SISTEMAS DISCRETOS. 1. Qué son?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DISCRETOS. 1. Qué son?"

Transcripción

1 SISTEMAS DISCRETOS. Qué sn? Sn sisemas que rabajan cn das muesreads Ess sisemas sn cnrlads pr cmpuadr Ls cnrladres se desarrllan en cmpuadres. Ejempl de das muesreads Prces Reenr Muesreadr D/A Cmpuadr A/D

2 3. Cnrl pr cmpuadr Cmpuadr Relj y[] u[] u() A-D Cnrladr D-A Prces y() 4. Tip de ecuación discrea Al rabajar cn cmpuadres aparecen ecuacines recursivas del ip: y() a y(-h) b u(-h) Dnde a, b, h sn cnsanes, u() es el esímul, y() es la respuesa, h es el períd de muesre y puede mar ls valres h, h, 3h,.. Ineresa cncer las variables sól en ls insanes h, h,., y la cndición inicial es y(-h).

3 TRANSFORMADA ZETA.. Cualidades. Análisis de sisemas esables e inesables. Aplicable a señales n acadas. Cnsidera las cndicines iniciales. La Ecuación Recursiva del Sisema (ERS) se ransfrma en una ecuación algebraica.. Definición de Transfrmada Zea Sea f[] una función de iemp discre. Cn Ζ Direca Ζ { f [] } F[z] f [] z Inversa Z { F[z] } f[] F[z]z dz j Γ π Para que exisa la ransfrmada es suficiene: f[] k ρ 0 ; k <

4 3. Prpiedades de la Transfrmada Zea Linealidad Z α y [] β y [] α Y [z] β Y [z] Z - α Y [z] β Y [z] α y [] β y [] α ; β C Escalamien en z Z y [] Y [ ] α 0 α z α > Cnjugación Z y * Y * [ z * [] ] α > 0 Desplazamien en Reard en Z (Y[z] { y[ ]} z l y[-l]z l ) Adelan en Z { y[ ]} z (Y[z] - 0 l 0 y[l]z -l )

5 Suma acumulada Z y[l] l z z- Y[z] Derivada en z { y[] } Z dy[z] -z dz Cnvlución en el iemp Z y []*y [] Y [z] Y [z] en que y []*y [] l 0 y [l] y [ -l] Terema del valr Inicial lim 0 y[] y[0] lim z Y[z] Terema del valr Final lim y[] z lim (z-)y[z] cn y[ ] definida

6 4. Aplicación a sisemas lineales Linealización Veams el prcedimien mediane el siguiene ejempl. Sea un sisema de iemp discre cn enrada u[] y salida y[], dnde el mdel de enrada-salida es la ecuación recursiva y[] 0,5y[-]y[-] 0,u[](y[-]) (u[-]) 3 La idea es bener un mdel lineal en rn al pun de peración (u Q, y Q ) y las variacines de las variables en rn al pun de peración sean: u[] u[] - u Q y[] y[] - y Q Usand las variables inermedias, para generalizar: x [] y[] x [] y[-] x 3 [] y[-] x 4 [] u[] x 5 [] u[-] Tenems: x [] 0,5x []x 3 [] 0,x 4 [](x 3 []) (x 5 []) 3 Expandir en serie de Taylr y usar las aprximacines de primer rden.

7 (x [] x Q ) 0,5x Q (x 3 [] x 3Q ) 0,5x 3Q (x [] x Q ) *0,x 4Q x 3Q (x 3 [] x 3Q ) 0,(x 3Q ) (x 4 [] x 4Q ) 3(x 5Q ) (x 5 [] x 5Q ) Usand las definicines en el pun de equilibri: y[ i] y[ i] x Q u[ j] u[ j] x 4Q Tenems: x [] x Q y[] ( x [] y[] ) x [] x Q y[-] x Q x Q ( x [] y[-] ) x 3 [] x 3Q y[-] x Q x 3Q ( x 3 [] y[-] ) x 4 [] x 4Q u[] ( x 4 [] u[] ) x 5 [] x 5Q u[-] x 4Q x 5Q ( x 5 [] u[-] ) En el pun de equilibri se cumple: x Q x Q x 3Q y Q x 4Q x 5Q u Q y[] y[-] y[-] y Q u[] u[-] u Q

8 Pr l an, en ese ejempl: y[] 0,5y[-]y[-] 0,u[](y[-]) (u[-]) 3 Se debe cumplir: y Q 0,5(y Q ) 0,u Q (y Q ) (u Q ) 3 El mdel lineal resulane iene la frma: y[] c y[-] c y[-] d 0 u[] d u[-] Observacines: Cada señal reardada se debe asciar a una variable x i. El pun de equilibri debe saisfacer la ecuación NO lineal riginal. El pun de equilibr se elige en que las señales, u[] u Q e y[] y Q, sn cnsanes para d insane. Cuand el mdel NO lineal esá descri pr ds más ecuacines, las crdenadas del pun de equilibri deben saisfacer el cnjun de ecuacines simulaneas. El pun de equilibri se calcula a parir del mdel algebraic, al reemplazar las señales invlucradas, pr una cnsane a calcular cn independencia del reard que ella exhiba.

