SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO."

Transcripción

1 1 SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016

2 2 Contenido Sistemas abiertos. Balance de masa para un volumen de control. Flujo estable. Dispositivos de flujo estable. La conservación de la masa. Balance de masa para flujo estable. Ejercicios de aplicación. ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

3 3 Balance de masa para un volumen de control general. Para volúmenes de control generales el balance se hace considerando el flujo másico m o sea la cantidad de masa que pasa en un segundo por la entrada y por la salida: ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

4 Salida 4 Entrada Figura 1. Entradas y salidas en un ducto. m entra masa sale = masa sistema (1) masa sistema es la variación de masa en el sistema y es también la masa final menos la inicial. Dividiendo entre el tiempo (s) m entr s m sal = masa sistema s s (2) 22/07/2016 ELABORÓ MSc. EFRÉN GIRALDO T.

5 5 m entra m sale = m sistema (3) Donde m sistema es incremento o decremento de masa con respecto al tiempo. Estas ecuaciones se aplican a cualquier volumen de control que sufre cualquier tipo de proceso.

6 6 O en forma de variación diferencial con respecto al tiempo: m entra m sale = d(masa volumen de control) dt (4) d(masa volumen de control ) dt es el cambio de la masa con respecto a tiempo en el sistema. 22/07/2016 ELABORÓ MSc. EFRÉN GIRALDO T.

7 Flujo estable 7 5 PM Figura 2. En un dispositivo de flujo estable las propiedades no cambian con el tiempo en ninguna parte de él. La masa y la energía también permanecen constantes. Se denomina flujo estable aquel donde las propiedades no cambian en un punto dado con el tiempo. Pueden cambiar de un punto a otro, pero en el mismo punto no. E = 0 ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016 (Cengel, 2007)

8 8 Hay ciertos artefactos en ingeniería que operan por largos periodos de tiempo sin cambios apreciables en sus propiedades y bajo las mismas condiciones bajo el punto de vista práctico; es posible por tanto considerarlos dispositivos de flujo estable. En estos sistemas no hay acumulación de masa ni de E. ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

9 9 Dispositivos de flujo estable. Se pueden considerar los siguientes dispositivos de flujo estable: Turbinas. Bombas. Calderas. Compresores Condensadores. Flujos en tuberías. Intercambiadores de calor. Refrigeradores. Plantas de potencia. Sistemas de refrigeración ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

10 10 1.CONSERVACIÓN DE LA MASA. La masa ni se crea ni se destruye, se transforma. ELABORÓ MSc. EFRÉN GIRALDO T.

11 11 Balance de masa para Flujo estable Ninguna propiedad, intensiva o extensiva, dentro del volumen de control cambia con el tiempo. De esta forma la masa total o la energía total que entra al volumen de control debe ser igual a la que sale. Por tanto, la Masa total y la Energía total permanecen constantes. En estos sistemas no hay acumulación de masa ni de energía. ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

12 12 Balance de masa para procesos de flujo estable En flujo estable la cantidad de masa al interior no varía con el tiempo m sistema=0, por tanto, la ecuación anterior queda : m entra m sale = 0 (5) m entra = m sale ( kg s ) (6) ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

13 13 En dispositivos de flujo estable de una sola corriente como bombas, compresores, turbinas, toberas y difusores, el principio de conservación de la masa es muy importante: ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

14 14 Entrada 1 2 Salida Si el subíndice 1 indica entrada y el subíndice 2 salida, y reemplazando ecuación (6): Para dispositivos de flujo estable de una sola corriente Figura 3. Entradas y salidas en un ducto. ρ 1 A 1 v 1 = ρ 2 A 2 v 2 (7) La ecuación vale tanto para fluidos compresibles como incompresibles. ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

15 15 v 2 = ρ 1A 1 v 1 ρ 2 A 2 (7a) De esta ecuación se puede notar que si disminuye el área aumenta la velocidad, según Bernoulli disminuye la presión. Si aumenta el área disminuye la velocidad y aumnenta la presión.. ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

16 16 Para dispositivos de múltiples entradas y salidas y flujo estable: m 1 m 3 m 2 m 4 Figura 4. dispositivo de entradas y salidas múltiples. m 1 + m 2 + = ( m 3 + m 4 + ) (8) ELABORÓ MSc. EFRÉN GIRALDO T. (Cengel, 2007) 22/07/2016

17 17 Flujo estable de una sola corriente con fluido incompresible Si el fluido es incompresible, caso de líquidos, la densidad se considera constante, la ecuación (12) resulta así: A 1 v 1 = A 2 v 2 (9) V 1 = V 2 (10) Si la sección no cambia A 1 =A 2 v 1 = v 2 (11) Para flujo estable con fluido incompresible (solo en este caso) el flujo volumétrico se conserva. 22/07/2016

18 Ejercicios resueltos

19 Ejercicio # 1 Un líquido de densidad relativa igual a 1,65 viaja por una tubería de tres pulgadas de diámetro interior a una velocidad de 7,5 m/s. Si se cerrara de pronto la tubería, qué presión se ejercería en la línea? Cuál es el flujo másico y volumétrico?

20 Esquema del ejercicio # 1 ρ relativa = 1,65 v = 7,5m s d = 3 pul = 3 0,0254m = 0,0762m Flujo estable Datos: ρ relativa = gs = 1,65 gs = ρ sust ρ agua Figura 5. Ejercicio 1 ρ sust = gs*ρ agua =1, kg kg 3=1650 v = 7,5m s A = π d2 2 0,0762m = 3, m m 3 = 0,0046m 2

21 El cambio en energía cinética es igual al trabajo que puede hacer el fluido. Este trabajo es el trabajo de flujo, energía de flujo, energía por unidad de volumen o energía debida a la presión. Si la tubería se cierra, el cambio en energía cinética del líquido se convierte en energía de presión: W=PV= e c

22 PV = e c PV = mv2 2 P = mv2 2V P = ρvv2 2V P = ρv2 2 kg m = kg m s 2 m pero = 1650 kg P = 46406,2 Pa m = ρv 2 m 3*(7,5m s m s 2.m 2= N m 2 = Pa )2 = 46406,2 kg m s 2 m = ρ. A. v = 1650 kg m 3*0,0046m2 * 7,5m =56,9 kg s s V = A. v = 0,0046m 2 * 7,5m s = 0,0345 m3 s

23 : Ejercicio # 2 Flujo estable v 3 = 105 m/s V esp = 0, 42 m3 kg m salida =? A salida =? v 2 =? A 2 = 312 cm 2 m 2 = 2700 kg h ρ 2 = 2 kg/m 3 = 7,5 kg/s mezcla Gas 2 Gas 1 m 1 =? A 1 = 468, 75 cm 2 v 1 = 150 m s V esp 1 = 0, 6 m 3 /kg Figura 6. Ejercicio 2 Dos corrientes gaseosas entran en un tubo mezclador y salen como una sola mezcla. Si el flujo es estacionario, hallar: v 2 =? m salida =? A salida =?

24 A 1 = 468,75 cm 2 1m = 100cm (1m) 2 = (100cm) 2 1m 2 = 10000cm 2 468,75 cm 2 * 1m cm 2 = 0, m2 A 2 = 312 cm cm 2 * 1m cm 2 = 0,0312 m2

25 m 1 =? m 1= ρ 1 A1 v 1 = A 1 v 1 = 0, m2 150 V esp 1 0,6 m 3 /kg m s = 11,7kg/s m 2= ρ 2 A2 v 2 = v 2 = m 2 ρ 2 A 2 = 7,5 kg/s 0,0312 m 2 2 kg/m 3 = 120,2 m s m 1 + m 2 = m 3 = 11,7kg m 3 = ρ 3 A3 v 3 = A 3 = V esp 3 m 3 v 3 = 0,42 s A 3 v 3 V esp 3 + 7,5 kg/s = 19,2 kg/s m 3 19,2 kg/s kg 105 m/s = 0,0768 m 2

26 Ejercicio # 3 Flujo inestable m entr =? ρ entr = 62,1 lbm/ pie 3 V entrada = 300 gal/min 10 pies 15 pies 15 pies 7,5 pies d= 6 pulg m salida =? 1galón =0,13367 pie 3 1pulg = 0, pies ρ salida = 62,1 lbm/ pie 3 v sal = 5 pies/s Hallar V entrada en pies/min A salida m entr =? m salida =? Figura 7. Ejercicio 3 Hallar la altura del agua y el cambio de flujo másico en el tanque después de 15 minutos.

