a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )"

Transcripción

1 Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable en P b) Si f es diferenciable en P, entonces f es contina en P c) Si f es contina en P, entonces f admite derivada direccional en P en calqier dirección = sent - Sea la sperficie de ecación = Si es la ecación de na crva plana = cost d contenida en Dom, entonces la derivada (de la fnción a lo largo de la crva) es: a) sen(t) cos(t) b) 4sent cost c) 3- Si na fnción = f(, ) tiene plano tangente en n pnto asegrarse qe: a) f es diferenciable en (a, b) b) f es na fnción acotada en R a, b R, pede c) Las derivadas parciales de f son continas en (a, b) 4- Sea na fnción = f(,) La derivada parcial de f respecto de en n pnto calqiera (, ), cando eiste, es: a) lím f (, ) + f +, f(, ) b) lím f (, + ) f(, ) c) lím 5- Sea F(,, ) = na epresión algebraica qe define de forma implícita la fnción = f(, ) Entonces, el vector gradiente f viene dado por: F F F a),, F F b), F F F F c), F F 6- Sea = f(, ) na fnción diferenciable en n pnto (, ) de s dominio se verifica, entonces, qe: D R, Unidad docente de Matemáticas

2 f ( a), ) f (, ) f (, )(, ) lim (, ) (, ) ( ) + ( ) b) f (, ) = f (, ) + f (, )(, ) c) Ningna de las anteriores 7- Sea la fnción = el cambio de variables = sent, = cost, entonces: d a) = cost sent = cos(t) d b) = sent cost = d c) = cos(t) 8- La epresión = define a como fnción implícita de e La derivada parcial de respecto de en el pnto (, -) vale: a) b) 3 c) 3 9- Cál de las sigientes afirmaciones es la verdadera? a) Una fnción = f(, ) pede ser diferenciable en n pnto no ser contina en él b) Una fnción = f(, ) pede tener derivadas direccionales en n pnto no ser contina en él c) Una fnción = f(, ) pede ser diferenciable en n pnto no tener derivadas parciales en él - Sea N el número de almnos matriclados en na Universidad, p el coste de mantenimiento t el coste de la matrícla Spongamos qe N es na fnción de p t tal N N qe < < Qé se pede conclir del eco de ser ambas derivadas p t parciales negativas? a) N dismine al amentar p t b) N dismine al disminir p t c) N amenta al amentar p t 3 - La ecación = define a como fnción implícita de e La crva de nivel para = es: a) Una parábola b) Una ipérbola c) Dos rectas secantes - La fnción f (, ) = e verifica: a) Es creciente en para cada > fijo b) Es decreciente en para cada > fijo c) Ss crvas de nivel son elipses = Unidad docente de Matemáticas

3 3- Sea =f(,) na fnción diferenciable Con el cambio a coordenadas polares = rsenα, se verifica qe: = rcos α a) = rsenα + r cos α α α α b) = cos α + s enα r c) Ningna de las anteriores 4- Sea =f(,) na fnción real de dos variables reales, se verifica: a) Si f es diferenciable en n pnto P, entonces f es derivable en calqier dirección es contina en P b) Si f es contina en n pnto P eisten las derivadas parciales de f en dico pnto, entonces f es diferenciable en P c) La eistencia de derivadas parciales de f en P f es contina en P f es diferenciable en P 5- Si -= es na crva de nivel de la sperficie =f(,), se verifica: a) Los pntos de la parábola de vértice (-,) el eje OX tienen igal cota, Domf b) f(,)= para calqier pnto c) Ningna de las anteriores 6- Sea = f(,) na fnción real de variable real, se verifica qe: f f a) f es contina en (a,b) Eisten ( a,b) ( a,b) f es diferenciable en (a,b) f f b) f es diferenciable en (a,b) f es contina en (a,b) eisten ( a,b) ( a,b) c) Ningna de las anteriores 7- Sea =f(,) na fnción real de dos variables reales Se verifica: a) Si f es contina en n pnto P, entonces admite derivada direccional en P en calqier dirección b) Si f admite derivadas direccionales en P en calqier dirección, entonces f es contina en P c) Si f es diferenciable en P, entonces, en dico pnto f es contina admite derivadas direccionales en calqier dirección 8- Sea =f(,) na sperficie calqiera diferenciable en P (,, ), sea P (,, ) otro pnto de dica sperficie próimo a P Entonces: a) Δ = f(p) f(p ) f ( P) PP Δ = f(p ) f(p ) f P P P b) c) Δ = f(p ) f(p ) = df ( P ) PP 9- La ecación del plano tangente a na sperficie =f(,) en n pnto P =(3,4,-5) de la f P = (,), es: misma, sabiendo qe a) ++-6= b) ++-6= c) +--6= - La derivada direccional de na fnción =f(,) en n pnto P(, ) en la dirección de n vector se obtiene mediante la epresión: Unidad docente de Matemáticas 3