9 Represenación general: y[] a y[-]...a y[-n ] n- b m u[] dnde m < n u[] es la enrada y[]es la salida b u[ -] m- a 0 y[]... b 0 u[ -m] Aplicand la ransfrmada Zea a ambs lads de la ERS Y[z] Y[z] lueg H[z] a z - Y[z] n- b m U[z] b m B[z] A[z] b m- a z n - - b z - U[z] m- z -...a z -n... b z -m... a z -n Y[z] a... b U[z] z - n Y[z] z - m U[z] B[z] A[z] U[z] es la Función de Transferencia en Zea Definición de parámers Se supne que B[z] y A[z] n ienen facres cmunes. a) Las m raíces de la ecuación B[z]0 sn ls cers del sisema. b) Las n raíces de la ecuación A[z]0 sn ls pls del sisema.

10 c) Si A[z]0 iene n k raíces en z λ k, decims que el pl λ k iene muliplicidad n k. d) La diferencia (n-m) se denmina grad relaiv del sisema. e) Si m < n decims que el sisema es esricamene prpi. El grad relaiv es psiiv. f) Si m > n decims que el sisema es imprpi. El grad relaiv es negaiv. g) Si m n decims que el sisema es biprpi. El grad relaiv es cer. h) Si m n decims que el sisema es prpi. 6. Relación enre s y z. Z δ( - ) k δ(kt )z k 0 cn T iemp de muesre z - ( ) T δ( - -s e ) z - ( -s e ) T z e s T usand s σ jw z eσ T e jw jw T Plan s Im z Plan z σ Re z

11 7. Pls y cers. Función de ransferencia esable, si iene sus cers y pls al inerir del disc uniari en el plan cmplej z. Función de ransferencia inesable, si iene al mens un pl fuera sbre el disc uniari. Función de ransferencia de fase mínima, si iene sus cers al inerir del disc uniari. Función de ransferencia de fase n mínima, si iene al mens un cer fuera del disc uniari. Pls rápids esán más cercas del rigen del plan z. Tienen respuesa ransiria más rápida. Pls lens dminanes esán más cerca de la circunferencia uniaria (límie de esabilidad). Ls cers afecan la prprción en que ls pls afecan la salida. Cers rápids esán más alejads del límie de esabilidad que ls pls dminanes. Cers lens esán más cerca del límie de esabilidad que ls pls dminanes.

Si el pulso tiene una duración de tp, la salida esta definida como sigue:

Si el pulso tiene una duración de tp, la salida esta definida como sigue: TEM 3 Circui C pasa baj k B / C nf Hz Enrada en escalón Figura. Circui C pasa baj = C e B: _ :.5.75.5 -.5.us.us.us 3.us 4.us 5.us Enrada en puls Figura. espuesa del circui C pasa baj ane un escalón (C=uS)

Más detalles

Modelo de Jones-Manuelli

Modelo de Jones-Manuelli César Anúnez. I Nas de Crecimien Ecnómic UNIVERSIDAD NACIONA MAYOR DE SAN MARCOS FACUTAD DE CIENCIAS ECONÓMICAS (Universidad del Perú, Decana de América) Mdel de Jnes-Manuelli En esa pare inenarems presenar

Más detalles

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0 Númers cmplejs ACTIVIDADES a) a = + = b = 0 b) a = 0 a b = b = a) y = 0 b) x = 0 c) x 0, y 0 a) Opuest: + i Cnjugad: + i e) Opuest: i Cnjugad: i b) Opuest: + i Cnjugad: + i f) Opuest: 7 Cnjugad: 7 c) Opuest:

Más detalles

Modelo de RCK. Ronald Cuela

Modelo de RCK. Ronald Cuela Mdel de RCK Rnald Cuela Cnenid 1 2 Mdel de RCK Tecnlgía 3 Cnrase empíric 4 Cnclusines Crecimien y Desarrll Rnald Cuela Ideas Incluir micrfundamens al mdel de Slw. Endgenizar la asa de ahrr. Similares supuess

Más detalles

FUNCIONES VECTORIALES DE UNA VARIABLE REAL

FUNCIONES VECTORIALES DE UNA VARIABLE REAL FUNCIONES VECTORIALES DE UNA VARIABLE REAL [Versión preliminar] Prf. Isabel Arraia Z. Cálcul III - Funcines vecriales de una variable real 1 Una función vecrial es cualquier función que iene n cm imagen

Más detalles

4. Medición de Temperatura.

4. Medición de Temperatura. 4. Medición de Temperaura. Qué es Temperaura? La emperaura es una expresión que dena una cndición física de la maeria, cm l sn la masa, dimensines y iemp. La ería clásica describe al calr cm una frma de

