Límites de funciones. Continuidad

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites de funciones. Continuidad"

Transcripción

1 Límites de funciones. Continuidad 1. Calcula los siguientes límites: a) f(x) = 1 x x 4 b) f(x) = 2x2 +x x 2 +1 c) f(x) = x2 +x +2x 4x 2 +1 d) f(x) = x +x +2x 4x Calcula los límites cuando x + de las siguientes funciones: a) f(x) = (2 + x) x b) f(x) = ( + 2+x 5 ) x c) f(x) = ( 2+x 2x 1 ) x d) f(x) = ( 2+x 2x 1 ) x. Calcula los límites cuando x + de las siguientes funciones: a) f(x) = (2 + x) x 5 b) f(x) = ( 2+x 5 )2x c) f(x) = ( 2+x 2x 1 )x2 1 x x d) f(x) = ( 2+x 2x 1 4. Calcula los límites cuando x + de las siguientes funciones: a) f(x) = ( 2+4x 1+x )x 5 b) f(x) = ( 2+x 5 x+ x 2 )2 c) f(x) = ( +x2 + 4 x2 2x 1 x ) d) f(x) = (2+x x x 5. Calcula los límites cuando x de las siguientes funciones: a) f(x) = x 4x 2 + b) f(x) = ( 2+x 5 x2 + 2x )2 c) f(x) = (1 + +x x x 2 1 x ) x d) f(x) = 1 2x 6. Calcula los límites cuando x + de las siguientes funciones: a) f(x) = ( 2+4x 1+4x )x 5 b) f(x) = ( 2+5x x+ 5 x 2 )2x2 c) f(x) = ( 1+2x2 x 2 )x2 x+1 d) f(x) = ( 2+x x x2 x 7. Calcula los límites cuando x + de las siguientes funciones: a) f(x) = x + x b) f(x) = 4x 2 2x + 1 2x c) f(x) = 2 x 9x 2 2x+ d) f(x) = x 2 x 7 8. Calcula los siguientes límites: a) 1 x2 x 2 b) x2 x 1 c) x2 x d) x 0 x 4 x 1 x+1 e) x x 2 x 1 2x+2 x+7 f) x 2 x 2 4 g) x x2 +x 1 x x h) 4x x x 1 x Dada la función f(x) = { x2 4x + 1 si x 1 x 1 si x > 1 gráficamente. estudia su continuidad y represéntala 10. Dada la función f(x) = { x2 4x + 1 si x 1 estudia su continuidad en x = 1 y represéntala x 5 si x > 1 gráficamente. 11. Se considera la función real de variable real f(x) = { x 2 4x + si x 1 x 2 + 4x si x > 1 a) Estúdiese la continuidad de la función f. b) Represéntese gráficamente la función f. a) x R x < 1, f(x) = x 2 4x + : continua por ser función polinómica.

2 x R x > 1, f(x) = x 2 + 4x : continua por ser función polinómica. Estudiamos la continuidad en x = 1 comprobando las condiciones: 1] f(1) = 0 2] f(x) { (x2 4x + ) = 0 de donde f(x) = 0 + ( x2 + 4x ) = 0 ] f(1) = f(x) Por tanto la función f es continua en el conjunto de los números reales. b) Representación gráfica 12. Estudia la continuidad de las siguientes funciones y clasifica los tipos de discontinuidad en los casos que proceda: a) f(x) = { x2 2 si x < 1 si x 1 x 2 (Sol. en x = 2 hay una discontinuidad de salto infinito (x = 2 A.V); en el resto de puntos la función es continua) b) f(x) = x+2 x 2 4 (Sol. en x = 2 hay una discontinuidad evitable; en x = 2 hay una discontinuidad de salto infinito (x = 2 A.V); en el resto de puntos la función es continua) c) f(x) = { x ex si x < 1 si x 1 x 2 4 (Sol. en x = 2 hay una discontinuidad de salto infinito (x = 2 A.V); en x = 1 hay una discontinuidad de salto finito; en el resto de puntos la función es continua) 1. Estudia y clasifica los puntos de discontinuidad de la función f(x) = 2x 1 x 2 +2x 14. Dada la función f(x) = { x2 4x + 1 si x 1 x 1 si x > 1 a) Estudia su continuidad. b) Represéntala gráficamente.