4 a) f( P) b) f( P) c) f P f P - Sea =f(,) na fnción real de dos variables reales Se verifica: a) f contina f diferenciable f derivable en calqier dirección b) f diferenciable f derivable en calqier dirección f contina c) f contina f derivable en calqier dirección f diferenciable - Sea =f(,) na fnción contina en (, ) qe admite derivadas parciales en dico pnto Se verifica: a) f es diferenciable en (, ) b) Eiste el plano tangente en (,, ) s ecación es f f = ( ) + ( ) c),,,, lim f, = f (, ) + e 3- Sea =f(,)=, sea = (,) La derivada direccional de f en el pnto (,) + e según la dirección de vale: a) / b) /4 c) ¾ 4- Sea =f(,) na fnción real de dos variables reales Señalar cál de las afirmaciones sigientes es FALSA: f f a) f es contina en (a,b) Eisten ( a,b) ( a,b) f es diferenciable en (a,b) f f b) f es diferenciable en (a,b) f es contina en (a,b) eisten ( a,b) ( a,b) f f c) continas en (a,b) f es diferenciable en (a,b) 5- Cál de las sigientes interpretaciones geométrica es FALSA para na fnción =f(,)? a) Si f es diferenciable en (a,b), entonces, eiste el plano tangente en dico pnto está próimo a f(,) en n entorno de (a,b) f b) La derivada direccional ( a,b) mestra cómo varía la fnción f a lo largo de la recta qe pasa por (a,b) tiene la dirección del vector c) El gradiente de f en (a,b) es n vector paralelo a la crva de nivel qe pasa por dico pnto 6- Sea =f(,) na fnción qe cmple las ipótesis del teorema de Swart NO podemos afirmar qe: a) f es diferenciable '' '' b f f = Unidad docente de Matemáticas 4

5 c) f f + = 7- Sea = f(, ) na fnción diferenciable en n pnto P (, ) f(,) f(,) f( P)(, ) a) (, ) (, ) ( ) + ( ) lim = Domf, entonces: b) Eisten las derivadas parciales de la fnción son continas c) el plano tangente a la fnción en P es perpendiclar al eje 8- Si la ecación F(,,)= define a como fnción implícita de e, entonces: F/ F/ a) = = F/ F/ F/ b) = F/ F/ = F/ F/ F/ c) = = F/ F/ 9- Sea = f(, ) na fnción qe admite derivada direccional en calqier dirección en n pnto P Entonces, la dirección de máimo crecimiento de f en P viene dada por: a) = ( P, P ) b) = ( P, P ) c) = ( P, P ) 3- Cando eiste la derivada direccional en n pnto P de na sperficie = f(, ), se verifica qe es máima en la dirección del gradiente f (P) a) s valor es f (P) es nla en la dirección opesta - f (P) b) s valor es f (P) es mínima en la dirección opesta - f (P) con valor - f (P) c) s valor coincide con él 3- Cál de las sigientes afirmaciones es la verdadera? a) Una fnción = f(, ) pede ser diferenciable en n pnto no ser contina en él b) Una fnción = f(, ) pede tener derivadas direccionales en n pnto no ser contina en él c) Una fnción = f(, ) pede ser diferenciable en n pnto no tener derivadas parciales en él 3- Sea = f(, ) na fnción con derivadas parciales continas en P sea n vector nitario de R, entonces: a) El valor de la derivada direccional f (P, ) es f ( P) b) Si f ( P), el valor de la derivada direccional f (P, ) es mínimo Unidad docente de Matemáticas 5