27 V entrada = 300 gal/min= 300 gal 0,13367pie3 min 1 gal 6 pulg 0, pies 1pulg = 0,5 pies = 40,1pie 3 /min A salida = 3,14 0,5pies2 =0,1962 pies 2 4 v sal = 5 pies/s= 5 pies 60s pies =300 s 1min min A base tanque = 3,14 d2 4 =3, pie2 4 = 78,5pie 2

28 m entrada =ρ entr V entr = 62,1 lbm 40,1pie3 pie 3.m n = 2490,2 lbm min m salida = ρ salida A salida v salida = 62,1 lbm 0,1962 pies2 300 pies pie 3 min = 3657,1 lbm/min m= 2490,2 lbm min ,1 lbm min = lbm min

29 En 15 minutos el cambio de masa en el tanque es: m lbm min 15min =1167*15= lbm Altura del nivel de agua = se calcula con base en el volumen de la disminución de agua ρ = m V V = m ρ lbm = 62,1 lbm/ pie3 = 282 pie3 V = A base h h = V 282 pie3 = A base 78,5pie 2 = 3,59 pies

30 Ejercicio # 4 A 1 = 0,09m 2 v 1 = 300 m min V esp = 0,24 m 3 /kg A 2 = 0,18 m 2 ρ 2 = 3,33 kg m 3 v 2 =? Figura 8. Ejercicio 4. Un difusor. Un fluido estacionario circula entre dos secciones de una tubería de sección variable. Hallar m y v 2

31 m = A 1v 1 = 0,09m2 300 V esp 1 0,24 m 3 /kg m min = 112,5 kg min El flujo másico es el mismo en ambas secciones v 2 = kg min m = 112,5 ρ 2 A 2 3,33 kg m 3 0,18m min 2 = 187,5 m

32 Ejercicio # 5 de Cengel Steady flow

33

34 1m 3 = 1000L 1000 kg m 3 = kg m 3=1kg L 1 gallon = L kg 1m3 m L L s = kg s A liter of water has a mass of a kilogram, where exist a liter it is possible to change for kilogram. The volume flow is V= V= m= 10 galllons L 37,854 L 50 s 50 s 1 gallon 37,854 L kg 50 s L m= Vol time = 0,7578 kg/s = 10 galllons 50 s Litros s kg s

35 1000 kg 1m3 m L

36 Ejercicio # 6 de Cengel 3 3ft Unsteady flow (mass change) 4 ft 4 ft 0, 5 in of diameter v out = 2gh

37

38 But V out = 2gh

39

40

41 41 Bibliografía =procesos+isentr%c3%b3picos&source=bl&ots=ijutzc1j8e&sig=iai9xzzlzg2fxzxjjjrbmi 0yUIY&hl=es&sa=X&ved=0ahUKEwiM- O7W6eLJAhWJwiYKHSu3DPIQ6AEIMTAE#v=onepage&q=procesos%20isentr%C3%B3pi cos&f=false Teoría y problemas: C3%B3picos&source=bl&ots=ijUTBa5icg&sig=dwZl0uA0my7DiaXxAtmy1AyKsAI&hl=es&sa=X&ved =0ahUKEwjY7vn0lujJAhWC4iYKHQgVAewQ6AEIMzAF#v=onepage&q=procesos%20isentr%C3%B3 picos&f=false ELABORÓ MSc. EFRÉN GIRALDO T. 22/07/2016

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos El primer principio de la termodinámica en sistemas abiertos Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Aplicación del primer principio a sistemas abiertos Conservación de la masa

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

V. Análisis de masa y energía de volúmenes de control

V. Análisis de masa y energía de volúmenes de control Objetivos: 1. Desarrollar el principio de conservación de masa. 2. Aplicar el principio de conservaciones de masa a varios sistemas incluyendo en estado estable y no estable. 3. Aplicar la primera ley

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA Clase 2 conceptos Elaboró: Efrén Giraldo MSc. Revisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Contenido: Microestructura Fase Propiedades

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Flujo. P 1 P 2 Al manómetro

Flujo. P 1 P 2 Al manómetro Ejercicios Propuestos. Se está laminando acero caliente en una acería. El acero que sale de la maquina laminadora es un 0% más denso que antes de entrar a esta. Si el acero se está alimentando a una velocidad

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

TEMA III Primera Ley de la Termodinámica

TEMA III Primera Ley de la Termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TERMODIMANICA BASICA Primera Ley de la Termodinámica Profesor: Ing. Isaac Hernández

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández Ejercicios Tema III 1) Un cilindro provisto de un pistón, tiene un volumen de 0.1

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Primera Ley Sistemas Abiertos

Primera Ley Sistemas Abiertos Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas

Más detalles

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli 1. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de 1.2 m en la sección de prueba. Si

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Física (Paleontólogos) - do Cuatrimestre 05 Guía - Hidrodinámica: fluidos ideales, ecuación de Bernoulli. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro

Más detalles

Ecuación de Bernoulli

Ecuación de Bernoulli Ecuación de Bernoulli Ejercicio 7.1. Hallar una relación entre la velocidad de descarga V y la altura de la superficie libre h de la figura. Suponer flujo estacionario sin fricción, salida de velocidad

Más detalles

TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D. ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO-

TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D. ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO- TERMODINÁMICA DEL AGUA III DIAGRAMAS 3D ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD CARLOS A, ACEVEDO- Contenido Diagramas 3D Regiones monofásicas Regiones bifásicas o de mezcla Equilibrio líquido vapor

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas INGENIERO EN ENERGÍAS RENOABLES TERMOINÁMIA RESOLUIÓN E PROBLEMAS URSO 2017 TEMA 6 LA ENTROPÍA Y SU UTILIZAIÓN. I. Resolución de problemas a. Problemas de Nivel I 1. Un dispositivo cilindro pistón contiene

Más detalles

Fluidodinámica: Estudio de los fluidos en movimiento

Fluidodinámica: Estudio de los fluidos en movimiento Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación

Más detalles

MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%.

MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%. MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%. PROFESOR EFRÉN GIRALDO Contenido Repaso curva de calentamiento. T de

Más detalles

Etapa 1 Ecuación de Bernoulli

Etapa 1 Ecuación de Bernoulli Dr. Omar Olmos López Actividad de Aprendizaje Activo Ecuación de Bernoulli Instrucciones: Sigue las instrucciones que a continuación se te dan y para cada etapa documenta y analiza la situación que se

Más detalles

Escurrimiento de fluidos incompresibles

Escurrimiento de fluidos incompresibles Escurrimiento de fluidos incompresibles Bibliografía Fox, R.W. y McDonald, A.T. (1997) Introducción a la mecánica de fluidos. McGraw-Hill, México. Capítulo 8 White, F.M. (1999) Fluid Mechanics. 4ª Ed.

Más detalles

Primera Ley de la Termodinámica Conservación de la Energía. Alejandro Rojas Tapia.

Primera Ley de la Termodinámica Conservación de la Energía. Alejandro Rojas Tapia. Primera Ley de la Termodinámica Conservación de la Energía Alejandro Rojas Tapia. Conservación de la energía Principio de conservación de la energía y masa. Ecuación de continuidad. Primera ley de la termodinámica

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE pgandarilla@hotmail.com p.gandarilla@gmail.com Santa Cruz, noviembre de 2009 SUMARIO

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

TABLAS TERMODINÁMICAS ZONA DE MEZCLA

TABLAS TERMODINÁMICAS ZONA DE MEZCLA TABLAS TERMODINÁMICAS ZONA DE MEZCLA GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO. Presentación hecha exclusivamente con el objetico de facilitar el aprendizaje. Contenido Tablas termodinámicas Región de

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

PROBLEMAS DINÁMICA DE FLUIDOS

PROBLEMAS DINÁMICA DE FLUIDOS PROBLEMA DINÁMICA DE FLUIDO PROBLEMA En una tubería horizontal hay dos secciones diferentes, cuyos radios son cm y 8 cm respectivamente. En cada sección hay un tubo vertical abierto a la atmósfera, y entre

Más detalles

TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2

TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2 TABLAS TERMODINÁMICAS ZONA DE MEZCLA 2 ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO. Presentación hecha exclusivamente con el objetico de facilitar el aprendizaje. Contenido Región de mezcla

Más detalles

5.1 Primera ley de la termodinámica

5.1 Primera ley de la termodinámica 55 Capítulo 5 Energía En este capítulo se verán los aspectos energéticos asociados al flujo de un fluido cualquiera. Para ésto se introduce, en una primera etapa, la primera ley de la termodinámica que

Más detalles

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7

Resumen Cap. 7 - Felder Mercedes Beltramo 2ºC 2015 Resumen Cap. 7 Resumen Cap. 7 7.1 Formas de energía: La primera ley de la termodinámica La energía total de un sistema consta de: Energía cinética: debida al movimiento traslacional del sistema como un todo en relación

Más detalles

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Fluidos Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Entonces muchos de la teoría se puede aplicar tanto a gases como líquidos. Estados de la materia Sólido Líquido

Más detalles

Balances de energía: Sistema abierto

Balances de energía: Sistema abierto Balances de energía Supóngase que se somete a un sistema en un estado energético específico, a algún proceso que provoca que cambie dicho estado. Como la energía no puede crearse ni destruirse, para todos

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA ENTROPÍA II. Elaboró: Efrén Giraldo MSc. evisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Medellín 2016 Contenido: Entropía en procesos Reversibles

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

La viscosidad se puede definir como una medida de la resistencia a la deformación de un fluido

La viscosidad se puede definir como una medida de la resistencia a la deformación de un fluido Unidad III HIDRODINAMICA La hidrodinámica estudia la dinámica de los líquidos, para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: que el fluido es un líquido

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

SEGUNDO EXAMEN PARCIAL. Teoría.

SEGUNDO EXAMEN PARCIAL. Teoría. U. L. A. FACULTA E INGENIERIA. Mérida, 7/07/008 ESCUELA E MECANICA. MECANICA E FLUIOS. SEGUNO EXAMEN PARCIAL. Teoría.. Que significa que el Flujo es Uniforme?. ( punto).. Que significa que el Flujo es

Más detalles

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA I SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Contenido Sustancia pura Fase Curvas del agua Curvas del agua: Tv, Pv,PT Calor sensible

Más detalles

1 m 3. 1 kg/min 2 atm 95 ºC. Tomando como volumen de control la cámara aislada, se realiza un balance de energía a esta

1 m 3. 1 kg/min 2 atm 95 ºC. Tomando como volumen de control la cámara aislada, se realiza un balance de energía a esta PROBLEMA 1 Una cámara bien aislada de 1 m 3 de volumen contiene inicialmente aire a 0,1 MPa y 40 ºC como se muestra en la figura. Dos válvulas colocadas en las tuberías de entrada y salida controlan el

Más detalles

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA INSTRUMENTO : GUIA DE APRENDIZAJE N 1 NIVEL (O CURSO) : CUARTO AÑO MEDIO PLAN : COMÚN UNIDAD (O EJE) : FUERZA Y MOVIMIENTO CONTENIDO(S) : ECUACIÓN

Más detalles

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua. 7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado

Más detalles

3.- Una fórmula para estimar la velocidad de flujo, G, que fluye en una presa de longitud B está dada por

3.- Una fórmula para estimar la velocidad de flujo, G, que fluye en una presa de longitud B está dada por Problemario 1.- De acuerdo con un viejo libro de hidráulica, la pérdida de energía por unidad de peso de fluido que fluye a través de una boquilla conectada a una manguera puede estimarse por medio de

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

2. Ecuación de Bernoulli

2. Ecuación de Bernoulli Descargar versión para imprimir. Ecuación de Bernoulli Repaso: trabajo de una fuerza, energía potencial gravitatoria, y energía cinética 1. Trabajo de una fuerza. Uno de los efectos producido por las fuerzas

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 8: Conservación de la Energía. Turbomáquinas Hidráulicas.. En las conducciones hidráulicas los accesorios provocan a menudo pérdidas

Más detalles

Hidrodinámica. Conceptos

Hidrodinámica. Conceptos Conceptos Hidrostática tica Caudal Es la cantidad de líquido que pasa en un cierto tiempo. Concretamente, el caudal sería el volumen de líquido que circula dividido el tiempo: Sus unidades son volumen

Más detalles

Modelado y simulación de un proceso de nivel

Modelado y simulación de un proceso de nivel Modelado y simulación de un proceso de nivel Carlos Gaviria Febrero 14, 2007 Introduction El propósito de este sencillo ejercicio es el de familiarizar al estudiante con alguna terminología del control

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 8 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA 1.BLOQUES

Más detalles

Dispositivos de flujo estable. Ejercicios

Dispositivos de flujo estable. Ejercicios Dispositivos de flujo estable. Ejercicios Elaboró: Profesor Efrén Giraldo T. MSc. Revisó: Profesor Carlos A. Acevedo Ph.D http://m.gifanimados.com/gifs-vehiculos/animaciones-aviones/partes-de-un-avion/turbinas-de-avion/turbina-avion-neon-78108.gif

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

Universidad de Antioquia, Depto. de Matematicas

Universidad de Antioquia, Depto. de Matematicas minuto. Si la cantidad máxima de sal en el tanque se obtiene a los 0 minutos. Cual era la cantidad de sal inicial en el tanque? (ta.: 375 libras) Ejercicio 10. Un tanque contiene 00 litros de una solución

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido:

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido: SESIÓN 21 17 OCTUBRE 1. 2º EXAMEN 2. Investigación 11. Fluidos. Contenido: Estados de la materia. Características moleculares de sólidos, líquidos y gases. Fluido. Concepto de fluido incompresible. Densidad

Más detalles

TEMA II.10. Gasto o Caudal. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.10. Gasto o Caudal. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.10 Gasto o Caudal Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Teoría (30 puntos) TIEMPO: 50 minutos 1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) 1. La Primera Ley afirma

Más detalles

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D.

Capítulo I Introducción a Turbomaquinas. FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Capítulo I Introducción a Turbomaquinas FAC. DE ING. MECÁNICA UMSNH Sergio Galván Ph.D. Temario Definición Clasificación General Aplicaciones La palabra turbo maquina es derivada de la palabra latina Turbo,

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

SEMILLERO EN AUTOMÁTICA

SEMILLERO EN AUTOMÁTICA SEMILLERO EN AUTOMÁTICA Sesión 08: Construcción del MSBF de un Tanque Pulmón de Aire M.Sc, Ing. Jhon Alexander Isaza Hurtado jhonisaza@itm.edu.co 08 de Octubre de 2012 Propuesta para Modelamiento* 1. Elaborar

Más detalles

TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA

TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA TERMODINÁMICA DEL AGUA II SUSTANCIAS PURAS CURVAS DEL AGUA ELABORÓ MSc. EFRÉN GIRALDO TORO REVISÓ PhD CARLOS A. ACEVEDO Presentación hecha exclusivamente con el fin de facilitar el estudio. SIMULACIÓN

Más detalles

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 10: Las relaciones termodinámicas y los diagramas

INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I. MÓDULO 10: Las relaciones termodinámicas y los diagramas 76.01 - INTRODUCCIÓN A LA INGENIERÍA QUÍMICA I GUÍA DE TRABAJOS PRÁCTICOS MÓDULO 10: Las relaciones termodinámicas y los diagramas LAS RELACIONES TERMODINÁMICAS Y LOS DIAGRAMAS - desarrollos prácticos

Más detalles

TEMA III - + Convención de Signos T1>T2

TEMA III - + Convención de Signos T1>T2 Energías de Calor Y Trabajo Calor (Q) Flujo de energía que atraviesa las fronteras de un sistema impulsado por las diferencias de temperatura entre el sistema y sus alrededores. El calor es una función

Más detalles

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición (Los valores numéricos de las soluciones se pueden obtener si se copian las

Más detalles

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR

TEMA N 4 Y 5 EJERCICIOS PROPUESTOS DE SISTEMAS DINÁMICOS SEGUNDO ORDEN Y ORDEN SUPERIOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 4

Más detalles

BALANCES MACROSCÓPICOS Y BALANCE MACROSCÓPICO DE MASA

BALANCES MACROSCÓPICOS Y BALANCE MACROSCÓPICO DE MASA Ingeniería en Alimentos Fenómenos de Transporte BALANCES MACROSCÓPICOS Y BALANCE MACROSCÓPICO DE MASA Ing. Mag. Myriam E. Villarreal Describen matemáticamente el comportamiento de los fluidos en movimiento

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS

3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS 3. PRIMERA LEY DE LA TERMODINÁMICA EN SISTEMAS CERRADOS 3.1 INTRODUCCIÓN La primera ley de la termodinámica confirma el principio universal de la conservación de la energía, sentenciando que la energía

Más detalles

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:

Más detalles

Guía de Física II Bloque I

Guía de Física II Bloque I Dirección General del Bachillerato Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Área: Ciencias Naturales Academia de Física Turno: Vespertino Guía de Física II Bloque I Atrévete a

Más detalles

Arranque y Parada de un CSTR. Caso isotérmico

Arranque y Parada de un CSTR. Caso isotérmico Arranque y Parada de un CSTR. Caso isotérmico Alan Didier Pérez Ávila Un CSTR es un reactor ideal con agitación en el que se supone que la concentración en cualquier punto del reactor es la misma. Para

Más detalles

Carl Paul Gottfried von Linde ( )

Carl Paul Gottfried von Linde ( ) FACULTAD DE INGENIERÍA SEGUNDO EXAMEN FINAL COLEGIADO 2008-1 VIERNES 14 DE DICIEMBRE DE 2007, 16:00 (h) TURNO VESPERTINO Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal El principio de Bernoulli y efecto de tubo de Venturi Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal FLUIDOS EN MOVIMIENTO El flujo de fluidos suele ser extremadamente complejo, como

Más detalles

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.

PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal. PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes

Más detalles

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica)

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Conceptos e hipótesis básicas Una de las grandes disciplinas clásicas olvidadas

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra Ejercicios de Dinámica de los Fluidos: REPÚBLICA BOLIVARIANA DE VENEZUELA EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra. Entre dos líneas de corriente bidimensionales de un escurrimiento

Más detalles

CONTROL AUTOMATICO SEMANA 2 (17/09/2012)

CONTROL AUTOMATICO SEMANA 2 (17/09/2012) UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA I. CONTENIDO 1.INTRODUCCION 2.MEDIDA DEL CAUDAL 3. MEDIDA DE LA PRESION 4. PRACTICA N 02 CONTROL AUTOMATICO SEMANA 2 (17/09/2012) II. OBJETIVO

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN. liceo BRICEÑO MENDEZ S0120D0320

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN. liceo BRICEÑO MENDEZ S0120D0320 TRANSFORMAR: a. 250 Km a m b. 34,23 dm a Km c. ¾ Kg a mg d. 0,025 m 3 a cm 3 e. 0,00056 Km a m f. 1,973 cm 2 a mm 2 g. 1834 min a horas. h. 1834 min a horas. i. 6800 l a ml j. 1000 m 3 a Kl k. 20 3 ton

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA PROGRAMA DE LA ASIGNATURA DE: TERMODINÁMICA BÁSICA IDENTIFICACIÓN

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía]

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia 7-Julio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas

Más detalles