3 15. Estudia y representa las asíntotas de la función f(x) = x 2 x+4 (Sol. x = 4 A.V; y = 1 A.H) 16. Estudia y representa las asíntotas de la función f(x) = x x 2 2x+1 (Sol. y = x + 2 A.O; x = 1 A.V) 17. Se considera la función real de variable real definida por 2x 2 a si x 1 f(x) = { x 2 + b si 1 < x < 1 Lx + a si x 1 a) Calcúlense a y b, para que la función f sea continua en todos los puntos. b) Represéntese gráficamente. a) x R x < 1, f(x) = 2x 2 a: continua por ser función polinómica. x R 1 < x < 1, f(x) = x 2 + b: continua por ser función polinómica. x R x > 1, f(x) = Lx + a: continua porque la función logarítmica lo es. Para que la función sea continua en los puntos x = 1 y x = 1 tenemos: Caso 1 x = 1 1] f( 1) = 2 a 2] f(x) { x 1 (2x2 a) = 2 a x 1 ( x2 + b ) = + b (1) Caso 2 x = 1 x 1 + 1] f(1) = L1 + a = a de donde 2 a = + b, esto es, a + b = 5 2] f(x) { ( x2 + b) = + b (Lx + a) = a de donde a = + b o a b = (2) + Para que f(x) sea continua en R, las expresiones (1) y (2) han de verificarse a la vez. Tenemos así a + b = 5 el sistema de ecuaciones { que nos da la solución a = 1 y b = 4. a b = b) 18. Determina el valor del parámetro a para que f(x) = { (Sol. en a = 1/2) x 2 si x 2 2x sea continua en x = 2 ax 2 1 si x > 2

4 19. Se considera la función real de variable real f(x) = { e x si x < 0 si x 0 a+x x 2 4x+ Estúdiese la continuidad de f en x = 0 para los distintos valores del parámetro a. Selectividad: Madrid Junio 201 Opción B Estudiamos las condiciones de continuidad en x = 0 : 1] f(0) = a e x = 1 x 0 2] f(x) { a+x x 0 x 0 + x 2 4x+ = a de donde a = 1 y a =. a = f(x) es continua en x = 0 Por tanto: [ a R a f(x) no es continua en x = Se considera la función real de variable real definida por f(x) = { ax2 si x 1 ln(2x 1) si x > 1 a) Calcúlese a para que la función f sea continua en todo R. b) Represéntese gráficamente la función para el caso a =. Nota: ln x denota al logaritmo neperiano del número x. Selectividad: Madrid Septiembre 201 Opción B a) x R x < 1, f(x) = ax 2 : es continua por ser función polinómica. x R x > 1, f(x) = ln (2x 1) : es continua por ser composición de funciones continuas. [ f = goh siendo g(x) = ln(x) y h(x) = 2x 1] Para que f(x) sea continua en x = 1 se deben cumplir las condiciones de continuidad de una función en un punto: 1] f(1) = a 2] f(x) { (ax2 ) = a ln(2x 1) = ln1 = 0 + de donde a = 0; a = es el valor buscado. b) a = Representación gráfica de la función f(x) = { x2 si x 1 ln(2x 1) si x > 1

5 21. Se considera la función real de variable real x + b x 2 f(x) = { x 2 + 6x + 5 x 2 + 4x + si x 1 si x > 1 a) Determínese para qué valores del parámetro b la función f(x) es continua en x = 1. b) Calcúlense las asíntotas de f(x). Selectividad: Madrid Junio 2016 Opción B a) Las condiciones de continuidad en x = 1 son: 1] f( 1) = 1+b existe 2] x 1 f(x) = { x 1 x 2 x2 +6x+5 = x 1 + x 2 +4x+ = 1+b 0 0 (x+1) (x+5) = x 1 + (x+1) (x+) x+5 = 2 x 1 + x+ 1+b La existencia de f(x) obliga a que = 2, de donde b = 7. x 1 b) x R, x 1 la función es f(x) = x 2. Como = 1, f(x) tiene una asíntota horizontal, la recta y = 1. No hay oblicua. x x 2 El polinomio x 2 se anula en x = 2 que está en el dominio de la función. Como = b a R para todo valor real de x 1, f(x) no tiene asíntotas verticales. x a x 2 a 2 x R, x > 1 la función es f(x) = x2 +6x+5 x 2 +4x+. x Como 2 +6x+5 = 1, la función f(x) tiene una asíntota horizontal, la recta y = 1. x + x 2 +4x+ El polinomio x 2 + 4x + se anula en x = 1 y en x = que son valores del dominio de f(x). Por tanto se tiene que: x 2 +6x+5 = a2 +6a+5 x a x 2 +4x+ a 2 +4a+ R para todo valor real de a tal que a > 1