6 , el valor de la derivada direccional f (P, ) es, o bien máimo, o bien mínimo 33- Sea = f(, ) na fnción diferenciable en P Entonces: c) Si f ( P) a) Eiste f ( P) b) f posee derivadas parciales continas en P c) f ( P) f ( P) = 34- Sea = f(,) na fnción diferenciable con gradiente no nlo en n pnto P(a,b) Domf La derivada direccional de f en P en la dirección de n vector es nla si verifica: a) Los vectores f ( P) son paralelos b) f ( P) c) Los vectores f ( P) son nitarios 35- Sea = f(,) na fnción con derivadas parciales continas asta el orden 3 en n pnto P Se verifica qe: a) f es diferenciable en P b) f ( P ) f ( P ) = c) f pede ser discontina en P 36- Si es tangente a la crva de nivel en n pnto P de na sperficie diferenciable = f(, ), entonces a) f( P) = b) f( P) = c) f ( P) son paralelos 37- Sea = f (, ) na fnción diferenciable en el pnto P(a, b) Se verifica qe: a) Si f ( a,b) =, entonces la derivada direccional de f en P en calqier dirección vale b) La dirección de la crva de nivel en P es la del vector ( a,b) f c) Ningna de las anteriores 38- Sea = f(,) na fnción con derivadas parciales continas en P(, ), entonces, la dirección de la crva de nivel de f qe pasa por P viene dada, en dico pnto P, por: a) La dirección del vector f(p ) b) La dirección del vector - f(p ) c) La dirección de calqier vector ortogonal a f(p ) 39- Sea = f(, ) na fnción qe admite derivadas parciales en n pnto P Se verifica: a) f admite derivada direccional en P en calqier dirección b) f es contina en P c) Ningna de las anteriores = g(, v) 4- Un cambio de variables en la fnción diferenciable = f (, ), verifica: = (, v) Unidad docente de Matemáticas 6

7 Unidad docente de Matemáticas 7 a) g + = b) v g + = c) Ningna de las anteriores

Tema 10 Ejercicios resueltos

Tema 10 Ejercicios resueltos Tema 1 Ejercicios reseltos 1.1. Determinar el campo de eistencia de las fnciones sigientes: - 1 f(, ) = log f(, ) = ç è + ø f(, ) + - = ( f (, ) = log - 3 ) + 1.. Calclar los límites de las sigientes fnciones

Más detalles

3. Campos escalares diferenciables: gradiente.

3. Campos escalares diferenciables: gradiente. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. 3. Campos escalares diferenciables: gradiente. Plano tangente diferenciabilidad. Consideremos na fnción f :(, ) U f(, ) de dos variables n pnto (, interior al conjnto

Más detalles

LÍMITES, CONTINUIDAD Y DERIVADAS

LÍMITES, CONTINUIDAD Y DERIVADAS LÍMITES, CONTINUIDAD Y DERIVADAS ÍNDICE. Concepto de límite. Propiedades de los límites 3. Definición de continidad 4. Tipos de continidad 5. Concepto de derivada 6. Tabla de derivadas 7. Crecimiento y

Más detalles

DERIVADAS. incremento de la variable independiente, x

DERIVADAS. incremento de la variable independiente, x DERIVADAS CPR. JORGE JUAN Xvia-Narón y= f(x): (a,b)r R fnción real definida en el dominio abierto, (a,b)r x 0, x (a,b) x= x -x 0 f(x )= f(x 0 +x) f(x 0 )= f(x 0 ) pntos del dominio de la fnción. incremento

Más detalles

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que:

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que: Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos en R. b) es dierenciable en todo punto

Más detalles

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto Etremos de unciones de dos variables Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos

Más detalles

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES

el blog de mate de aida MI: apuntes de vectores y rectas pág. 1 VECTORES el blog de mate de aida MI: apntes de vectores y rectas pág. VECTORES.- LOS EJES CARTESIANOS Y EL ORIGEN El eje horizontal se llama eje de abscisas y el eje vertical se llama eje de ordenadas. El pnto

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x

Regla de la cadena. Regla de la cadena y. son diferenciables, entonces: w w u w v y u y v y. y g. donde F, w w u w v x u x v x Regla de la cadena Una de las reglas qe en el cálclo de na variable reslta my útil es la regla de la cadena. Dicho grosso modo, esta regla sirve para derivar na composición de fnciones, esto es, na fnción

Más detalles

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS

RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS RELACIÓN DE EJERCICIOS LÍMITES Y ASÍNTOTAS. Calcla los sigientes límites: sen() (a) cos() sen() (b) cos(). Calcla los sigientes límites a) e b) a) e e sen() e. Calcla los sigientes límites: tg() sen()

Más detalles

1 Parametrización de super cies

1 Parametrización de super cies Dpto. Matemática Aplicada E.T.S. Arqitectra, U.P.M. Crvas y Sper cies HOJA DE PROBLEMAS: SUPERFICIES 1 Parametrización de sper cies 1. Obtener dos parametrizaciones reglares para cada na de las sigientes

Más detalles

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u

TEMA 7: VECTORES. También un vector queda determinado por su módulo, dirección y sentido. Dado el vector u. = AB, se define: Módulo del vector u DPTO DE MATEMÁTICAS T5: VECTORES - 1 1.- VECTORES EN EL PLANO TEMA 7: VECTORES Hay magnitdes como ferza, desplazamiento, elocidad, qe no qedan completamente definidas por n número. Por ejemplo, no es sficiente

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

VECTORES EN EL PLANO.

VECTORES EN EL PLANO. VECTORES EN EL PLNO. Introdcción: Magnitdes escalares ectoriales. Ha ciertas magnitdes físicas, tales como la masa, la presión, el olmen, la energía, la temperatra, etc., qe qedan completamente definidas

Más detalles

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR

IDENTIFICAR LOS ELEMENTOS DE UN VECTOR 8 REPSO POO OJETIVO IDENTIFICR LOS ELEMENTOS DE UN VECTOR Nombre: Crso: Fecha: Vector: segmento orientado determinado por dos pntos: (a, a ), origen del ector, y (b, b ), extremo del ector. Coordenadas

Más detalles

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3

ALGEBRA Y GEOMETRÍA VECTORIAL EN R 2 Y EN R 3 ALGEBRA Y GEOMETRÍA VECTORIAL EN R Y EN R Los ectores se peden representar mediante segmentos de recta dirigidos, o flechas, en R o en R. Se denotan por letras minúsclas negritas Pnto inicial del ector

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS

REVISIÓN DE ANÁLISIS MATEMÁTICO CONCEPTOS Y EJEMPLOS E.T. Nº 7 - Brig. Gral. Apnte teórico TEORÍA DE LOS IRUITOS II REVISIÓN DE ANÁLISIS MATEMÁTIO ONEPTOS Y EJEMPLOS INDIE Página FUNIONES LÍMITES DERIVADAS oncepto definición Derivadas de las fnciones algeraicas

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

MMII_L1_c3: Método de Lagrange.

MMII_L1_c3: Método de Lagrange. MMII_L_c3: Método de Lagrange. Gión de la clase: Esta clase está centrada en plantearse la resolción de las ecaciones casi lineales de primer orden mediante el Método de Lagrange. El método eqivale a plantearse

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas

DIBUJO Y SISTEMAS DE REPRESENTACIÓN. Agrimensura Civil Mecánica Metalurgia Extractiva Minas DEPARTAMENTO DE MATEMÁTICA DIBUJO Y SISTEMAS DE REPRESENTACIÓN Agrimensra Civil Mecánica Metalrgia Extractiva Minas Unidad X: Sistema de Proyección Acotada Dibjo y Sistemas de Representación UNIDAD X -

Más detalles

x y x y y x a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (0,0) y

x y x y y x a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (0,0) y ( ) (, ) (,) 1.- Dada la función f(, ) : (, ) (,) a) Dibujar el conjunto de puntos del plano donde f no está definida. b) Estudiar la continuidad de f en (,) c) Calcular (,) (,) (si es necesario prolongar

Más detalles

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 )

1. Encontrar la pendiente de la recta tangente a la curva de intersección de la superficie: z = y con el plano y=2, en el punto (2,1, 6 ) PROBLEMAS RESUELTOS 1. Encontrar la pendiente de la recta tangente a la cra de intersección de la sperficie: z = 1 con el plano =, en el pnto (,1, 6 Solción La pendiente bscada es: z 1 (,1 1 z (,1 6 (,1.

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v.

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1. es un vector unitario de la misma dirección y el mismo sentido que v. Estdios J.Concha ( fndado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Jaier Concha y Ramiro Froilán TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

EJERCICIOS DE SELECTIVIDAD FUNCIONES

EJERCICIOS DE SELECTIVIDAD FUNCIONES EJERCICIOS DE SELECTIVIDAD FUNCIONES Representación gráfica Monotonía Curvatura - Asíntotas 1. Dadas las funciones siguientes, 6 + 1 a) b) = c) = 1 + d) + 4 1 = e) = f) = 1 g) + 1 + 1 = h) = i) =, 1 +

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales.

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales. TEOREMAS BÁSICOS DEL CÁLCULO DIFERENCIAL. Cuando una función es continua en un intervalo cerrado [ a, b ] alcanza su máimo y su mínimo absolutos en puntos c y c, respectivamente, de dico intervalo. Esto

Más detalles

GEOMETRÍA ANALÍTICA AB CD CD AB CD

GEOMETRÍA ANALÍTICA AB CD CD AB CD GEOMETRÍA ANALÍTICA.- Vectores..- Vectores fijos en el plano Llamaremos ector fijo a todo par ordenado de pntos del plano. Si los pntos son A y B conendremos en representar por AB el ector fijo qe determinan;

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. Física para iencias e Ingeniería ÁLGEBRA ETORIAL 7.2- Introdcción A lo largo del estdio de la Física srgen na serie de propiedades, tanto de magnitdes escalares como vectoriales, qe se epresan por medio

Más detalles

( ) ( ) Examen de Geometría analítica del plano y funciones Curso 2015/16 0, + 4 ( 4, 0) y = = +, se pide lo siguiente: Estudia su dominio.

( ) ( ) Examen de Geometría analítica del plano y funciones Curso 2015/16 0, + 4 ( 4, 0) y = = +, se pide lo siguiente: Estudia su dominio. Eamen de Geometría analítica del plano y funciones Curso 5/6 Ejercicio Dada la función f ( ) ln ( 4) Estudia su dominio +, se pide lo siguiente: Encuentra la ecuación de la recta tangente a la curva y

Más detalles

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:. Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL

DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL DERIVADA DE LA FUNCIÓN EXPONENCIAL DE CUALQUIER BASE Y DE LA FUNCIÓN LOGARÍTMO NATURAL Sgerencias para qien imparte el crso: Se deberá concebir a la Matemática como na actividad social y cltral, en la

Más detalles

1. Idea intuitiva del concepto de derivada de una función en un punto.

1. Idea intuitiva del concepto de derivada de una función en un punto. Tema : Derivadas. Idea intitiva del concepto de derivada de na fnción en n pnto. Comencemos pensando en na fnción f () t, donde t represente el tiempo y f la evolción de na cantidad calqiera a lo largo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable Departamento de Matemáticas Página PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. d 4.0.- Calcula ( ) (Sugerencia: cambio de variable t ) 4-0.- Sea f : R R la función definida por Sea f ( ) e cos ( )

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

TEMA 7 VECTORES MATEMÁTICAS 1

TEMA 7 VECTORES MATEMÁTICAS 1 TEMA 7 VECTORES MATEMÁTICAS TEMA 7 VECTORES 7. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un ector es n segmento orientado. Un ector AB qeda determinado por dos pntos, origen A y extremo B. Elementos de

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2

3.2 EL PRODUCTO ESCALAR Y LAS PROYECCIONES EN R 2 34 CAPÍTULO 3 Vectores en R R 3 ais sqare a=ais; ais([min(a([1,3])),ma(a([,4])),min(a([1,3])),ma(a([,4]))]) % hold off Una ez qe se haa escrito la fnción en n archio con nombre lincomb.m, dé el comando

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169

SOLUCIONES DE LAS ACTIVIDADES Págs. 158 a 169 TEMA. VECTORES SOLUCIONES DE LAS ACTIVIDADES Págs. 58 a 6 Página 58. Obtenemos los sigientes ectores: + Página 6. La representación es la sigiente: x - - Página 5. ( 0) (0 ) x ( ) a + b a / b y ( 6) a

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas

Apuntes de Cálculo Diferencial para la asesoría en el área de matemáticas Universidad Atónoma del Estado de Méico Plantel Ignacio Ramírez Calzada Academia de Matemáticas Núcleo de formación: Matemáticas Apntes de Cálclo Diferencial para la asesoría en el área de matemáticas

Más detalles

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010

Mecánica I Tema 5. Manuel Ruiz Delgado. 1 de diciembre de 2010 Mecánica I Tema 5 Dinámica del sólido rígido Manel Ri Delgado 1 de diciembre de 010 eometría de masas Centro de masas de gravedad............................................... 4 Tensor de inercia.........................................................