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

Sistemas lineales con ruido blanco

Sistemas lineales con ruido blanco Capíulo 3 Sisemas lineales con ruido blanco 3.1. Ruido Blanco En la prácica se encuenra procesos esocásicos escalares u con media cero y la propiedad de que w( 1 ) y w( 2 ) no esán correlacionados aún

Más detalles

SISTEMAS DE NIVEL DE LÍQUIDO

SISTEMAS DE NIVEL DE LÍQUIDO ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIEÍA SISTEMAS DE NIVEL DE LÍQUIDO Un sisema de nivel de líquid (sisema hidráulic), se describe mediane ecuacines diferenciales lineales n lineales, en dependencia

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV

Convolución. Dr. Luis Javier Morales Mendoza Procesamiento Analógico de Señales FIEC - UV Dr. Luis Javier Morales Mendoza Procesamieno Analógico de Señales FIEC - UV Índice.. Inroducción.. La función dela de Dirac.3. Definición de la convolución.3.. propiedades de la convolución.3.. Méodo Gráfico

Más detalles

Figura 6.1 Sistema de flujo con atraso por transporte

Figura 6.1 Sistema de flujo con atraso por transporte 6. TIEMPO MUERTO 6.1 INTRODUCCION Un fenómen que se presenta muy a menud en ls sistemas de fluj es el del atras pr transprte, que se cnce también cm tiemp muert. Para explicar dich fenómen, se cnsidera

Más detalles

CONFORMACION DE ONDAS

CONFORMACION DE ONDAS . ONEPTOS BASIOS. ONFOMAION DE ONDAS Ing. María Isabel Schian Al exciar una red lineal (cnsiuida pr elemens pasis:, L y ) cn una nda senidal, las ensines y crrienes del circui en régimen permanene serán

Más detalles

Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario.

Sistemas Lineales e Invariantes en el Tiempo LTI. Caracterización completa de un sistema LTI continuo en términos de su respuesta al impulso unitario. Sisemas Lineales e Invarianes en el Tiempo LTI La Inegral Convolución Caracerización complea de un sisema LTI coninuo en érminos de su respuesa al impulso uniario. Represenación de señales coninúas en

Más detalles

CONFORMACION DE ONDAS

CONFORMACION DE ONDAS INGENIEÍA ELETÓNIA ELETONIA I (A-3.0.) 00. ONEPTOS BASIOS. ONFOMAION DE ONDAS Ing. María Isabel Schian Al exciar una red lineal (cnsiuida pr elemens pasis:, L y ) cn una nda senidal, las ensines y crrienes

Más detalles

MODELAJE DE SISTEMAS HIDRAULICOS

MODELAJE DE SISTEMAS HIDRAULICOS MODELJE DE SISEMS HIDULICOS EJEMPLO.- NQUE DE LMCENMIENO CON DENJE VÉS DE UN UBEÍ CO (FLUJO LMIN) anque de área transversal, que almacena un fluid cuya densidad ρ es cnstante. Fluid drena a través de una

Más detalles

1.1. VELOCIDAD DE REACCIÓN

1.1. VELOCIDAD DE REACCIÓN A ls químics les ineresa cncer qué nuevas susancias se frman a parir de un deerminad cnjun de reacivs iniciales. N bsane, es igualmene imprane cncer la rapidez cn que se realizan ess cambis y cmprender

Más detalles

ρ 2 ρ r r Temas Teóricos Electromagnetismo Ecuaciones de Laplace y Poisson. Ejemplo 1.

ρ 2 ρ r r Temas Teóricos Electromagnetismo Ecuaciones de Laplace y Poisson. Ejemplo 1. Temas Teórics Electrmagnetism Ecuacines de Laplace y Pissn. Lin Spagnl. En el análisis del camp eléctric se han presentad diversas alternativas: si se cnce una distriución de cargas eléctricas se calcula

Más detalles

Colección de problemas del Curso 05/06 Circuitos Electrónicos. 2º Ing. Aeronáutico Dpto. de Ingeniería Electrónica

Colección de problemas del Curso 05/06 Circuitos Electrónicos. 2º Ing. Aeronáutico Dpto. de Ingeniería Electrónica Colección de problemas del Curso 05/06 Circuios Elecrónicos. º Ing. Aeronáuico Dpo. de Ingeniería Elecrónica Problema. Calcule la ransformada de Fourier, G(), de las siguienes funciones: + a) g = e u(

Más detalles

Dualidad y sensitividad

Dualidad y sensitividad Dualidad y sensitividad 1. Dualidad Dad un prblema de minimización en frma canónica PC: min c T x s.a Ax v x 0 su dual es el prblema max w T b s.aw T A c T W 0 Para un prblema de prgramación lineal en

Más detalles

DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES

DERIVADAS DE UNA FUNCIÓN DE DOS VARIABLES DERIVADAS DE UNA UNCIÓN DE DOS VARIABLES Deriada respec de un ecr Deriadas direccinales Deriadas parciales Sea =( una unción deinida en un subcnjun DR sea =(D Si querems esudiar la ariación de en el pun

Más detalles

Ejemplo. Consideremos el sistema de retraso unitario dado por

Ejemplo. Consideremos el sistema de retraso unitario dado por Tema 2: Descripción de Sisemas - Pare I - Virginia Mazzone Inroducción Los sisemas que esudiaremos, ienen alguna enrada y alguna salida, 1. Suponemos que si aplicamos una enrada obenemos una salida única.