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Tema 6: Continuidad de funciones

Tema 6: Continuidad de funciones Tema 6: Continuidad de funciones 1. Continuidad de una función en un punto La idea intuitiva de función continua en un punto es bien sencilla, es aquella que no da saltos ni presenta interrupciones, que

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

Tema 5: Continuidad de funciones

Tema 5: Continuidad de funciones Tema 5: Continuidad de funciones 1. Continuidad de una función en un punto La idea intuitiva de función continua en un punto es bien sencilla, es aquella que no da saltos ni presenta interrupciones, que

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos 0 2 Problema 1 (2 puntos) Se consideran las matrices A y B 3 0 3 8. 3 5 a) Calcúlese la

Más detalles

Apuntes de Continuidad de funciones

Apuntes de Continuidad de funciones Apuntes de Continuidad de funciones En el tema anterior estudiamos el concepto de función real de variable real y el concepto de límite. Ahora vamos a estudiar la aplicación de los límites en el estudio

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

CÁLCULO. Ejercicio 1. Modelo Se considera la función real de variable real 4

CÁLCULO. Ejercicio 1. Modelo Se considera la función real de variable real 4 Ejercicio. Modelo.04 4 si x 0 { x + si x > 0 x + a. Determínense las asíntotas de la función y los puntos de corte con los ejes.. b. Calcúlese f(x)dx Ejercicio. Modelo.04 La figura representa la gráfica

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 203) Selectividad-Opción A Tiempo: 90 minutos 3 2 0 Problema (2 puntos) Dada la matriz A = 0. a) Calcúlese A x b) Resuélvase el sistema de ecuaciones

Más detalles

14.3. Junio Opción A

14.3. Junio Opción A 4.3. Junio 23 - Opción A Problema 4.3. (2 puntos) Dada la matriz A = a) Calcúlese A b) Resuélvase el sistema de ecuaciones dado por A 3 2 x y z =. a) A = 2 2 2 3 3 2 b) AX = B = X = A B = 2 2 2 3 3 2 =

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2 Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 205) Selectividad-Opción A Tiempo: 90 minutos Problema (2 puntos) Se consideran las matrices 3 A = 6 2 3 y B = 2 a) Calcúlese A 5 e indíquese

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2015) Selectividad-Opción A Tiempo: 90 minutos. 1 3 y B = 1 2 Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 205) Selectividad-Opción A Tiempo: 90 minutos Problema (2 puntos) Se consideran las matrices 3 A = 6 2 3 y B = 2 a) Calcúlese A 5 e indíquese

Más detalles

Límites. Continuidad.

Límites. Continuidad. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Límite finito cuando x tiende a infinito (1) Límite finito cuando x tiende a infinito (2) Se dice que el límite de la función f(x) cuando

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

x + 3y 3 2x y 4 2x + y 24

x + 3y 3 2x y 4 2x + y 24 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Determine: Asíntota Vertical, Intercepto con los ejes, Dominio y Rango, Grafica.

Determine: Asíntota Vertical, Intercepto con los ejes, Dominio y Rango, Grafica. UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS, CONTABLES Y ADMINISTRATIVAS DEPARTAMENTO DE MÉTODOS CUANTITATIVOS MÉTODOS CUANTITATIVOS II EXAMEN III PARCIAL 6//15 Nombre: Número

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 01) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Un pintor dispone de dos tipos de pintura para realizar su trabajo.

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2012) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Un pintor dispone de dos tipos de pintura para realizar su trabajo.

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =

a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

2. [2013] [ASTU] [JUN-B] Calcule lim (2-x)

2. [2013] [ASTU] [JUN-B] Calcule lim (2-x) [204] [EXTR] [JUN-B] a) Enuncie el teorema de Bolzano b) Aplique el teorema de Bolzano para probar que la ecuación cos = 2 - tiene soluciones positivas c) Tiene la ecuación cos = 2 - alguna solución negativa?

Más detalles

2 o BACHILLERATO ciencias

2 o BACHILLERATO ciencias . ANÁLISIS 2 o BACHILLERATO ciencias Francisco Navarro Martínez . Tema 1 o - Funciones Continuas 1. Continuidad de una Función 2. Definición de una Función Continua en un punto 3. Tipos de Discontinuidades

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

OPCIÓN A. Ejercicio 1. (Mj11) (Puntuación máxima: 3 puntos) Se considera la función real de variable real dada por: a f. si x 1. x x 2 b 4.

OPCIÓN A. Ejercicio 1. (Mj11) (Puntuación máxima: 3 puntos) Se considera la función real de variable real dada por: a f. si x 1. x x 2 b 4. I.E.S. JOSÉ HIERRO EXAMEN DE ANÁLISIS Curso 011-01 MATERIA: MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eamen presenta dos opciones: A y B. El alumno

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES

TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: a) f(x) = 2 b) g(x) = x + 3 c) h(x) = 1 x 6 a) f(x) =

Más detalles

Estudio de las funciones RACIONALES

Estudio de las funciones RACIONALES Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los

Más detalles

Ejercicios: Límites y continuidad

Ejercicios: Límites y continuidad . En los apartados siguientes, usar la gráfica de las funciones para hallar el límite si eiste: (a) (4 ) ( + ) (c) f(); f() = 4,! d 3 d d 0, = f(); f() = +,! 5 (f) d, = d 5 5 d 3 3. Calcula los siguientes

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

MATEMÁTICAS APLICADAS A LAS CCSS I Actividades de refuerzo Curso:

MATEMÁTICAS APLICADAS A LAS CCSS I Actividades de refuerzo Curso: MATEMÁTICAS APLICADAS A LAS CCSS I Actividades de refuerzo -. Curso: 0-0. Realiza la siguiente suma racionalizando previamente los denominadores + +. Calcula utilizando las propiedades de los logaritmos

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITES Y CONTINUIDAD º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN Sea f() =. Vamos a darle valores a cercanos a y vamos a ver cómo se comporta f()..9.99.999.9999.99999 f() 4.8 4.98 4.998 4.9998

Más detalles

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD 5.1. VISIÓN INTUITIVA DE LA CONTINUIDAD. TIPOS DE DISCONTINUIDADES. La idea de función continua es la que puede ser construida con un solo trazo. DISCONTINUIDADES

Más detalles

Unidad 9. Límites, continuidad y asíntotas

Unidad 9. Límites, continuidad y asíntotas Unidad 9. Límites, continuidad y asíntotas. Límite de una función en un punto Piensa y calcula Halla mentalmente y completa la tabla siguiente:,9,99,,00,0, f () =,9,99,,00,0, f () =,9,99 3, 3 3,00 3,0

Más detalles

Continuidad de funciones ( )

Continuidad de funciones ( ) Cálculo _Comisión Año 07 Continuidad de funciones ( ) I) Continuidad en un punto En ésta representación gráfica de una función (fig. ), es evidente que la misma presenta una discontinuidad, tanto en x

Más detalles

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más

Más detalles

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A

EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Estudio local de una función.

Estudio local de una función. Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable

Departamento de Matemáticas Página 1 PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. (Sugerencia: cambio de variable Departamento de Matemáticas Página PROBLEMAS DE SELECTIVIDAD. INTEGRAL INDEFINIDA. d 4.0.- Calcula ( ) (Sugerencia: cambio de variable t ) 4-0.- Sea f : R R la función definida por Sea f ( ) e cos ( )

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

INTERVALOS ENTORNOS FUNCIONES

INTERVALOS ENTORNOS FUNCIONES FUNCIÓN RACIONAL f: A R es una función racional si su fórmula viene dada por f(x) P(x) Q(x) donde P (x) y Q (x) son dos polinomios y Q (x) 0. Observación: En caso en que P (x) y Q (x) puedan factorizarse

Más detalles

log1 Determine: Asíntota Horizontal, Intercepto con los ejes, Dominio y Rango, Grafica.

log1 Determine: Asíntota Horizontal, Intercepto con los ejes, Dominio y Rango, Grafica. EXAMEN III PARCIAL /4/16 Nombre: Número Cuenta: # Lista: PARTE PRÁCTICA: 6) Resuelva utilizando el método grafico Valor 15% F O. Min z= 5x+7y Sujeta a x + 6y 180 x + y 80 x 10 x, y 0 4 x y ( x 1) 7) Aplique

Más detalles

2x 8x 6, si x 1 2x 8x 6, si x 1 (Propuesto PAU Andalucía 2007) Solución

2x 8x 6, si x 1 2x 8x 6, si x 1 (Propuesto PAU Andalucía 2007) Solución º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II.- FUNCIONES ELEMENTALES x 6x5, si x 4 1 Consideremos la función f(x) x 11, si 4 x 5 Represente gráficamente la función f(x) e indique dónde

Más detalles

Límite y Continuidad de funciones de una variable

Límite y Continuidad de funciones de una variable Introducción Límite y de funciones de una variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Límite y de funciones

Más detalles

(Soluc: a) ; b)- ; c)± ; d)± ; e)± ; f) 0; g)± ; h) ; i)± ; x 1. 3 f) x e. lim x 2 x 1. lim x. lim. lim log x. lim. lim. x 1 (x 1)(x 4) lim x 1.

(Soluc: a) ; b)- ; c)± ; d)± ; e)± ; f) 0; g)± ; h) ; i)± ; x 1. 3 f) x e. lim x 2 x 1. lim x. lim. lim log x. lim. lim. x 1 (x 1)(x 4) lim x 1. + ln 4 + f + 5 EJERCICIOS de LÍMITES de FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 d) i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2010) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2010) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 200) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Se considera el siguiente sistema lineal de ecuaciones dependiente de

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones

Más detalles

10 Representación de funciones

10 Representación de funciones 0 Representación de funciones Página 99 Límites y derivadas para representar una función 5 lm í x f (x) = lm í x + f (x) = lm í f (x) = + lm í f (x) = + x x + f ( 9) = 0; f ' (0) = 0; f () = 0 f ' (0)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 2 Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

OPCIÓN A Ejercicio 1. (Calificación máxima: 2 puntos) 1 0 y B = Sean las matrices A = 2 1

OPCIÓN A Ejercicio 1. (Calificación máxima: 2 puntos) 1 0 y B = Sean las matrices A = 2 1 OPCIÓN A Ejercicio 1. (Calificación máxima: 2 puntos) Sean las matrices A = 2 1 1 0 y B = 3 1 0 2 1 2 1 0 a) Calcúlese (A t B) 1, donde A t denota a la traspuesta de la matriz A. ( x b) Resuélvase la ecuación

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 :

x 1 3 f) x e lim x lim + 2 lim lim log x lim x 1 (x 1)(x 4) lim x 1 (x 2)(x 5) (x 2)(x 3) 1. Calcular los siguientes límites no indeterminados 1 : + ln 4 + f + 5 EJERCICIOS de LÍMITES DE FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Denominadores: un denominador nunca se puede hacer cero. Ejemplo: 𝑓 𝑥 =

Denominadores: un denominador nunca se puede hacer cero. Ejemplo: 𝑓 𝑥 = 1. Continuidad de funciones. Una función es continua en 𝑥 = 𝑎, si se cumple: Existe 𝑓(𝑎). lim!! 𝑓 𝑥 = lim!!! 𝑓(𝑥) = lim!!! 𝑓 𝑥 𝒇 𝒂 = 𝐥𝐢𝐦𝒙 𝒂 𝒇 𝒙 Las funciones definidas por expresiones analíticas elementales

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 7 PARA EMPEZAR, REFLEXIONA Y RESUELVE El valor de la función f () = + 5 para = 5 no se puede obtener directamente porque el denominador se hace

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites 1. Definición de límite DEF. Sea f : A R R y a A Se dice que l R es el límite de f cuando x tiende a a, si para todo entorno de l, existe un entorno

Más detalles

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso Matemáticas Aplicadas a las Ciencias Sociales II, curso -. (JUN ) Calcular la integral definida ( ) d absoluto de ). ( representa el valor. (JUN ) Se considera la función real de variable real definida

Más detalles

Límites, continuidad y asíntotas

Límites, continuidad y asíntotas BLOQUE II Análisis 6. Límites, continuidad y asíntotas 7. Cálculo de derivadas. Aplicaciones de las derivadas 9. Análisis de funciones y representación de curvas 0. Integral indefinida y definida 6 Límites,

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Definición de ites Demuestra, aplicando la definición, que ( ) Demuestra, aplicando la definición, que + + 8 Cálculo de ites

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Funciones de una variable

Funciones de una variable Funciones de una variable Dpto. Matemática Aplicada Universidad de Málaga Motivación Conceptos matemáticos Funciones Mundo real Continuidad Derivada Integral Definición de función R A: Dominio R B: Imagen

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Continuidad de funciones

Continuidad de funciones Apuntes Tema 3 Continuidad de funciones 3.1 Continuidad de funciones Def.: Dada una función f(x), diremos que es continua en x = a, si cumple la siguiente condición: En caso de que no cumpla esta condición,

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN Límite de una función en un punto xc Se lee: El límite cuando x tiende a c de f(x) es l Notas: - Que x se aproxima a c significa que toma valores muy

Más detalles