156 Ecuaciones diferenciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "156 Ecuaciones diferenciales"

Transcripción

1 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento y caen al inicio en caída libre, luego extienden su cuerpo perpendicularente a la trayectoria de caída y finalente abren su paracaídas para aterrizar suaveente. Es notorio el cabio de la velocidad de caída del paracaidista de una etapa a la siguiente. Nuestra experiencia nos dice que el cabio observado se debe precisaente a la interacción del aire (del edio con la persona y luego con el paracaídas. Interacción que se traduce en una resistencia del aire al oviiento del paracaidista. Observaos dos tipos de oviiento: 1. Una caída libre, que es el tipo de oviiento donde la resistencia del aire o del edio es despreciable, por lo que se considera nula.. Una caída no libre o con fricción, que es el tipo de oviiento donde la resistencia del aire o del edio no es despreciable. En este caso el edio se opone al oviiento del paracaidista. Experientalente se sabe que todo fluido (por ejeplo: aire, agua y aceite se opone al oviiento de todo cuerpo u objeto que pasa a través de él. Dicha oposición al oviiento se anifiesta ediante una fuerza de resistencia que tiene dirección contraria al oviiento del cuerpo y con una agnitud que, para velocidades pequeñas, es directaente proporcional a la agnitud de la velocidad instantánea (rapidez del cuerpo. Para odelar el oviiento de un cuerpo a través de un fluido, es necesario tener presente la segunda ley de Neton, la cual establece una proporcionalidad directa entre la fuerza resultante F que actúa sobre el cuerpo y la aceleración instantánea a de éste. Esto es, F D a, donde la asa del cuerpo juega el papel de la constante de proporcionalidad. Tengaos presente tabién que: a.t/ D d dt ; D d dt x.t/; donde es la velocidad instantánea; donde x.t/ es la posición instantánea; D es el peso del cuerpo de asa. Si R.t/ es la fuerza de resistencia del fluido al oviiento de, entonces su agnitud j R.t/ j es directaente proporcional a la rapidez j j de. Esto es, j R.t/ j D j j, donde > 0 es la constante de proporcionalidad y adeás R.t/ D por ser R.t/, de sentidos opuestos. Toando en cuenta lo anterior se presentan dos tipos de oviientos: 1. Caída libre. Usaos la siguiente figura: R.t/ D 0 Se considera hacia abajo la dirección positiva. Y sabeos que la única fuerza que actúa sobre la asa es su peso D. F D a.t/ & F D a.t/ D a.t/ D a.t/ D g d D g D gt C C: dt

2 3.6 Mecánica 157 Suponiendo que la velocidad inicial es, Entonces, la velocidad instantánea es Por otra parte: Suponiendo que la posición inicial es x 0, v.0/ D g.0/ C C D C D : D gt C : D d dt x.t/ D gt C x.t/ D.gt C / dt ( t x.t/ D g C t C C: x.0/ D x 0 1 g.0/ C.0/ C C D x 0 C D x 0 : Luego, la posición instantánea es x.t/ D 1 gt C t C x 0 : Resuiendo: en una caída libre la aceleración es constante y el objeto obedece las ecuaciones para oviiento uniforeente acelerado, es decir: a.t/ D g: La velocidad instantánea es La posición instantánea es D C gt: x.t/ D x 0 C t C 1 gt :. Caída no libre (con resistencia. Usaos la siguiente figura: R.t/ Considerando hacia abajo la dirección positiva: F D a.t/ & F D C R.t/ a.t/ D C R.t/ a.t/ D d dt D.t/ C D.t/ C D g: Suponiendo que la velocidad inicial es, encontraos la velocidad instantánea por la solución del problea de valores iniciales (PVI:.t/ C D g; con v.0/ D :

3 158 Ecuaciones diferenciales Resolveos este problea. La ED es lineal no hoogénea para y tiene por factor integrante a la exponencial e t. Luego, [ e t.t/ C ] D ge t [ ] e t D ge t d dt e t D g D e t dt D g ( e t C C D C Ce t : ( e t C C e t D C C 1e t Ahora bien, Por lo tanto, v.0/ D C Ce0 D C D D ( C e t D ( C : e g t ; que es la velocidad instantánea del cuerpo de asa en el tiepo t 0. Note lo siguiente: > 0; > 0; t > 0 t > 0 lí e t D C1 t!c1 ( lí t!c1 t D C1 lí e t D lí t!c1 t!c1 1 e t D 0: De lo anterior: [ ( lí D lí t!c1 t!c1 C ] e t D : Denoinaos velocidad líite a este resultado, que es una velocidad constante: v lí D D I esto describe el coportaiento de la velocidad a edida que el tiepo t crece. Observe que la velocidad líite se alcanza cuando el peso del paracaidista es igual a la fuerza de resistencia del aire, es decir, cuando las fuerzas que actúan sobre el paracaidista están en equilibrio. Esta velocidad líite constante es la que perite al paracaidista un aterrizaje suave. Veaos ahora la posición instantánea x.t/ del cuerpo de asa en el tiepo t 0. Ya que D d x.t/, entonces: dt [ ( x.t/ D dt D C D ( ( t C x.t/ D ( t e t C C: ] e t dt D ( t C e t C C e t dt D