Más detalles

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.:

INDUCTANCIA. Cuando en una bobina la corriente varía con el tiempo se crea una Fem.: NDCTANCA Andrés Gnzález hp://www.mdigial.k Auinducancia Cuand en una bbina la crriene varía cn el iemp se crea una Fem.: d () Dnde es un inducr y cuy valr se deermina a parir de la gemería de la bbina:

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA ELECTIVA I PROGRAMA DE FISICA Departament de Física y Gelgía Universidad de Pamplna Marz de 2010 En esta sección ns enfcarems en una clase muy limitada, per imprtante que invlucra mdificacines sencillas

Más detalles

CINEMATICA DE UNA PARTICULA

CINEMATICA DE UNA PARTICULA FIS - CAP. 3. 3.. Cinemáica CINEMATICA DE UNA PARTICULA La cinemáica es una pare de la mecánica, que esudia el mimien de ls cuerps sin cnsiderar las causas que l riginan, la palabra cinema signiica mimien.

Más detalles

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.!

VECTORES. A cada clase de vectores equipolentes se denomina vector libre.! VECTORES Vectres libres tridimensinales Definicines Sean A y B ds punts del espaci de la gemetría elemental. Se llama vectr AB al par A, B. El punt A se denmina rigen y al punt B extrem. rdenad ( ) Se

Más detalles

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2)

SISTEMAS LINEALES. Tema 4. Análisis de Fourier para Señales y Sistemas de Tiempo Continuo (Sesión 2) SISTEMAS LINEALES Tema 4. Análisis de Fourier para Señales y Sisemas de Tiempo Coninuo (Sesión ) 18 de noviembre de 010 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 4 Conenidos. Relación con la ransformada

Más detalles

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b)

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b) CIRCUNFERENCIA Definición. Lugar gemétric de ls punts del plan que equidistan de un punt fij denminad centr. Circunferencia de centr el punt (a, b) y de radi R. (x a)² + (y b)² =R² Desarrlland y rdenand

Más detalles

TERMODINÁMICA Y CINÉTICA QUÍMICA

TERMODINÁMICA Y CINÉTICA QUÍMICA TERMODINÁMICA Y CINÉTICA QUÍMICA El esudi de reaccines químicas puede enfcarse en ds aspecs fundamenales: a) Cambis cuaniivs que curren durane la reacción hasa alcanzar el esad final sin imprar si la reacción

Más detalles

Tema 3: Análisis de sistemas realimentados

Tema 3: Análisis de sistemas realimentados Tema : Análisis de sisemas realimenados Conrol Auomáico º Curso. Ing. Indusrial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Curso 8-9 Índice Función de ransferencia del sisema en bucle

Más detalles

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1

ALGEBRA II EXAMEN A TITULO DE SUFICIENCIA Ejemplo 1 1. Sea V ALGEBRA II Ejemplo 1 a) Probar que W a, b,0 a, b y U aaa,, a son subespacios de V, b) Deerminar una base de W y una base de U, c) Probar que cada vecor en V se puede expresar de manera única como

Más detalles

Solución de la ecuación homogénea

Solución de la ecuación homogénea Solución de la ecuación de esado en modelos lineales Solución de la ecuación homogénea Mariz de ransición Propiedades de la mariz de ransición Solución de la ecuación complea Cálculo de la mariz de ransición

Más detalles

CONTENIDOS MÍNIMOS 4º E.S.O. OPCIÓN B (CIENCIAS).

CONTENIDOS MÍNIMOS 4º E.S.O. OPCIÓN B (CIENCIAS). CONTENIDOS MÍNIMOS 4º E.S.O. OPCIÓN B (CIENCIAS). TEMA 1. LOS NÚMEROS REALES. Sucesivas ampliacines de ls cnjunts numérics: númers naturales, negativs, enters, racinales, irracinales y númers reales. Representacines

Más detalles

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos.

Para indicar que 2 es menor que 3, podemos escribir, para indicar que es mayor o igual que 4, escribimos. DESIGUALDADES LINEALES Las desigualdades sn enunciads que indican que ds cantidades ns n iguales, y las pdems identificar pr el us de un más de ls siguientes símbls de desigualdad: Para indicar que 2 es

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

Modulo I: Oscilaciones (9 hs)

Modulo I: Oscilaciones (9 hs) Modulo I: Oscilaciones (9 hs. Movimieno rmónico Simple (MS. Oscilaciones amoriguadas 3. Oscilaciones forzadas y resonancia 4. Superposición de MS. Cinemáica y dinámica del MS. Sisema muelle-masa.3 Péndulos.4

Más detalles

Tema 1: Matrices. A es una matriz en la que hemos significado las dos primeras filas y columnas, la fila p ésima y la última fila y columna.

