundamento teórico: Cuando una carga puntual q se mueve con velocidad v en el

Más detalles

RELACIÓN CARGA/MASA DEL ELECTRÓN

RELACIÓN CARGA/MASA DEL ELECTRÓN RELACIÓN CARGA/MASA DEL ELECTRÓN Objetivo Determinar el cociente de la carga eléctrica del electrón entre su masa. Introducción En 1897 J. J. Thomson realizó un experimento crucial que consistió en medir

Más detalles

ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016

ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1. Coordinación Curso Agosto de 2016 ELECTRICIDAD Y MAGNETISMO LABORATORIO PRESENCIAL 1 Coordinación Curso Agosto de 2016 TEMA : MOVIMIENTO DE ELECTRONES EN UN CAMPO ELÉCTRICO UNIFORME Hipótesis de trabajo: Siempre que un electrón entre a

Más detalles

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -

Más detalles

MAGNETISMO. MsC Alexander Pérez García Video 1

MAGNETISMO. MsC Alexander Pérez García Video 1 MAGNETISMO MsC Alexander Pérez García Video 1 http://www.dailymotion.com/video/xqqir9_campomagnetico-terrestre-inversion-de-los-polos_school FUERZA MAGNÉTICA SOBRE UNA CARGA EN MOVIMIENTO LA SEGUNDA

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA UPB FÍSICA II: FUNDAMENTOS DE ELECTROMAGNETISMO PRÁCTICA 6: CAMPO MAGNÉTICO EN BOBINAS

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA UPB FÍSICA II: FUNDAMENTOS DE ELECTROMAGNETISMO PRÁCTICA 6: CAMPO MAGNÉTICO EN BOBINAS 1 PÁCTIC 6: CMPO MGNÉTICO EN BOBINS 1. OBJETIVOS 1.1. Objetivo General: Estudiar las características de los campos magnéticos generados por corrientes eléctricas continuas que circulan en bobinas 1.2.

Más detalles

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 Maicol.llano@upb.edu.co,

Más detalles

Movimiento de electrones en campos E y B: el ciclotrón

Movimiento de electrones en campos E y B: el ciclotrón DEMO 25 Movimiento de electrones en campos E y B: el ciclotrón GUÍA DETALLADA DE LA DEMOSTRACIÓN INTRODUCCIÓN La Fuerza de Lorentz determina el movimiento de las cargas eléctricas en campos eléctricos

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo 1 PRÁCTICA DE LABORATORIO: LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. OBJETIVOS: Determinar la relación entre la magnitud de la fuerza electromotriz inducida (f.e.m) y las variables involucradas

Más detalles

DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS.

DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. PRÁCTICA Nº 1. DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. 1. OBJETIVOS: a) Observar la trayectoria de partículas cargadas en el seno de campos eléctricos y magnéticos. b) Determinar

Más detalles

PRÁCTICA 2 DE FÍSICA GENERAL II

PRÁCTICA 2 DE FÍSICA GENERAL II PRÁCTICA 2 DE FÍSICA GENERAL II CURSO 2017-18 Departamento de Física Aplicada e Ingeniería de Materiales Juan Antonio Porro González Francisco Cordovilla Baró Rafael Muñoz Bueno Beatriz Santamaría Práctica

Más detalles

Introducción a la Física Experimental Guía de la experiencia. Relación carga masa del electrón.

Introducción a la Física Experimental Guía de la experiencia. Relación carga masa del electrón. Introducción a la Física Experimental Guía de la experiencia Relación carga masa del electrón. Departamento de Física Aplicada. Universidad de Cantabria Junio 9, 005 Resumen Se indica cómo utilizar un

Más detalles

Relación carga masa del electrón.

Relación carga masa del electrón. Relación carga masa del electrón. Departamento de Física Aplicada. Universidad de Cantabria Abril, 03 Resumen Se indica cómo utilizar un dispositivo de Thomson que incluye un calefactor para emitir electrones,

Más detalles

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry)

CENTRO DE CIENCIA BÁSICA ESCUELA DE INGENIERÍA Curso Electricidad y Magnetismo LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1 LEY DE INDUCCIÓN LECTROMAGNÉTICA (Ley de Faraday - Henry) 1. PROPOSITO: Observar y cuantificar la fuerza electromotriz inducida (femi) en una bobina localizada dentro de un campo magnético producido

Más detalles

FISICA III. Departamento de Física y Química Escuela de Formación Básica

FISICA III. Departamento de Física y Química Escuela de Formación Básica : FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 4 - INTERACCIÓN MAGNÉTICA Temas: Movimiento de cargas en un campo magnético. Fuerzas sobre conductores. Torque

Más detalles

EXPERIMENTO DE J. J. THOMSON

EXPERIMENTO DE J. J. THOMSON EXPERIMENTO DE J. J. THOMSON (Determinación de la Relación Carga/Masa de los Electrones) M. C. Q. Alfredo Velásquez Márquez Tubo de Geissler (~1857) Con gas a presión normal se observa poca conductividad,

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

Campo Magnético creado por un Solenoide

Campo Magnético creado por un Solenoide Campo Magnético creado por un Solenoide Ejercicio resuelto nº 1 Un solenoide se forma con un alambre de 50 cm de longitud y se embobina con 400 vueltas sobre un núcleo metálico cuya permeabilidad magnética

Más detalles

Departamento de Física y Química Escuela de Formación Básica

Departamento de Física y Química Escuela de Formación Básica : FISICA III Departamento de Física y Química Escuela de Formación Básica GUÍA DE PROBLEMAS 4 - INTERACCIÓN MAGNÉTICA Fuerzas sobre conductores. Torque sobre una espira. Ley de Biot y Savart. Momento dipolar

Más detalles

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre:

Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: Examen Final. Electricidad Magnetismo y Materiales. Pontificia Universidad Javeriana. Nombre: 1. (2 puntos) 1.1 En las siguientes afirmaciones, indica verdadero (V) o falso (F) según corresponda. A. La

Más detalles

Interaccio n electromagne tica.

Interaccio n electromagne tica. Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo

Más detalles

Relación q/m del electrón. Método de Busch

Relación q/m del electrón. Método de Busch Relación q/m del electrón Método de Busch El experimento clásico para medir la relación carga masa es el propuesto por el PSSC Utiliza un tubo de vacío Ojo Mágico que permite acelerar electrones mediante

Más detalles

EXPERIMENTO DE J. J. THOMSON

EXPERIMENTO DE J. J. THOMSON U N A M DIVISIÓN DE CIENCIAS BÁSICAS LABORATORIO DE QUÍMICA Práctica: EXPERIMENTO DE J. J. THOMSON Objetivos de la práctica El alumno: 1. Conocerá el principio de funcionamiento del aparato para la determinación

Más detalles

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo.

Guía de ejercicios supletorio 2do BGU. 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. Guía de ejercicios supletorio 2do BGU 1. El esquema muestra tres cargas eléctricas, dispuestas en los vértices de un triángulo rectángulo. a P A Parámetro Valor Unidad q a -6 µc q b +2 µc q c +1 µc a 50

Más detalles

CUESTIONARIO 2 DE FISICA 4

CUESTIONARIO 2 DE FISICA 4 CUESTIONARIO 2 DE FISICA 4 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de imanes? a) por su origen: b) por su retentividad magnética: c) por su forma: 2.-

Más detalles

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6 EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO Página 1 de 6 OBJETIVOS 1. Conocer las relaciones de voltaje y corriente de un transformador. 2. Estudiar las corrientes de excitación, la capacidad

Más detalles

CARGA ESPECÍFICA DEL ELECTRÓN

CARGA ESPECÍFICA DEL ELECTRÓN Laboratorio de Electricidad y Magnetiso FIS0153 CARGA ESPECÍFICA DEL ELECTRÓN OBJETIVO Calcular el cociente entre la asa y la carga del electrón. EQUIPAMIENTO 1. Netbook o notebook 2. Bobina de 520 vueltas

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

Determinación experimental del valor del campo magnético terrestre

Determinación experimental del valor del campo magnético terrestre Determinación experimental del valor del campo magnético terrestre Ana María Gervasi 1 y Viviana Seino 1 Escuela Normal Superior N 5, Capital Federal, anamcg@ciudad.com.ar Instituto Privado Argentino Japonés,

Más detalles

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje

FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje FÍSICA II Guía de laboratorio 03: Mediciones de resistencia y voltaje I. OBJETIVOS a) Calcula la resistencia equivalente de resistores conectados en serie y en paralelo, utilizando los valores nominales

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

Napoleón. A. F. II (16.58) 4. Un cable coaxial se forma rodeando un conductor. conductor coaxial de radio interno

Napoleón. A. F. II (16.58) 4. Un cable coaxial se forma rodeando un conductor. conductor coaxial de radio interno todas las partículas llegan perpendicularmente a la rendija. Si es el radio de la trayectoria, demostrar 1. Una tira delgada de cobre de de ancho y de espesor se coloca perpendicularmente a un campo magnético

Más detalles

Física Experimental IV. Práctica III Determinación de e/m. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara.

Física Experimental IV. Práctica III Determinación de e/m. Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara. Física Experimental IV Práctica III Determinación de e/m Funes, Gustavo Giordano, Leandro Gulich, Damián Sotuyo, Sara Departamento de Física Facultad de Ciencias Exactas UNLP Sinopsis En el presente informe

Más detalles

Relación Problemas Tema 7: Electromagnetismo

Relación Problemas Tema 7: Electromagnetismo Relación Problemas Tema 7: Electromagnetismo Problemas 1.- Un electrón que se mueve en el sentido positivo del eje OX con una velocidad de 5 10 4 m/s penetra en una región donde existe un campo de 0,05

Más detalles

Laboratorio de Física II

Laboratorio de Física II Laboratorio de Física II Capitulo 12: Inducción electromagnética (funcionamiento de transformadores) Ley de Faraday Ley de Lenz Transformadores OBJETIVOS [12.1] Entender en que consiste el fenómeno de

Más detalles

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos)

Theory Espanol (Colombia) El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider) (10 puntos) Por favor asegúrese de leer las instrucciones generales dentro del sobre adjunto antes de comenzar a resolver este problema. En

Más detalles

Física 3 - Turno : Mañana

Física 3 - Turno : Mañana Física 3 - Turno : Mañana Guía N 3 - Primer cuatrimestre de 2010 Corrientes estacionarias, ley de Ohm, teorema de Thevenin, transferencia de potencia, conexiones de resistencias. 1. Calcular la resistencia

Más detalles

Mapeo del Campo Magnético de un Solenoide Finito

Mapeo del Campo Magnético de un Solenoide Finito Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1

Más detalles

ELECTRONES EN UN CAMPO MAGNÉTICO Y MEDICIÓN DE e/m

ELECTRONES EN UN CAMPO MAGNÉTICO Y MEDICIÓN DE e/m PRÁCTICA DE LABORATORIO II-08 ELECTRONES EN UN CAMPO MAGNÉTICO Y MEDICIÓN DE e/m OBJETIVOS Observar las órbitas de los electrones en un campo magnético. Identificar el tipo de polo magnético de las caras

Más detalles

Prácticas de Electromagnetismo

Prácticas de Electromagnetismo Prácticas de Electromagnetismo Curso 2016/17 Dpto. de Física Aplicada ETSII UPM Guión práctica 3.- Medida de la permeabilidad magnética del aire mediante magnetómetro de tangentes. Coordinador: Dª Lauzurica

Más detalles

Prácticas de Electromagnetismo

Prácticas de Electromagnetismo Prácticas de Electromagnetismo Curso 2015/16 Dpto. de Física Aplicada ETSII UPM Guión práctica 2.- Medida del campo magnético terrestre. Coordinador: Profesores: Dª Sara Lauzurica Santiago D. Miguel Castro

Más detalles

0,7m.

0,7m. 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una esfera que deberá ser transferida a la otra a fin de producir una fuerza de

Más detalles

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejercicios y Talleres puedes enviarlos a klasesdematematicasymas@gmail.com 1. Dos pequeñas esferas de plata, cada una con una masa de 10 g. están separadas 1 m. Calcule la fracción de electrones de una

Más detalles

5.3 La energía en los circuitos eléctricos.

5.3 La energía en los circuitos eléctricos. CAPÍTULO 5 Corriente eléctrica y circuitos de corriente continua Índice del capítulo 5 51 5.1 Corriente eléctrica. 5.2 esistencia y la ley de Ohm. 5.3 La energía en los circuitos eléctricos. 5.4 Asociaciones

Más detalles

PRÁCTICA 1 CAMPO MAGNÉTICO DE ESPIRAS CIRCULARES Y SOLENOIDES (BOBINAS) RECTOS

PRÁCTICA 1 CAMPO MAGNÉTICO DE ESPIRAS CIRCULARES Y SOLENOIDES (BOBINAS) RECTOS c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1 PRÁCTICA 1 CAMPO MAGNÉTICO DE ESPIRAS CIRCULARES Y SOLENOIDES (BOBINAS) RECTOS 1. Objetivos Esta práctica tiene como objetivo medir el vector

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA Laboratorios Reales: Electricidad y Magnetismo II MAPEO DEL CAMPO MAGNETICO DE UN SOLENOIDE FINITO ELABORADO POR: ROBERTO

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

CONTROL DE CIRCUITOS MAGNITUDES ELÉCTRICAS

CONTROL DE CIRCUITOS MAGNITUDES ELÉCTRICAS CONTROL DE CIRCUITOS Como se comprobó en el apartado anterior (ELEMENTOS DE CONTROL MANUAL EN CIRCUITOS ELÉCTRICOS), el paso de corriente por un circuito elemental depende de la posición del elemento de

Más detalles

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos.

3. Dos dipolos se orientan como se muestra en la Figura. Calcule y dibuje el campo total en el punto de observación A debido a los dipolos. 1. Un protón y un átomo neutro de carbono están inicialmente separados una distancia de 2.0 10 6 m, como se muestra en la Figura. No hay otras partículas cargadas alrededor. Si la polarizabilidad, α, del

Más detalles

LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA

LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA No 11 LABORATORIO DE ELECTROMAGNETISMO CAMPO MAGÉTICO DE LA TIERRA DEPARTAMENTO DE FISICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Verificar la existencia del campo

Más detalles

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos)

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Por favor asegúrese de leer las instrucciones generales del sobre adjunto antes de comenzar a resolver este problema. En este

Más detalles

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C.

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Experiencia N 6 1.- OBJETIVOS 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia

Más detalles

Conversión de Energía Electromecánica II. Objetivos Específicos. Introduccion Teorica. Te ma: GENERADOR SINCRONO TRIFASICO.

Conversión de Energía Electromecánica II. Objetivos Específicos. Introduccion Teorica. Te ma: GENERADOR SINCRONO TRIFASICO. Te ma: GENERADOR SINCRONO TRIFASICO. Objetivos Específicos Introduccion Teorica Que el estudiante adquiera destreza en la conexión y operación del generador síncrono trifásico. Demostrar experimentalmente

Más detalles

Guía 5: Campo Magnético y Fuentes Electricidad y Magnetismo

Guía 5: Campo Magnético y Fuentes Electricidad y Magnetismo : Campo Magnético y Fuentes Primer Cuatrimestre 013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado. Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Más detalles

Práctica 10. La constante de Avogadro

Práctica 10. La constante de Avogadro Práctica 10. La constante de Avogadro Revisaron: M. en C. Martha Magdalena Flores Leonar Dr. Víctor Manuel Ugalde Saldívar Pregunta a responder al final de la sesión En la electrólisis del agua con el

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

Práctica 10. La constante de Avogadro

Práctica 10. La constante de Avogadro Práctica 10. La constante de Avogadro Revisaron: M. en C. Martha Magdalena Flores Leonar Dr. Víctor Manuel Ugalde Saldívar Pregunta a responder al final de la sesión En la electrólisis del agua con el

Más detalles

PRÁCTICA NUMERO 3 CAMPO MAGNÉTICO TERRESTRE

PRÁCTICA NUMERO 3 CAMPO MAGNÉTICO TERRESTRE PRÁCTICA NUMERO 3 CAMPO MAGNÉTICO TERRESTRE I. Objetivos. Determinar la magnitud de la componente horizontal del campo magnético terrestre, a partir del campo magnético que produce una bobina circular.

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de

Más detalles

CONFIGURACIONES BÁSICAS DE CIRCUITOS

CONFIGURACIONES BÁSICAS DE CIRCUITOS INSTITUCIÓN EDUCATIVA JOSÉ EUSEBIO CARO ÁREA DE TECNOLOGÍA E INFORMÁTICA 2016 DOCENTE JESÚS EDUARDO MADROÑERO RUALES CORREO jesus.madronero@hotmail.com GRADO ONCE FECHA 02 DE MAYO DE 2016 CONFIGURACIONES

Más detalles

Theory latin spanish (El Salvador) Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos)

Theory latin spanish (El Salvador) Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Q3-1 Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Por favor lea las instrucciones generales, que están dentro del sobre adjunto, antes de comenzar este problema. En este problema

Más detalles

Práctica 10. La constante de Avogadro

Práctica 10. La constante de Avogadro Práctica 10. La constante de Avogadro Pregunta a responder al final de la sesión En la electrólisis del agua con el aparato de Hoffman cómo se relaciona el valor de la corriente eléctrica (i) y el tiempo

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD TECNOLÓGICA Tecnología en Electricidad EJEMPLO MEDICIÓN DE LA RESISTENCIA ELÉCTRICA DE DIFERENTES CONDUCTORES ELÉCTRICOS Fecha del ensayo: Enero 20 de 2004 Ensayo realizado por: Ing. Helmuth Ortiz Condiciones ambientales del ensayo: Temperatura:

Más detalles

ELECTROMAGNETISMO Profesor: Juan T. Valverde

ELECTROMAGNETISMO Profesor: Juan T. Valverde CAMPO MAGNÉTICO 1.- Considere un átomo de hidrógeno con el electrón girando alrededor del núcleo en una órbita circular de radio igual a 5,29.10-11 m. Despreciamos la interacción gravitatoria. Calcule:

Más detalles

electromagnetismo Desarrollo histórico 30/05/2017 Campo magnético producido por una corriente Campo magnético producido por un conductor recto

electromagnetismo Desarrollo histórico 30/05/2017 Campo magnético producido por una corriente Campo magnético producido por un conductor recto Electromagnetismo Es la parte de la física que se encarga de estudiar al conjunto de fenómenos que resultan de las acciones mutuas entre las corrientes eléctricas y el magnetismo Desarrollo histórico Nombre

Más detalles

INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1

INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 INTEGRACIÓN - AUTOEVALUACIÓN AUTOEVALUACIÓN 1 1- Una esfera aislante de radio r a = 1.20 cm está sostenida sobre un soporte aislante en el centro de una coraza metálica esférica hueca de radio r b = 9,60

Más detalles

ELECTRICIDAD Y MAGNETISMO. PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE

ELECTRICIDAD Y MAGNETISMO. PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE 1. OBJETIVOS 1.1 Corroborar que una corriente eléctrica genera un campo magnético. 1.2 Observar que un campo magnético ejerce

Más detalles

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO 1. MOTO DE COIENTE CONTINUA Y DINAMO 1.1. OBJETIVO El propósito de esta práctica es estudiar el comportamiento de un motor DC pequeño cuando opera directamente y en reversa como generador o dinamo. En

Más detalles

Fe Óxido ferroso férrico. CAPÍTULO VIII Magnetismo. 8.1 Los imanes

Fe Óxido ferroso férrico. CAPÍTULO VIII Magnetismo. 8.1 Los imanes CAPÍTULO VIII Magnetismo El término magnetismo proviene de Magnesia, antigua ciudad de Grecia donde fueron descubiertos hace más de 2000 años unas piedras (imanes) que tenían la propiedad de atraer limaduras

Más detalles

=. En un instante dado, la partícula A se mueve con velocidad ( )

=. En un instante dado, la partícula A se mueve con velocidad ( ) Modelo 2014. Pregunta 3B.- En una región del espacio hay un campo eléctrico 3 1 E = 4 10 j N C y otro magnético B = 0,5 i T. Si un protón penetra en esa región con una velocidad perpendicular al campo

Más detalles

PRACTICA 4: CAPACITORES

PRACTICA 4: CAPACITORES 1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com CAMPO Y FUERZA MAGNÉTICA 1- a) Escriba la expresión de la Fuerza de Lorentz que actúa sobre una partícula de carga q que se mueve con velocidad en una región donde hay un campo magnético. Explique las

Más detalles

Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias.

Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias. Física 3 Guia 3 - Corrientes estacionarias 1 cuat. 2014 Ley de Ohm, teorema de Thevenin, potencia, redes con resistencias. 1. Calcular la resistencia eléctrica de una plancha, una estufa de cuarzo, una

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

MANUAL DE LABORATORIO DE FÍSICA II 9ª Edición EXPERIENCIA N 07

MANUAL DE LABORATORIO DE FÍSICA II 9ª Edición EXPERIENCIA N 07 DILATACIÓN TÉRMICA DE SÓLIDOS Y LÍQUIDOS EXPERIENCIA N 07 I. OBJETIVO Determinar los coeficientes de expansión lineal de diferentes varillas metálicas usando un dilatómetro. Observar el comportamiento

Más detalles

CAPÍTULO II Aparato experimental

CAPÍTULO II Aparato experimental CAPÍTULO II Aparato experimental En este capitulo se describe el funcionamiento de cada parte del acelerador de partículas usado para la elaboración de los experimentos de este trabajo. Así también se

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

Practica No 9 La constante de Avogadro

Practica No 9 La constante de Avogadro Practica No 9 La constante de Avogadro Objetivo Determinar las condiciones experimentales de intensidad de corriente (A) y de tiempo (s), que se requieren para generar las moles de electrones necesarias

Más detalles

PRÁCTICA 13 Campo magnético

PRÁCTICA 13 Campo magnético PRÁCTICA 13 Campo magnético Objetivos Generales 1. Investigar cómo son las líneas de inducción del campo magnético B debido a las siguientes configuraciones: a) Un alambre conductor recto. b) Una espira.

Más detalles

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS

GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS GUIA DE EJRCICIOS CIRCUITOS 2os AÑOS 1. Tres resistencias de 10, 20 y 30 ohm se conectan en serie a una fuente de 25 volts, encuentra: a) La resistencia total del circuito. b) La corriente que fluye por

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

LABORATORIO DE TRANSFORMADORES

LABORATORIO DE TRANSFORMADORES LABORATORIO DE TRANSFORMADORES EXPEUEW7 I. OBJETIVO Objetivo Establecer el procedimiento para determinar la polaridad de las terminales de los devanados, utilizando: Corriente Continua y Corriente Alterna.

Más detalles

Trabajo Práctico 4: Campo Magnético

Trabajo Práctico 4: Campo Magnético Universidad Nacional del Nordeste Facultad de ngeniería Cátedra: Física Profesor Adjunto: ng. Arturo Castaño Jefe de Trabajos Prácticos: ng. Cesar Rey Auxiliares: ng. Andrés Mendivil, ng. José Expucci,

Más detalles

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES

BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES BENEMERITA UNIVERSIDAD AUTONOMA DE PUEBLA FACULTAD DE CIENCIAS FISICO-MATEMATICAS FISICA MODERNA CON LABORATORIO DIFRACCIÓN DE ELECTRONES ARJONA SUDEK RODRIGO MIGUEL CHUMACERO ELIANE PATIÑO VILLAGOMEZ

Más detalles

La Ley de Ohm. Pre-Laboratorio

La Ley de Ohm. Pre-Laboratorio La Ley de Ohm Pre-Laboratorio Nombre Sección Conteste las siguientes preguntas y entregue este pre-laboratorio a su instructor antes de comenzar la experiencia de laboratorio. 1. El sensor V-I integra

Más detalles

Circuito Serie Circuito Paralelo Ley de Ohm

Circuito Serie Circuito Paralelo Ley de Ohm I N G E N I E R Í A Q U Í M I C A Circuito Serie Circuito Paralelo Ley de Ohm Yorman Zambrano Silva (1) ; Doris Mejía (2), Juan Camilo García (3) Laboratorio de Electromagnetismo Facultad de Ingeniería

Más detalles

MEDIDAS ELÉCTRICAS CON MULTÍMETRO

MEDIDAS ELÉCTRICAS CON MULTÍMETRO MEDIDAS ELÉCTRICAS CON MULTÍMETRO CIRCUITO DE CARGA CON ALTERNADOR La corriente eléctrica que produce el alternador es de tipo alterna aunque, tras pasar por los diodos rectificadores se convierte en corriente

Más detalles

Curso de electromagnetismo Test No 3. Circuitos de corriente continua

Curso de electromagnetismo Test No 3. Circuitos de corriente continua Curso de electromagnetismo Test No 3. Circuitos de corriente continua Este test contiene problemas sobre los siguientes temas: 1. Resistencia de un conductor 2. Combinación de resistencias 3. Ley de Ohm

Más detalles