4 3.6 Mecánica 159 Y si x 0 es la posición inicial del cuerpo, entonces: x.0/ D x 0 (.0/ ( C C D x 0 ( : C D x 0 C e 0 C C D x 0 Por lo tanto, la posición instantánea es x.t/ D t ( x.t/ D x 0 C t C e t C x 0 C ( ( [ ] 1 e t : Dos fórulas uy particulares se tienen cuando D 0 y cuando x 0 D 0. En este caso: D x.t/ D t C Ahora, veaos algunos ejeplos. e t D ( ( 1 e t I [ 1 e t ] D [ t ( ] 1 e t : Ejeplo Una asa de kg cae desde el reposo bajo la influencia de la gravedad y con resistencia despreciable del aire. H 1. Modelar el oviiento ediante una ecuación diferencial.. Deterinar la velocidad de la asa en cualquier instante t Calcular la velocidad después de 5 s. 4. Deterinar el tiepo que transcurre para que la velocidad sea de 100 /s. 5. Deterinar la distancia recorrida por la asa durante los prieros t segundos. 6. Calcular la distancia recorrida por la asa entre los segundos 4 y 5, así coo entre los segundos 5 y Usareos la siguiente figura: R.t/ D 0 Considerando hacia abajo la dirección positiva.

5 160 Ecuaciones diferenciales Si a.t/ es la aceleración instantánea: Al caer desde el reposo, ocurre que v.0/ D 0. a.t/ D d dt D.t/ D g: Hallaos la velocidad instantánea de la asa por la solución del problea de valor inicial (PVI:. Resolveos este PVI:.t/ D g; con v.0/ D 0:.t/ D g D gt C C: v.0/ D 0 0 D g.0/ C C C D 0: Entonces: D gt D 9:8t /s, que es la velocidad de la asa en cualquier instante t Después de 5 s la velocidad es v.5/ D 9:8.5/ /s D 49 /s. 4. La velocidad es de 100 /s cuando D 100 9:8t D 100 t D 100 s D 10: s. 9:8 5. Si x.t/ es la posición de la asa con respecto a su punto de partida, entonces: D 9:8t d ( t dt x.t/ D 9:8t x.t/ D 9:8 C C x.t/ D 4:9t C C: Considerando que la posición inicial con respecto a su punto de partida es x.0/ D 0, se tiene que: x.0/ D 0 0 D 4:9.0/ C C C D 0: Entonces, la posición de después de t segundos es x.t/ D 4:9t, que es precisaente la distancia recorrida por durante ese tiepo. 6. La posición de después de t D 4 s es La posición de en t D 5 s es La posición de en t D 6 s es La distancia recorrida entre los segundos 4 y 5 es La distancia recorrida entre los segundos 5 y 6 es x.4/ D 4:9.4/ D 78:4 : x.5/ D 4:9.5/ D 1:5 : x.6/ D 4:9.6/ D 176:4 : x.5/ x.4/ D.1:5 78:4/ D 44:1 : x.6/ x.5/ D.176:4 1:5/ D 53:9 : Ejeplo 3.6. Una pelota se lanza hacia arriba con una velocidad de 0 /s y el aire no se opone al oviiento. 1. Modelar el oviiento ediante una ecuación diferencial.. Deterinar la velocidad de la pelota.

6 3.6 Mecánica Deterinar el tiepo de subida de la pelota y la áxia altura que alcanza. 4. Calcular la velocidad de la pelota después de y 3 s. 5. Calcular el tiepo que tarda la pelota en regresar a su posición inicial. H 1. Usareos la figura siguiente: R.t/ D 0 Considerando hacia arriba la dirección positiva: Si a.t/ es la aceleración instantánea, entonces a.t/ D d dt D.t/ D g: Luego, la velocidad instantánea está dada por la solución del PVI:.t/ D g; con v.0/ D 0:. Se tiene que.t/ D g D gt C C D 9:8t C C: Aplicaos la condición inicial: v.0/ D 0 9:8.0/ C C D 0 C D 0: Luego, la velocidad de la pelota en cualquier tiepo es D 9:8t C 0 /s: 3. La pelota sube ientras su velocidad es positiva y se detiene en el instante t 1 en que Luego, durante :0408 s la pelota sube. v.t 1 / D 0 9:8t 1 C 0 D 0 t 1 D 0 D :0408 s: 9:8 Para calcular la altura áxia alcanzada por la pelota, deterinaos priero la posición x.t/. D 9:8t C 0 x 0.t/ D 9:8t C 0 x.t/ D. 9:8t C 0/ dt D 9:8 t C 0t C C Considerando la condición inicial, se tiene que La altura áxia que alcanza la pelota es x.t/ D 4:9t C 0t C C: x.0/ D 0 C D 0 x.t/ D 4:9t C 0t: x ax D x.t 1 / D 4:9t 1 C 0t 1 D 4:9.:0408/ C 0.:0408/ x ax D 0:408.

7 16 Ecuaciones diferenciales 4. La velocidad de la pelota después de s es v./ D 9:8./ C 0 D 0:4 v./ D 0:4 /s; donde el signo positivo significa que la pelota se dirige hacia arriba. La velocidad de la pelota después de 3 s es v.3/ D 9:8.3/ C 0 D 9:4 v.3/ D 9:4 /s; donde el signo negativo significa que la pelota se dirige hacia abajo. 5. Para calcular el tiepo que tarda la pelota en regresar a su posición inicial, useos x.t/ D 0: x.t/ D 0 4:9t C 0t D 0 t.4:9t 0/ D 0 t D 0 o bien 4:9t 0 D 0 t 0 D 0 o bien t D 4:0816: Por lo tanto, el tiepo que tarda en regresar es t D 4:0816 s. En el ejeplo anterior, el tiepo t es el doble del tiepo t 1 que tarda la pelota en alcanzar la altura áxia. Y tabién la velocidad en el instante t en el que la pelota regresa a su posición inicial es v.t / D v.4:0816/ D 9:8.4:0816/ C 0 D 0 /s: Esto es, el odelo sin resistencia del aire predice que un objeto lanzado desde el nivel del suelo hacia arriba dura el iso tiepo en subir hasta la altura áxia que en volver de esa altura al suelo. Más aún, la rapidez con la que ipacta el suelo es la isa con que fue lanzado hacia arriba. Esto puede no ser totalente cierto en realidad, pues la resistencia del aire desepeña un papel que puede ser iportante. Veaos a continuación algunos ejeplos con resistencia del aire. Ejeplo Un paracaidista y su paracaídas pesan 00 lb. En el instante en que el paracaídas se abre, él está viajando verticalente hacia abajo a 40 pie/s. Si la resistencia del aire varía de anera directaente proporcional a la velocidad instantánea y su agnitud es de 180 lb cuando la velocidad es de 45 pie/s: 1. Deterinar la velocidad y la posición del paracaidista en cualquier instante t 0.. Calcular la velocidad líite. H Usareos la siguiente figura: R.t/ D Consideraos que la dirección positiva es hacia abajo y que t 0, a partir de que el paracaídas se abre. La resistencia del aire es R y se cuple que j R j D j j, con > 0, y R D. Teneos: v.0/ D D 40 pie/s & x.0/ D x 0 D 0 & D : Coo D D 00 lb, entonces D 00 g D 00 3 D 5 4 D 5 4 slug. Ya que j R j D j j y que j R j D 180 cuando j j D 45, entonces D 4.

8 3.6 Mecánica En cualquier segundo t 0 ocurre que a.t/ D C R d D dt 5 4.t/ D 00 4.t/ D 3.t/ C 16 D 3: 5 Hallaos la velocidad instantánea por la solución del PVI: 16 5.t/ C 16 D 3; con v.0/ D 40: 5 Esta ecuación diferencial es lineal con factor integrante e 16 5 t. Luego entonces: [ e 5 16 t.t/ C 16 ] 5 D 3e 5 16 t d [ ] e 5 16 t D 3e 5 16 t dt e 16 5 t D 3 D 50 C Ce 16 5 t : Ahora bien, v.0/ D C Ce 0 D 40 C D 10. e 16 5 t dt D 3 ( 5 e 16 5 t C C D 50e 16 5 t C C 16 Por lo tanto, la velocidad instantánea (en pie/s del paracaidista en cualquier t 0, es D 50 10e 16 5 t : Si x.t/ es la posición instantánea, edida a partir del punto donde se abre el paracaídas: D x 0.t/ & D 50 10e 16 5 t x 0.t/ D 50 10e 16 5 t x.t/ D Coo x 0 D x.0/ D 0: ( 5 x.t/ D 50t 10 e 16 5 t C C 16 x.t/ D 50t C 15 8 e 5 16 t C C: x.0/ D 0 0 D 50.0/ C 15 8 e0 C C C D 15 8 : Por lo que la posición del paracaidista en el instante (segundo t 0 es (en pies x.t/ D 50t C 15 8 e 16 5 t 15 8 x.t/ D 50t C 15 8 ( e 5 16 t 1 :.50 10e 16 5 t / dt. La velocidad líite del paracaidista es [ v lí D lí D lí 50 10e 16 t] [ 5 D lí 50 t!1 t!1 t!1 10 e 16 5 t ] D 50 v lí D 50 pie/s: Observe que esta velocidad ocurre cuando el peso es igual a la fuerza de resistencia del aire.

9 164 Ecuaciones diferenciales Ejercicios Mecánica. Soluciones en la página Una piedra de cae desde el reposo debido a la gravedad y con resistencia despreciable del aire. a. Mediante una ecuación diferencial, odelar el oviiento de la piedra. b. Deterinar la velocidad (en /s de la piedra en cualquier instante t 0. c. Calcular la posición ( en etros de la piedra en cualquier instante t 0. d. Calcular la velocidad de la piedra y la distancia recorrida al cabo de 5 s. e. Deterinar el tiepo en que la piedra alcanza una velocidad de 100 /s. f. Calcular la distancia recorrida entre los segundos 6 y 8 así coo entre los segundos 8 y 10.. Una áquina de entrenaiento en beisbol se utiliza para lanzar directaente hacia arriba una pelota desde el suelo con velocidad inicial de 40 /s. Suponiendo que la resistencia del aire es despreciable: a. Calcular la altura áxia alcanzada por la pelota y el tiepo que tarda en alcanzarla. b. Deterinar cuándo y con qué velocidad golpeará la pelota el suelo. 3. Un cuerpo que pesa 8 lb cae desde el reposo hacia la Tierra. Suponiendo que la resistencia del aire es nuéricaente igual a, donde es la velocidad instantánea en pie/s, calcular: a. La velocidad después de t segundos. b. La distancia recorrida al cabo de t segundos. c. La velocidad líite del cuerpo. 4. Una pequeña gota de aceite de 0: g de asa cae en el aire desde el reposo. La resistencia del aire es proporcional a la velocidad instantánea y es de 160 dinas (din cuando la gota cae a 40 c/s. Deterinar: a. La velocidad al cabo de t segundos. b. La posición después de t segundos. c. La velocidad líite de la gota. 5. Un paracaidista y su paracaídas pesan 56 lb. En el instante en que el paracaídas se abre, él está cayendo verticalente a 10 pie/s. Suponiendo que la resistencia del aire es directaente proporcional al cuadrado de la velocidad instantánea y que ésa es de 400 lb cuando ésta es de 0 pie/s, deterinar: a. La velocidad del paracaidista al cabo de t segundos. b. La posición del paracaidista al cabo de t segundos. c. La velocidad líite del paracaidista. 6. Un hobre y su paracaídas pesan 160 lb y caen desde el reposo hacia la Tierra. Antes de que el paracaídas se abra, la resistencia del aire (en libras es nuéricaente igual a 1 v (donde v es la velocidad instantánea en pie/s y, a partir de que se abre, la resistencia es 5 8 v. Si el paracaídas se abre a los 5 s, calcular la velocidad del paracaidista en cualquier segundo t: a. Antes de abrirse el paracaídas. b. Después de abrirse el paracaídas. 3.7 Probleas geoétricos En esta sección, tratareos probleas geoétricos que se pueden plantear y resolver ediante ecuaciones diferenciales que se obtienen considerando la interpretación geoétrica de la derivada que, coo sabeos, es la pendiente de la recta tangente a la curva (gráfica de la función en un punto.

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r Física General I Paralelos 5. Profesor RodrigoVergara R 3) Moviiento Rectilíneo Vertical ) Moviiento Vertical con aceleración constante Conocer aplicar las ecuaciones de posición, velocidad aceleración

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla de contenido Página Aplicaciones de las ecuaciones diferenciales 3 Problea de enfriaiento 3 Caída de cuerpos 6 Mezclas o diluciones 0 Trayectorias ortogonales 3 Resuen 6 Bibliografía recoendada 6

Más detalles

Ley de Hooke y movimiento armónico simple

Ley de Hooke y movimiento armónico simple Ley de Hooe y oviiento arónico siple Introducción El propósito de este ejercicio es verificar la ley de Hooe cualitativa y cuantitativaente. Usareos un sensor de fuerza y uno de rotación para encontrar

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Los koalindres colgantes

Los koalindres colgantes CASO 1:_DOS MASAS (UNA POLEA) Antes de estudiar el caso de infinitos koalindres colgando de infinitas poleas, planteaos el caso de dos koalindres colgando de una sola polea Dado que no hay rozaiento, la

Más detalles

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN 1. Una partícula se mueve a lo largo del eje x de tal forma que su posición en cualquier instante está dada por la ecuación x( t) 6t,

Más detalles

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA 1.- Contestar razonadaente a las siguientes preguntas acerca del oviiento arónico siple (MAS): 1A (0.25 p).- Si el periodo de un MAS es

Más detalles

Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto +1 ; blanco, 0; error 1.

Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto +1 ; blanco, 0; error 1. FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 09-gener-006 COGNOMS: NOM: DNI: PERM: Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

ACTIVIDADES COMPLEMENTARIAS

ACTIVIDADES COMPLEMENTARIAS ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Indica qué tipo de oviiento realizan los siguientes objetos en función de la trayectoria que describen: a) Una canica desplazándose por el interior de

Más detalles

Nombre y apellidos. Centro. Ciudad

Nombre y apellidos. Centro. Ciudad C1.- Sobre un cuerpo en reposo, de asa 3 kg, actúa una fuerza de N durante 4 s. El cuerpo está situado sobre una superficie horizontal y la fuerza aplicada es paralela a la isa. Suponiendo un coeficiente

Más detalles

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido

Más detalles

Física I T 1 T 2 T 3

Física I T 1 T 2 T 3 Física I 2011 Práctica 2 Dináica Dináica de partículas *1-Una fuerza F, aplicada a un objeto de asa 1 produce una aceleración de 3/s 2. La isa fuerza aplicada en un segundo objeto de asa 2 produce una

Más detalles

Problemas de Física Impulso y Cantidad de movimiento Problema # A-9. La velocidad positiva de subida del ascensor es constante e igual a v0

Problemas de Física Impulso y Cantidad de movimiento Problema # A-9. La velocidad positiva de subida del ascensor es constante e igual a v0 Probleas de Física Ipulso Cantidad de oiiento Problea # A-9 Problea # A-9.- Un ascensor sube en un pozo a razón de,83 (/s). En el instante en que el ascensor está a 8,9 () del extreo superior del pozo,

Más detalles

Movimiento Amortiguado y Forzado

Movimiento Amortiguado y Forzado Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio

Más detalles

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J

E k x 24,5 0,15 0,276 J. E kx 24,5 0,075 0,069 J 0,276 J E E E 0,276 0,069 0,207 J Moviientos periódicos I 0. Un punto describe una trayectoria circular de de radio con una velocidad de 3 rad/s. Expresar la ecuación del oviiento que resulta al proyectar el punto sobre el diáetro vertical:

Más detalles

A sen t sen3t, yb. a A sen t x, luego a x 0,06ms

A sen t sen3t, yb. a A sen t x, luego a x 0,06ms Moviientos periódicos I 0. Un punto describe una trayectoria circular de de radio con una velocidad de 3 rad/s. Expresar la ecuación del oviiento que resulta al proyectar el punto sobre el diáetro vertical:

Más detalles

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016 PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016 1. Un móvil describe un movimiento rectilíneo. En la figura P1.1, se representa su velocidad en función del tiempo.

Más detalles

Ejemplos de caída libre

Ejemplos de caída libre Movimiento de caída libre Ejemplos de caída libre La caída libre es un movimiento, determinado exclusivamente por fuerzas gravitatorias, que adquieren los cuerpos al caer, partiendo del reposo, hacia la

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE

C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE C U R S O: FÍSICA COMÚN MATERIAL: FC-03 CINEMÁTICA II CAÍDA LIBRE En cinemática, la caída libre es un movimiento dónde solamente influye la gravedad. En este movimiento se desprecia el rozamiento del cuerpo

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

MARCOSAPB CIENCIAS NATURALES FÍSICA TIRO PARABÓLICO N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ

MARCOSAPB CIENCIAS NATURALES FÍSICA TIRO PARABÓLICO N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MARCOSAPB CIENCIAS NATURALES FÍSICA TIRO PARABÓLICO -- 1 - - 13. N.S.Q INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DE QUIBDÓ MOVIMIENTO DE PROYECTILES O TIRO PARABÓLICO Proyectil: ipulsado por un cañón

Más detalles

SERIE DE EJERCICIOS CENTRO MASA, IMPULSO Y CANTIDAD DE MOVIMIENTO

SERIE DE EJERCICIOS CENTRO MASA, IMPULSO Y CANTIDAD DE MOVIMIENTO FÍSIC 1 SECMCHOQUE 1 UNIVERSIDD DE VLPRÍSO FCULTD DE CIENCIS SERIE DE EJERCICIOS CENTRO MS, IMPULSO Y CNTIDD DE MOVIMIENTO 1.- Defina y/o explique los siguientes conceptos: a) Centro de asa c) Cantidad

Más detalles

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas.

Solemne 1 - Ecuaciones Diferenciales. Para cada uno de los siguientes problemas, resuelva ordenadamente y justifique sus respuestas. Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Carrera: Ingeniería Civil Prier seestre de 013. Solene 1 - Ecuaciones Diferenciales Para cada uno de los siguientes probleas,

Más detalles

Figura 1. El oscilador armónico simple reacciona con una fuerza que se opone a la deformación

Figura 1. El oscilador armónico simple reacciona con una fuerza que se opone a la deformación Experiento 9 Ley de Hooe y oviiento arónico siple Objetivos 1. Verificar la ley de Hoo,. Medir la constante de un resorte, y 3. Medir el período de oscilación de un sistea asa-resorte y copararlo con su

Más detalles

Control 1 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio

Control 1 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio Control 1 (PAUTA) Física General III (FIS130) Moviiento scilatorio Pregunta 1 La figura uestra una placa cuadrada etálica hoogénea, de lado a y asa, la cual oscila alrededor de un eje perpendicular a su

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

Un homenaje a mi amigo mando yo

Un homenaje a mi amigo mando yo Un homenaje a mi amigo mando yo Galileo Galiei (1564-164) http://es.wikipedia.org/wiki/galileo_galilei Tarea: Cuál fue la contribución de Galileo a la mecánica clásica? http://es.wikipedia.org/wiki/torre_de_pisa

Más detalles

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE PRÁCTICA Nº LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE.- INTRODUCCION TEORICA..-Estudio estático Cuando se obliga a un cuerpo a cabiar de fora, la "fuerza deforadora" puede ser proporcional a la deforación,

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO TIRO VERTICAL Y CAIDA LIBRE

CINEMÁTICA: MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO TIRO VERTICAL Y CAIDA LIBRE COMPLEJO EDUCATIVO SAN FRANCISCO Profesor: José Miguel Molina Morales Segundo Periodo GUIA DE CIENCIAS FISICAS Primer Año General CINEMÁTICA: MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO TIRO VERTICAL Y

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO 2 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTOS EN UNA DIMENSION CAPITULO FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTOS EN UNA DIMENSION. Desplazaiento, velocidad y rapidez. Velocidad instantánea

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

COLISIONES SERWAY CAPITULO 9

COLISIONES SERWAY CAPITULO 9 COLISIONES SERWAY CAPITULO 9 COLISIONES PERFECTAMENTE INELASTICAS Una colisión inelástica es aquella en la que la energía cinética total del sistea NO es la isa antes y después de la colisión aun cuando

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 4 DE 013 SOLUCIÓN Pregunta 1 ( puntos) Mencione un

Más detalles

Ejercicio 2: Cinemática en 1 D

Ejercicio 2: Cinemática en 1 D Física Vía Internet 26 Profesores: Nelson Zamorano, Francisco Gutiérrez, Andrés Marinkovic y Constanza Paredes Ejercicio 2: Cinemática en 1 D Fecha: 2 de Julio Duración: 2: HORAS > Por favor no hagan ningún

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELTOS SOBRE CAIDA LIBRE Erving Quintero Gil Ing. Electroecánico Bucaraanga Colobia Para cualquier inquietud o consulta escribir a: quintere@hotail.co quintere@gail.co quintere6@yahoo.co Problea.4

Más detalles

Movimiento en línea recta (mov. En una dimensión)

Movimiento en línea recta (mov. En una dimensión) Movimiento en línea recta (mov. En una dimensión) CINEMÁTICA CINEMÁTICA Es el estudio del movimiento de los objetos Clasificación del movimiento: Movimiento traslacional Movimiento rotacional Movimiento

Más detalles

20º. Se coloca un bloque de 2 kg encima de un bloque de 5kg en un plano horizontal.

20º. Se coloca un bloque de 2 kg encima de un bloque de 5kg en un plano horizontal. ísica para Ciencias e Ingeniería MECÁNIC DINÁMIC DE L PRTÍCUL 1 Contacto: aletos@telefonica.net 1.08a 01 Un pequeño bloque de asa = 0,5 kg descansa sobre la superficie rugosa de una cuña de asa M =2 kg.

Más detalles

Experimentalmente demostró Galileo, en la famosa Torre de Pisa (torre inclinada de 55m de alto) las leyes que llevan su nombre.

Experimentalmente demostró Galileo, en la famosa Torre de Pisa (torre inclinada de 55m de alto) las leyes que llevan su nombre. Experimentalmente demostró Galileo, en la famosa Torre de Pisa (torre inclinada de 55m de alto) las leyes que llevan su nombre. PRIMERA LEY: Todos los cuerpos en el vacío caen con la misma aceleración

Más detalles

Movimiento con aceleración constante. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Movimiento con aceleración constante. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Movimiento con aceleración constante Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Objetivos: Después de completar este capítulo, deberá : Reconocer situaciones

Más detalles

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s

ONDAS MECÁNICAS EJERCICIOS PROPUESTOS. m v = 87,444 s. m v = 109,545 s ONDAS MECÁNICAS EJERCICIOS PROPUESTOS 1. Cuál es la velocidad de una onda transversal a lo largo de un hilo etálico soetido a la tensión de 89,0N si una bobina del iso que tiene 305,0 pesa 35,50N? v =

Más detalles

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: QUIMICA. GUÍA No.

INSTITUCIÓN EDUCATIVA FE Y ALEGRÍA NUEVA GENERACIÓN Formando para el amor y la vida - AREA CIENCIAS NATURALES: QUIMICA. GUÍA No. GUÍA No. 2: MOVIMIENTO UNIFORMEMENTE ACELERADO M. U. A. Explicación: apoyo: https://www.youtube.com/watch?v=ywqrn29ol38 Actividad 1: Exposición de conceptos físicos por los estudiantes para la próxima

Más detalles

La cinemática es la descripción matemática del movimiento y en ella no se estudian las causas que lo producen (las fuerzas).

La cinemática es la descripción matemática del movimiento y en ella no se estudian las causas que lo producen (las fuerzas). UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES CURSO: ENSEÑANZA DE LA FÍSICA MECÁNICA- MÓDULO # : MUV Diego

Más detalles

Capítulo 6A. Aceleración PRESENTACIÓN POWERPOINT DE PAUL E. TIPPENS, PROFESOR DE FÍSICA SOUTHERN POLYTECHNIC STATE UNIVERSITY

Capítulo 6A. Aceleración PRESENTACIÓN POWERPOINT DE PAUL E. TIPPENS, PROFESOR DE FÍSICA SOUTHERN POLYTECHNIC STATE UNIVERSITY Capítulo 6A. Aceleración PRESENTACIÓN POWERPOINT DE PAUL E. TIPPENS, PROFESOR DE FÍSICA SOUTHERN POLYTECHNIC STATE UNIVERSITY 007 El cheetah (guepardo): Un gato diseñado para correr. Su fortaleza y agilidad

Más detalles

TEMA 2: El movimiento. Tema 2: El movimiento 1

TEMA 2: El movimiento. Tema 2: El movimiento 1 TEMA 2: El oviiento Tea 2: El oviiento 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del oviiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazaiento. 2.4.- Velocidad. 2.5.- Aceleración.

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del moimiento de los cuerpos.. Cuándo un cuerpo está en moimiento? Para hablar de reposo o moimiento hay

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante. C U R S O: FÍSICA COMÚN MATERIAL: FC-3 CINEMÁTICA II CAÍDA LIBRE En cinemática, la caída libre es un movimiento dónde solamente influye la gravedad. En este movimiento se desprecia el rozamiento del cuerpo

Más detalles

!!!""#""!!!!!!""#""!!!!!!""#""!!!!!!""#""!!!

!!!#!!!!!!#!!!!!!#!!!!!!#!!! Tea 11 Capos agnéticos y corrientes eléctricas! 1 Probleas para entrenarse 1 Una partícula α (q 3, 10-19 C) se introduce perpendicularente en un capo cuya inducción agnética es,0 10 3 T con una velocidad

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R Física General I Paralelos 05 y. Profesor RodrigoVergara R 030) Conservacion de la Energía ) Fuerzas Conservativas y Energía Potencial Dependiendo de la anera en que cabia el trabajo que ejerce sobre un

Más detalles

CINEMÁTICA. MOVIMIENTO RECTILÍNEO

CINEMÁTICA. MOVIMIENTO RECTILÍNEO CINEMÁTICA. MOVIMIENTO RECTILÍNEO 1. Un cuerpo se desplaza en el eje X tal que su velocidad en función del tiempo está 2 dada por V = ( 8t - 0,8t ) m/s. a) Hallar la aceleración y grafíquela en función

Más detalles

U (0) + K (0) = U ( ) + K ( ) mgh cm. (0) = m g h cm ( ) + ½ I 2. m g L/2 = m g L/2 cos + ½ I 2

U (0) + K (0) = U ( ) + K ( ) mgh cm. (0) = m g h cm ( ) + ½ I 2. m g L/2 = m g L/2 cos + ½ I 2 PROBLEMA 1 Un lapiz de largo L se deja caer desde la posición ertical. Su base no se desplaza en tanto que su extreo superior cae describiendo un cuarto de círculo. Calcule: (a Su elocidad angular, cuando

Más detalles

FUERZAS. EFECTOS DE LAS FUERZAS

FUERZAS. EFECTOS DE LAS FUERZAS UERZAS. EECTOS DE LAS UERZAS IES La Magdalena. Avilés. Asturias Observa la iagen que se uestra ás abajo, en ella se puede ver un cuerpo que, inicialente, se ueve hacia la derecha con una velocidad de 5

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliminares

Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliminares Clase 1 Ecuaciones Diferenciales: Motivación y Conceptos Preliinares L. A. Núñez * Centro de Astrofísica Teórica, Departaento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO DECIMO IDENTIFICACIÓN AREA: Ciencias naturales. ASIGNATURA: Física. DOCENTE. Juan Gabriel Chacón c. GRADO. Decimo. PERIODO: Tercero UNIDAD: Movimiento en una dirección

Más detalles

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU )

Instituto Maria Auxiliadora - Bernal. 4 to.. Año Secundaria Física. Movimiento Rectilíneo Uniforme ( MRU ) Moviiento Rectilíneo Unifore ( MRU ) * Expresar en /seg una velocidad de 25 k/h e 25 K 25.000 v = --------- = --------------- = ----------------- = 6,94 /seg = v t 1 h 3.600 seg * Expresar en k / h una

Más detalles

SISTEMAS NO INERCIALES

SISTEMAS NO INERCIALES SISTEMAS NO INECIALES 1 - En el piso de un colectivo está apoyado un paquete de asa. El colectivo parte del reposo con una aceleración constante, a. Decir cuáles son las fuerzas aplicadas sobre el paquete,

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 4 DE 013 SOLUCIÓN Pregunta 1 ( puntos) Mencione un

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR:

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR: UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMEMTO DE FISICA Y MATEMÁTICA NUCLEO LOS PEROZO UNIDAD CURRICULAR: FISICA GENERAL Profa. Melissa Mora Santa Ana de Coro,

Más detalles

Cinemática: Conceptos Básicos del Movimiento, Movimiento Rectilíneo Uniforme y Movimiento Rectilíneo Uniforme Acelerado.

Cinemática: Conceptos Básicos del Movimiento, Movimiento Rectilíneo Uniforme y Movimiento Rectilíneo Uniforme Acelerado. Temática Estudiante Cinemática: Conceptos Básicos del Movimiento, Movimiento Rectilíneo Uniforme y Movimiento Rectilíneo Uniforme Acelerado. Fecha Conceptos Básicos de Movimiento Mecánica: Rama de la Física

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE- MOVIMIENTO PARABÓLICO PROBLEMAS RESUELTOS

MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE- MOVIMIENTO PARABÓLICO PROBLEMAS RESUELTOS MOVIMIENTO RECTILÍNEO CON ACELERACIÓN CONSTANTE- MOVIMIENTO PARABÓLICO PROBLEMAS RESUELTOS 1. Desde una camioneta que se mueve con velocidad constante de 20 m/s sobre una superficie horizontal, se lanza

Más detalles

Problemas tema 1: Oscilaciones. Problemas de Oscilaciones. Boletín 1 Tema 1. Fátima Masot Conde. Ing. Industrial 2007/08

Problemas tema 1: Oscilaciones. Problemas de Oscilaciones. Boletín 1 Tema 1. Fátima Masot Conde. Ing. Industrial 2007/08 1/28 Probleas de Oscilaciones Boletín 1 Tea 1 Fátia Masot Conde Ing. Industrial 2007/08 Problea 1: Una barca flota en el agua subiendo y bajando con las olas. La barca alcanza 8c abajo y 8c arriba de su

Más detalles

Caída Libre y Caída con Roce

Caída Libre y Caída con Roce Pontificia Universidad Católica de Chile Instituto de Física Caída Libre y Caída con Roce Objetivo General Estudiar el movimiento de un cuerpo en caída libre, y como este movimiento se ve afectado por

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

La velocidad de la pelota se puede calcular con la siguiente ecuación:

La velocidad de la pelota se puede calcular con la siguiente ecuación: 8-. Desde la azotea de un edificio se lanza verticalmente hacia abajo una pelota con una velocidad de 6 mts/ seg. Si la pelota llega a la superficie en 2.40seg después. Calcula a) la velocidad con la que

Más detalles

Capítulo 3. Fundamentos matemáticos del estudio

Capítulo 3. Fundamentos matemáticos del estudio Capítulo 3. Fundaentos ateáticos del estudio 3.1 Ecuación de Darcy La ley de Darcy es el pilar fundaental de la hidrología subterránea. Es una ley experiental obtenida por el ingeniero francés Henry Darcy

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO CAÍDA LIBRE Y TIRO VERTICAL

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO CAÍDA LIBRE Y TIRO VERTICAL 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO CAÍDA LIBRE Y TIRO VERTICAL CONCEPTOS FUNDAMENTALES LÍNEA VERTICAL Es aquella línea recta, radial a un planeta. MOVIMIENTO

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

Problemas de enfriamiento

Problemas de enfriamiento Problemas de enfriamiento De acuerdo con la ley de enfriamiento de Newton, la tasa de cambio de la temperatura T de un cuerpo respecto del tiempo, en un instante t, en un medio de temperatura constante

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS UNIVERSIDD NCINL DE SN LUIS FCULTD DE INGENIERI Y CIENCIS GRPECURIS FÍSIC I TRBJ PRÁCTIC N o 7 MMENT DE INERCI DINÁMIC DE RTCIÓN PRBLEM N o 1: Una bicicleta desacelera uniforeente de una velocidad inicial

Más detalles

Física y Química 4 ESO CAÍDA LIBRE Pág. 1

Física y Química 4 ESO CAÍDA LIBRE Pág. 1 Física y Química 4 ESO CAÍDA LIBRE Pág. 1 TEMA 3: CAÍDA LIBRE. Cuando se suelta un cuerpo desde una cierta altura, se observa que cae libremente (despreciando el rozamiento con el aire), en línea recta,

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO Unidades: [v] = [ ] = L/T m/s o ft/s RAPIDEZ Y VELOCIDAD La RAPIDEZ es una cantidad escalar, únicamente indica la magnitud de la velocidad La VELOCIDAD e

Más detalles

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

OSCILADOR ARMÓNICO ÍNDICE

OSCILADOR ARMÓNICO ÍNDICE ÍNDICE OSCILDOR RMÓNICO 1. Moviiento periódico. Moviiento arónico siple (MS) 3. Cineática del MS 4. uerza y energía del MS 5. Ecuación básica del MS 6. Oscilaciones aortiguadas 7. Oscilaciones forzadas

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un

Más detalles

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta? 1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente

Más detalles

5- La aceleración máxima que adquiere cierto automóvil es de 4m/s2. Esta aceleración en km/h 2 es de: a) 14,4 b) 1,1 c) 0,07 d) 240 e)

5- La aceleración máxima que adquiere cierto automóvil es de 4m/s2. Esta aceleración en km/h 2 es de: a) 14,4 b) 1,1 c) 0,07 d) 240 e) Fila 1 1- Un automóvil viajando a una velocidad de 72km/h comienza a frenar y logra detenerse a los 5 segundos. Entonces podemos decir que hasta los 3 segundos el automóvil se desplazó aproximadamente:

Más detalles

c.) Eso depende de otras variables. d.) Eso depende de la distancia recorrida. e.).

c.) Eso depende de otras variables. d.) Eso depende de la distancia recorrida. e.). OLIMPIADA PANAMEÑA DE FÍSICA SOCIEDAD PANAMEÑA DE FÍSICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ - UNIVERSIDAD DE PANAMÁ - UNIVERSIDAD AUTONÓMA DE CHIRIQUÍ PRUEBA NACIONAL DEL XI GRADO 2012 SELECCIÓN MÚLTIPLE

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

Trabajo y Energía. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales

Trabajo y Energía. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Ejercicios Conceptuales Cual de los siguientes casos implica la realización de trabajo a) Una persona parada sosteniendo un saco sobre su espalda b) Una persona

Más detalles

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE 1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira

Más detalles

CAPÍTULO 8 OSCILADOR ARMÓNICO SIMPLE

CAPÍTULO 8 OSCILADOR ARMÓNICO SIMPLE 45 CAPÍTULO 8 OSCILADOR ARMÓNICO SIMPLE Equation Section (Next) Ejercicio (8.) En un sistea asa-resorte, una partícula de asa = ( g) oscila con oviiento arónico siple (M.A.S.) de aplitud.3( ) y frecuencia

Más detalles

Ejercicios de Cinemática para 4º de E.S.O.

Ejercicios de Cinemática para 4º de E.S.O. Ejercicios de Cineática para 4º de E.S.O. 1. En la figura se uestra la gráfica posición-tiepo para un deterinado oviiento: a) Deterinar el desplazaiento entre los instantes t = 2 s y t = 8 s; b) Calcular

Más detalles

DINÁMICA. * Los items denotados con * podrán ser resueltos luego de la primera clase de computación.

DINÁMICA. * Los items denotados con * podrán ser resueltos luego de la primera clase de computación. DINÁMICA * os ites denotados con * podrán ser resueltos lueo de la priera clase de coputación. 1 - El sistea de la fiura está inicialente en reposo, las poleas y los hilos tienen asas despreciables y los

Más detalles

Universidad Cuauhtémoc EJERCICIOS DE REPASO

Universidad Cuauhtémoc EJERCICIOS DE REPASO Universidad Cuauhtémoc Campus Querétaro EJERCICIOS DE REPASO Física I Profesora: Ing. Mariana Lujambio Chávez Estudiante: Grupo: Querétaro, Querétaro, Agosto-Diciembre de 2017 1 Escribe las formulas por

Más detalles