Tema 1: Matrices. A es una matriz en la que hemos significado las dos primeras filas y columnas, la fila p ésima y la última fila y columna. Tema 1: Matrices 1. Matrices y tips de matrices El cncept de matriz alcanza múltiples aplicacines tant en la representación y manipulación de dats cm en el cálcul numéric. 1.1 Terminlgía Cmenzams cn la

Más detalles

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores

OBJETIVOS DEL TEMA. Tema 4. Comparadores y Generadores de Onda. Comparadores de ventana. Comparadores ema 4. mparadres y Generadres de nda JE DE EM nrducción Eapas cmparadras básicas cn mparadr de niel inersr mparadr de niel n inersr mparadres de enana mparadr de niel inersr cn hiséresis mparadr de niel

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO

FÍSICA Y QUÍMICA 1º BACHILLERATO FÍSICA Y QUÍMICA 1º BACHILLERATO BLOQUE I: MECÁNICA Unidad 1: Cinemáica 1. INTRODUCCIÓN (pp. 8-3) 1.1. Definición de movimieno. Relaividad del movimieno Un cuerpo esá en movimieno cuando cambia de posición

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Procesamiento Digital de Señal

Procesamiento Digital de Señal Procesamieno Digial de Señal Tema : Análisis de Señal e Inroducción a los Sisemas Definición de señal sisema Señales coninuas discreas Transformaciones elemenales Funciones elemenales coninuas discreas

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

ft Fs Fseds Fs () fte () dt s RC Discontinuidad en t=t 0 integral inversión f( t0 2

ft Fs Fseds Fs () fte () dt s RC Discontinuidad en t=t 0 integral inversión f( t0 2 3. DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE RESPUESTA FORZADA A UNA SEÑAL COMPLEJA Señal expnencial cmpleja x() = e =σ jω ( ) = ( τ) ( τ) τ= ( τ) τ ( τ) τ= ( τ) τ= ( ) y h x d h e d e h e d H e H( función

Más detalles

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración

CONTENIDO CINEMÁTICA DE LA PARTÍCULA. Sistemas de coordenadas. Ecuación de la trayectoria. Vectores posición, velocidad y aceleración CONTENIDO Sisemas de coordenadas Ecuación de la rayecoria Vecores posición, velocidad y aceleración Componenes inrínsecas de la aceleración Movimieno circular Sisemas de referencia Movimieno relaivo: ransformaciones

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico

Curso 2006/07. Tema 1: Procesos Estocásticos. Caracterización de los procesos ARIMA. stico Curso 6/7 Economería II Tema : Procesos Esocásicos. Caracerización de los procesos ARIMA. Concepo de proceso esocásico sico. Esacionariedad fuere y débil de los procesos esocásicos. Teoremas de ergodicidad

Más detalles

El comportamiento del tipo de cambio real frente a la asimetría del sistema de política monetaria: El caso peruano

El comportamiento del tipo de cambio real frente a la asimetría del sistema de política monetaria: El caso peruano El comporamieno del ipo de cambio real frene a la asimería del sisema de políica monearia: El caso peruano Inroducción Marco Teórico y Meodología Resulados Conclusiones Auor: Jhon Valdiglesias Oviedo INTRODUCCIÓN

Más detalles

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función

RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN. Razón de cambio instantánea y la derivada de una función RELACIÓN ENTRE LA RAZÓN DE CAMBIO INSTANTÁNEA Y LA DERIVADA DE UNA FUNCIÓN Razón de cambio insanánea y la derivada de una función anerior Reomemos nuevamene el problema del proyecil esudiado en la secuencia

Más detalles

CAPÍTULO 2 REGRESIÓN LINEAL MULTIPLE

CAPÍTULO 2 REGRESIÓN LINEAL MULTIPLE CAPÍTULO REGRESIÓN LINEAL MULTIPLE Fernández Departament de Matemáticas Universidad de Puert Ric Recint Universitari de Mayagüez REGRESIÓN LINEAL MULTIPLE La regresión lineal multiple trata de explicar

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

CONTROL BÁSICO. Sistemas de Control Realimentados. Reguladores o Controladores. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1

CONTROL BÁSICO. Sistemas de Control Realimentados. Reguladores o Controladores. Facultad de Ingeniería - UNER. Asignaturas: Control Básico 1 Faculad de Ingeniería - UNER CONTROL BÁSICO TEMAS: - Tipos de Reguladores Faculad de Ingeniería UNER Carrera: Bioingeniería Plan de esudios: 2008 Sisemas de Conrol Realimenados Consideramos el lazo básico

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y ĺıneas de fase. Campos de pendientes Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y ĺıneas de fase Campos de pendienes () solución de = f (, ) pendiene de la reca angene a la gráfica

Más detalles

+ = + = =. La respuesta es B)

+ = + = =. La respuesta es B) Esta prueba ha sid resuelta pr Jsé Artur Barret. M.A. Mathematics and Cmputer Sciences. The University f Texas. Tels: 0416-599615, 044-61641 E-Mail:jsearturbarret@yah.cm Web: www.abac.cm.ve www.miprfe.cm.ve

Más detalles

LECTURA 02: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN.