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

2. Derivadas parciales y derivadas direccionales de un campo escalar.

2. Derivadas parciales y derivadas direccionales de un campo escalar. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Derivadas parciales derivadas direccionales de un campo escalar. El cálculo de varias variables es básicamente el cálculo de una variable, aplicado a varias

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS

Más detalles

Para calcular B, sustituimos A en la segunda ecuación y despejamos B:

Para calcular B, sustituimos A en la segunda ecuación y despejamos B: Prueba de Acceso a la Universidad. SEPTIEMBRE 014. Matemáticas II. a) Multiplicamos por la segunda ecuación: 9 6A B 7 7 1 1 Sumamos ahora ambas ecuaciones: 7A A 0 7 0 1 Para calcular B, sustituimos A en

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

Apéndice I Capa límite

Apéndice I Capa límite Apéndice I Capa límite Capa límite. Aproimadamente hasta antes de 860, el interés de la ingeniería por la mecánica de flidos se limitaba casi eclsivamente al fljo del aga. La complejidad de los fljos viscosos,

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

TEMA 1: FUNCIONES REALES DE UNA VARIABLE

TEMA 1: FUNCIONES REALES DE UNA VARIABLE TEMA 1: FUNCIONES REALES DE UNA VARIABLE Curso 2009/2010 y 1 o G ESQUEMA DE CONTENIDOS Concepto de función y de gráfica de una función. Límites. Propiedades. Continuidad. Derivabilidad. Análisis de los

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Diferenciabilidad de funciones de varias variables

Diferenciabilidad de funciones de varias variables 6 si 6 f si a) Eisten las derivadas parciales de f en (, ). b) f no es continua en (,). 1.- Sea la función,.- Sea la función,,,,,. Probar que: 1 sen si f. si a) Probar que f es continua en (,). b) Es f

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

DERIVADAS DE FUNCIONES DE UNA VARIABLE

DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar

Más detalles

Tema 11 Ejercicios resueltos

Tema 11 Ejercicios resueltos Tema 11 Ejercicios resueltos 11.1. Se considera la función f : definida por 3 f (, ) sin( ),cos( ) e. Razonar que la función es localmente invertible en un entorno del punto (0,0) calcular Jf 1 (0,0).

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5

1 + 3(0, 2) = ( 1, 2) + (0, 6) = ( 1, 4) ) ( = arc cos e 5 utoevaluación Página Dados los vectores uc c, m v (0, ), calcula: a) u b) u + v c) u : ( v) uc c, m v (0, ) a) u c m + ( ) b) u + v c c, m + (0, ) (, ) + (0, 6) (, ) c) u : ( v) () (u v ) c 0 +( m ) (

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS 6 Derivadas ACTIVIDADES INICIALES 6I Escribe la ecuación de las siguientes rectas: a) Horizontal y que pase por el punto A(, ) b) Decreciente y que pase por el punto A(, ) c) Creciente y que pase por el

Más detalles

SELECTIVIDAD ANDALUCÍA ARAGÓN ASTURIAS. b) Calcule el área del recinto limitado por la gráfica de f(x), el eje de abcisas y la recta x=2.

SELECTIVIDAD ANDALUCÍA ARAGÓN ASTURIAS. b) Calcule el área del recinto limitado por la gráfica de f(x), el eje de abcisas y la recta x=2. SELECTIVIDAD.03 Esta es una selección de cuestiones propuestas en las otras comunidades autónomas en la convocatoria de Junio del.03. En aquellas comunidades que no se indica nada, el formato de eamen

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

Propiedades de las funciones en un intervalo

Propiedades de las funciones en un intervalo Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se

Más detalles

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa

NOMBRE: VECTORES EN EL PLANO. Ángel de la Llave Canosa NOMBRE: VECTORES EN EL PLANO Ángel de la Llave Canosa 1 VECTORES EN EL PLANO VECTOR FIJO Un vector fijo AB es n segmento orientado, qe está definido por dos pntos: Un pnto origen y n pnto extremo. Los

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos: MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación

Más detalles