LECTURA 02: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN. LECTURA 2: DISTRIBUCIÓN NORMAL (PARTE II) CALCULO INVERSO EN LA DISTRIBUCIÓN NORMAL ESTÁNDAR. ESTANDARIZACIÓN. TEMA 4: CALCULO INVERSO EN LA DISTRIBUCION NORMAL ESTANDAR En la sesión anterir llevams acab

Más detalles

Capítulo 2. Cinemática de la Partícula

Capítulo 2. Cinemática de la Partícula Capíul 2. Cinemáica de la Parícula 2.1 Cnceps Básics Parícula Pun Maerial Además del mvimien de raslación, ls cuerps pueden efecuar mvimiens de ración y de vibración. Cuand se analiza el mvimien de raslación

Más detalles

Tema 4B. Inecuaciones

Tema 4B. Inecuaciones 1 Tema 4B. Inecuacines 1. Intrducción Una inecuación es una desigualdad en la que aparecen númers y letras ligads mediante las peracines algebraicas. Ls signs de desigualdad sn: , Las inecuacines

Más detalles

Comunicaciones Digitales - Ejercicios Tema 4-5

Comunicaciones Digitales - Ejercicios Tema 4-5 Comunicaciones Digiales - Ejercicios Tema -5 1. La siguiene figura represena la forma de onda de varias modulaciones angulares, en concreo: QPSK, OQPSK, CPFSK y MSK. A B C.......................................................

Más detalles

La Transformada Z. Asignaturas: Análisis de Sistemas y Señales Control Digital

La Transformada Z. Asignaturas: Análisis de Sistemas y Señales Control Digital - La ransformada Z Asignaturas: Análisis de Sistemas y Señales Control Digital M.I. Ricardo Garibay Jiméne Mayo 997 EMA 8. RANSFORMADA Z 8. DEFINICIÓN Y RELACIÓN CON LA RANSFORMADA DE FOURIER EN IEMPO

Más detalles

INICIACIÓN ALGEBRA ECUACIONES I

INICIACIÓN ALGEBRA ECUACIONES I Prfesra: Char Ferreira INICIACIÓN ALGEBRA Algebra es la parte de las matemáticas que relacina y aplica peracines aritméticas sbre expresines algebraicas Expresión algebraica: Expresión cnstituida pr un

Más detalles

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica

CAPITULO 6: Análisis de circuitos con elementos dinámicos. 6.1 Inductores. Fig. 1 Fig. 2. di/dt. + v - Red Eléctrica CAPITUO 6: Análisis de circuis cn elemens dinámics. En ese capíul esudiarems ls elemens almacenadres de energía (bbinas y cndensadres) y su cmpramien cuand se prducen aperuras cierres de inerrupres en

Más detalles

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales Tema 2: Sistemas Lineales e Invariantes en el Tiempo (LTI) Sisemas Lineales Tema 2: Sisemas Lineales e Invarianes en el Tiempo (LTI). Inroducción e las propiedades básicas de los sisemas, visas en el ema anerior, la linealidad y la invarianza en el iempo juegan

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Determinación de distribuciones asintóticas de ceros de polinomios ortogonales: la propiedad S p. 1/22

Determinación de distribuciones asintóticas de ceros de polinomios ortogonales: la propiedad S p. 1/22 Determinación de distribuciones asintóticas de ceros de polinomios ortogonales: la propiedad S p. 1/ Determinación de distribuciones asintóticas de ceros de polinomios ortogonales: la propiedad S G. Álvarez,

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t)

Sistemas Lineales. Tema 5. Muestreo. h[n] x(t) Sisemas Lineales ema 5. Muesreo 1 Inroducción rabajamos con sisemas discreos porque es más úil rabajr con precesadores digiales. Para ello va a ser necesario definir un proceso que reanforme las señales

Más detalles

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN

7 ECUACIONES DIFERENCIALES DE LOS CIRCUITOS Y SU SOLUCIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN 7 EUAIONES DIFEENIALES DE LOS IUITOS Y SU SOLUIÓN...9 7. INTODUIÓN....40 7.. SOLUIÓN NATUAL Ó DE ESTADO TANSITOIO:...4 7.. SOLUIÓN FOZADA:...44 7. INTEPETAIÓN

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

CONSIDERACIONES DE DISEÑO ESTÁTICO Y DINÁMICO PARA CONVERTIDORES CC-CC

CONSIDERACIONES DE DISEÑO ESTÁTICO Y DINÁMICO PARA CONVERTIDORES CC-CC cienia e Technica Añ X, N 4 As de 9. Universidad Tecnlóica de Pereira. N -7 57 CONEACONE E EÑO ETÁTCO Y NÁMCO PAA CONETOE CC-CC Cnsiderains f saic and dynamic desin fr cnverers C-C EUMEN En ese rabaj se

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octav. PERIODO: Segund UNIDAD: Ecuacines inecuacines lineales

Más detalles

Física y Química. 4º ESO. MAGNITUDES Y VECTORES La actividad científica

Física y Química. 4º ESO. MAGNITUDES Y VECTORES La actividad científica Qué es medir? Medir es determinar una prpiedad física de un cuerp pr cmparación cn una unidad establecida que se tma cm referencia, generalmente mediante algún instrument graduad cn dicha unidad. La lngitud,

Más detalles

ESQUEMA DE DESARROLLO

ESQUEMA DE DESARROLLO Movimieno oscilaorio. Inroducción ESQUEM DE DESRROLLO 1.- Inroducción..- Cinemáica del movimieno armónico simple. 3.- Dinámica del movimieno armónico simple. 4.- Energía de un oscilador armónico. 5.- Ejemplos

Más detalles

Toda señal periódica alterna senoidal puede expresarse matemáticamente de la siguiente manera:

Toda señal periódica alterna senoidal puede expresarse matemáticamente de la siguiente manera: Cncept de fasr Tda señal periódica alterna senidal puede epresarse matemáticamente de la siguiente manera: ( ω t ± ϕ ) dnde ϕ, es la fase inicial ( 0) a = sen t = En la Figura se ha representad una señal

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

CRISTALOGRAFÍA GEOMÉTRICA. TEMA 3 SIMETRÍA y REDES

CRISTALOGRAFÍA GEOMÉTRICA. TEMA 3 SIMETRÍA y REDES CRISTALOGRAFÍA GEOMÉTRICA TEMA 3 SIMETRÍA y REDES ÍNDICE 3.1 Simetría cntenida en las redes 3.2 Cncept de simetría 3.3 Operacines de simetría 3.4 Elements de simetría 3.5 Traslación 3.6 Rtación y eje de

Más detalles

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión

Comentarios de la Nota Técnica sobre la Determinación del Incremento de la Reserva de Previsión Comenarios de la Noa Técnica sobre la Deerminación del Incremeno de la Reserva de Previsión Fernando Solís Soberón y Rosa María Alaorre Junio 1992 Serie Documenos de Trabajo Documeno de rabajo No. 3 Índice

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Tema 2. Modelos matemáticos de los sistemas físicos

Tema 2. Modelos matemáticos de los sistemas físicos Tema. Modelos maemáicos de los sisemas físicos Objeivos Definir modelo maemáico en el ámbio de la ingeniería de sisemas Conocer la meodología de modelado de sisemas físicos Reconocer un modelo lineal de

Más detalles

Taller de Sistemas de Información 1. Arquitectura de Software

Taller de Sistemas de Información 1. Arquitectura de Software Taller de Sistemas de Infrmación 1 Clase 1 Arquitectura de Sftware Temas Decisines en el diseñ arquitectónic Organización de un sistema de infrmación Estils basads en descmpsición Estils basads en el cntrl

Más detalles

TEMA 5. MOVIMIENTO ONDULATORIO.

TEMA 5. MOVIMIENTO ONDULATORIO. Física º Bachillerat TEMA 5. MOVIMIENTO ONDULATORIO. I. INTRODUCCIÓN. Un mvimient ndulatri es la prpagación de una perturbación de alguna magnitud física. Es un fenómen en el que n se transprta materia

Más detalles

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s).

Cuando la integral (1) converge, el resultado es una función de s. La transformada de Laplace se puede escribir también como F(s). Unidad 5. a ransformada de aplace Inroducción. En nuesro curso de cálculo elemenal aprendimos que la derivación y la inegración son ransformadas, es decir, que esas operaciones ransforman una función en

Más detalles

Control Regulatorio Básico

Control Regulatorio Básico Conrol de Procesos Indusriales 5. Conrol Regulaorio Básico por Pascual Campoy Universidad Poliécnica Madrid Conrol de Procesos Indusriales 1 Conrol Regulaorio Básico Esrucura básica de conrol Acciones

Más detalles

Repaso de Ingeniería Económica

Repaso de Ingeniería Económica Repas de Ingeniería Ecnómica Interés: es la cantidad pagada pr el us del diner btenid en préstam la cantidad prducida pr una inversión financiera (cst gast en el primer cas e ingres en el segund): en dnde:

Más detalles

Limites y continuidad

Limites y continuidad Bla entrn de un punt Limites cntinuidad Sea P ( ) un punt del plan R Se denmina bla entrn de centr P radi al cnjunt de punts P del plan cua distancia al punt P es inferir a Se designa pr E(P ) bien B(P

Más detalles

Laboratorio de Física 1 (ByG) Guía 2: Mediciones indirectas y diferencias significativas.

Laboratorio de Física 1 (ByG) Guía 2: Mediciones indirectas y diferencias significativas. Labratri de Física 1 yg Guía : Medicines indirectas y diferencias significativas. 1. Objetivs Tratamient de incertezas en medicines de magnitudes que se btienen en frma indirecta. Criteri para cmparar

Más detalles

Reducción de un sistema de Fuerzas

Reducción de un sistema de Fuerzas educción de un sistema de uerzas Pares. Traslación de una fuerza Invariantes de un sistema Eje Central Prf. Nayive Jaramill Mecánica acinal 1 Sección 1 Objetiv Cncer y calcular pares de fuerzas. Cmparar

Más detalles

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos

TRABAJO PRÁCTICO N 1 Introducción al Control de Procesos TRABAJO PRÁCTICO N Inroducción al Conrol de Procesos OBJETIVOS: Adquirir una primera aproximación de la forma en que acúan los sisemas de conrol realimenados, aprendiendo a idenificar ipos de variables.

Más detalles

Capitulo 9. Definición de condiciones de Viga en Cantilever. extremo fijo y por consiguiente su lado opuesto libre tal y como lo indica la siguiente

Capitulo 9. Definición de condiciones de Viga en Cantilever. extremo fijo y por consiguiente su lado opuesto libre tal y como lo indica la siguiente Capul 9. Defncón de cndcnes de Vga en Canlever a vga en canlever esa sujea a cndcnes de frnera mand en cnsderacón un exrem fj y pr cnsguene su lad pues lbre al y cm l ndca la sguene fgura: g. Dagrama de

Más detalles

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales

Lección 13 Introducción a los sistemas no lineales de ecuaciones diferenciales Lección Inroducción a los sisemas no lineales de ecuaciones diferenciales Un modelo de Gierer-Meinhard para ecuaciones de ipo Acivador-Inhibidor Modelo G-M: con = [A], = [B]. k = k = k = k 4 = A B A +

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPÍTULO 3 Sistemas de ecuacines lineales 3.1 SISTEMAS DE ECUACIONES CON DOS VARIABLES 3.2 MÉTODO DE ELIMINACIÓN DE GAUSS 3.3 SISTEMAS CON n VARIABLES, n 3 3.4 APLICACIONES SELECTAS 3.5 NOTAS FINALES Términs

Más detalles

SITUACIONES DONDE SE USA FUNCIÓN LINEAL I

SITUACIONES DONDE SE USA FUNCIÓN LINEAL I SITUACIONES DONDE SE USA FUNCIÓN LINEAL I Función Oferta y Función Demanda de un Mercad. Ejercicis prpuests: 1) Cnsidere la relación 8p +0Q 000 0, dnde p es el preci de un prduct. a) Da la función explícita

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

BUCK CONVERTER LOSSES-BASED MODEL FOR SIMULATION AND PID CONTROL STRATEGY

BUCK CONVERTER LOSSES-BASED MODEL FOR SIMULATION AND PID CONTROL STRATEGY ISSN: 69-757 - Vlumen Númer - 3 evisa Clmbiana de Tecnlías de Avanzada ecibid: 7 de as de Acepad: 9 de cubre de BUCK CONVETE OSSES-BASED MODE FO SIMUATION AND PID CONTO STATEGY MODEO DE SIMUACIÓN CON PÉDIDAS

Más detalles

PRIMER NIVEL. las bisectrices del triángulo ABC y calcular la medida del ángulo AM B.

PRIMER NIVEL. las bisectrices del triángulo ABC y calcular la medida del ángulo AM B. PRIMER NIVEL PRIMER DÍA Prblema 1. En basquetbl, llamams ceficiente de eficacia de un jugadr al resultad de dividir la cantidad de tirs libres embcads pr la cantidad de tirs libres ejecutads. Al finalizar

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Las componentes del vector de posición de un astro A en dicha base constituirán las coordenadas rectilíneas horizontales del mismo A(x,y,z).

Las componentes del vector de posición de un astro A en dicha base constituirán las coordenadas rectilíneas horizontales del mismo A(x,y,z). 1.2 Crdenadas rizntales y rarias En cualquier sistema de crdenadas la lcalización de un punt de la esfera celeste viene dada pr las cmpnentes de su vectr de psición expresadas en cartesianas (crdenadas

Más detalles

c El valor de L que mide el observador situado en S es 1% menor que Lo

c El valor de L que mide el observador situado en S es 1% menor que Lo RETIVIDD.- Una barra se muee n elidad nsane a l larg del eje de absisas respe de un sisema inerial. Un bseradr siuad en el sisema enuenra que la lngiud de la barra es % menr que su lngiud prpia. Calular

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles