Cantidad de movimiento

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cantidad de movimiento"

Transcripción

1 Cnétca 37 / 63 Cnétca Cantdad de momento Momento cnétco: Teorema de Koeng Energía cnétca: Teorema de Koeng Sóldo con punto fjo: Momento cnétco Sóldo con punto fjo: Energía cnétca Sóldo: Momento relato a Ecuacones del momento del sóldo lbre Comentaros: Ecuacón de la energía para el sóldo Comentaros: Campos ectorales y tensorales Comentaros: Tensor de nerca; Koeng/Stener Manuel Ruz - Mecánca I 37 / 63 22

2 Cantdad de momento La cantdad de momento de un sstema es la suma ntegral) de las cantdades de momento de cada partícula elemento de masa): S p m d dt m r d dt M r p M n Σ Ω δm ρdxdydz p Ω ρdv T a del transporte de Reynolds) d rρdv rρ dt 22 n)ds d dt M r Ω Σ p M La cantdad de momento del sstema es la que tendría toda la masa concentrada en el centro de masas. Manuel Ruz - Mecánca I 38 / 63 Momento cnétco: Teorema de Koeng Momento cnétco de un sstema materal S 2 respecto a un punto arbtraro O, fjo o mól. Usaremos un sstema ntermedo S 0, con orgen en en centro de masas y ejes paralelos a los fjos 2/0: momento relato a ). O 1 S 0 S 2 r O N O N OM m 21 O+r ) m 21 H 21 O { }} { m 21 + M 01 H 20 { }} { m r }{{} M }{{} Cte.: 01 ) H 21 O O M 01 +H 20 Teorema de Koeng: el momento cnétco respecto a un punto arbtraro es el que tendría toda la masa concentrada en, más el momento cnétco relato a. Como el campo de momentos: resultante M01 ) y momento H20 ) Manuel Ruz - Mecánca I 39 / 63 23

3 Energía cnétca: Teorema de Koeng Energía cnétca de un sstema materal S 2 en el momento 2/1 Usaremos un sstema ntermedo S 0, con orgen en en centro de masas y ejes paralelos a los fjos 2/0: momento relato a ). S 0 S 2 T m ) 2 N m ) 2 O 1 m 2 ) M 00 2 N 20 + m m 2 01 ) 2 T 21 T M 01 ) 2 Teorema de Koeng: La energía cnétca de un sstema es la que tendría toda la masa concentrada en, más la del momento relato a. Manuel Ruz - Mecánca I 40 / 63 Sóldo con punto fjo: Momento cnétco z 1 S un sóldo S tene un punto O O fjo, el campo de elocdades será: M O O 1 y 1 x 1 O +ω OM Podemos susttur el campo de elocdades en la expresón del momento cnétco en O: H O OM m m OM ω OM ) [ m 2 ] OM ω OM ω) OM [ m 2 ] OM U OM OM ω H O I O ω } {{ } I O Manuel Ruz - Mecánca I 41 / 63 24

4 Sóldo con punto fjo: Energía cnétca z 1 S un sóldo S tene un punto O O fjo, el campo de elocdades será: M O O 1 y 1 x 1 O +ω OM Podemos susttur el campo de elocdades en la expresón de la energía cnétca: T 1 2 m m ω OM ) m ω OM ω OM ) 1 2 ω m OM ω OM ) } {{ } H O T O 1 2 ω I O ω Manuel Ruz - Mecánca I 42 / 63 Sóldo: Momento z 0 relato a z 1 En el caso de un sóldo, el momento relato al centro de masas es el de un sóldo con punto fjo. Por ser ejes paralelos a los fjos: ω 20 ω 21 : x 0 y 0 H I ω 21 T 1 2 ω 21 I ω 21 O 1 y 1 x 1 Para la cnétca del sóldo, en general, se aplca: S tene un punto fjo, las expresones propas de este caso. H O I O ω 21 T 1 2 ω 21 I O ω 21 S no tene punto fjo, los teoremas de Koeng: H O O M 01 +I ω 21 T 1 2 M 01 ) ω 21 I ω 21 Manuel Ruz - Mecánca I 43 / 63 25

5 Ecuacones del momento del sóldo lbre Cantdad de momento: como cualquer sstema, Momento cnétco: En general, es más smple tomar momentos en. Se trabaja en ejes sóldo, donde el tensor de nerca es constante: Ḣ 1 Ḣ 2 +ω 21 H I ω 21 +ω 21 I ω 21 M E F E M Ecuacones cnemátcas: Las ecuacones anterores son dferencales de prmer orden en la elocdad y la elocdad angular. Se completan con las ecuacones cnemátcas, de prmer orden en las coordenadas y parámetros de acttud: ṙ { Ω Q Q ψ, θ, φ f ω,ψ,θ,φ) Ecuacón de la energía: δw I 0, no aporta nada nueo. Un sóldo tene 6 DL, la ecuacón de la energía es combnacón de las otras dos. Manuel Ruz - Mecánca I 44 / 63 Comentaros: Ecuacón de la energía para el sóldo En un sóldo, solo puede haber 6 ecuacones ndependentes DL). La de la energía es combnacón de las otras 2. 1 dt d 2 M2 + 1 ) 2 ω I ω M d +dω I ω δw R E dt+m E ωdt Se susttuyen las ecuacones de la CM y el MC, M d ) dt+ I dω dt dt + ) ω I ω ω dt M d +dω I ω dt Se ha usado la smetría del tensor de nerca para cambar el orden de los productos de tensor por ector. Manuel Ruz - Mecánca I 45 / 63 26

6 Comentaros: Campos ectorales y tensorales En la cnemátca, geometría de masas y cnétca del sóldo aparecen campos ectorales y tensorales con una estructura smlar: O ω { }} { Velocdades O + ω O Momentos de fuerzas Momentos cnétcos M O M +O R H O H +O M Tensores de nerca I O I +M O 2 U O O ) Magntud en O magntud en más la que tendría respecto a O toda la masa concentrada en Todos los campos dependen de 6 parámetros, como los DL del sóldo. Manuel Ruz - Mecánca I 46 / 63 Comentaros: Tensor de nerca; Koeng/Stener En geometría de masas y cnétca, el tensor de nerca se usa de aros modos: Forma eometría de masas Cnétca Aplcacón lneal I u I O u H I ω Forma blneal P u I O u Forma cuadrátca I u u I O u T 1 2 ω I ω Para el sóldo con punto fjo, la expresón del momento cnétco/energía cnétca más el teorema de Stener equale al teorema de Koeng: H O I O ω [ I +M O 2 U O O )] ω I ω +M [ O 2 ω +O ω) O ] I ω +MO ω O) I ω +O M Manuel Ruz - Mecánca I 47 / 63 27

Cinemática del movimiento rotacional

Cinemática del movimiento rotacional Cnemátca del movmento rotaconal Poscón angular, θ Para un movmento crcular, la dstanca (longtud del arco) s, el rado r, y el ángulo están relaconados por: 180 s r > 0 para rotacón en el sentdo anthoraro

Más detalles

Dpto. Física y Mecánica

Dpto. Física y Mecánica Dpto. Físca y Mecánca Mecánca analítca Introduccón Notacón Desplazamento y fuerza vrtual Fuerza de lgadura Trabao vrtual Energía cnétca. Ecuacones de Lagrange Prncpode los trabaos vrtuales Prncpo de D

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

Capítulo 11. Movimiento de Rodamiento y Momentum Angular

Capítulo 11. Movimiento de Rodamiento y Momentum Angular Capítulo 11 Movmento de Rodamento y Momentum Angular 1 Contendos: Movmento de rodamento de un cuerpo rígdo. Momentum Angular de una partícula. Momentum Angular de un sstema de partículas. Momentum Angular

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

TEMA 2 Revisión de mecánica del sólido rígido

TEMA 2 Revisión de mecánica del sólido rígido TEMA 2 Revsón de mecánca del sóldo rígdo 2.. ntroduccón SÓLDO RÍGDO SÓLDO: consderar orentacón y rotacón RÍGDO: CONDCÓN DE RGÍDEZ: - movmento: no se alteran dstancas entre puntos - se gnoran las deformacones

Más detalles

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange

Resumen TEMA 1: Teoremas fundamentales de la dinámica y ecuaciones de Lagrange TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange Mecánca 2 Resumen TEMA : Teoremas fundamentales de la dnámca y ecuacones de Lagrange. Prncpos de dnámca clásca.. Leyes de ewton a) Ley

Más detalles

Una Ecuación Lineal de Movimiento

Una Ecuación Lineal de Movimiento Una Ecuacón Lneal de Movmento Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una ecuacón lneal de movmento que es nvarante bajo transformacones entre

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido

TEMA2. Dinámica I Capitulo 3. Dinámica del sólido rígido TEM. Dnámca I Captulo 3. Dnámca del sóldo rígdo TEM : Dnámca I Capítulo 3: Dnámca del sóldo rígdo Eje nstantáneo de rotacón Sóldo con eje fjo Momento de nerca. Teorema de Stener. Conservacón del momento

Más detalles

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria).

Determinar el momento de inercia para un cuerpo rígido (de forma arbitraria). Unversdad de Sonora Dvsón de Cencas Exactas y Naturales Departamento de Físca Laboratoro de Mecánca II Práctca #3: Cálculo del momento de nerca de un cuerpo rígdo I. Objetvos. Determnar el momento de nerca

Más detalles

Tema 4 Ecuaciones Generales de los Sistemas Materiales

Tema 4 Ecuaciones Generales de los Sistemas Materiales Mecánca Clásca Tema 4 Ecuacones Generales de los Sstemas Materales EIAE 19 de octubre de 2011 Prncpos y modelos 3 Conocmentos prevos de Físca I.............................................. 4 Leyes de

Más detalles

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo

R (3 coordenadas) y tres ángulos que definen la rotación del sistema de coordenadas ligada con el cuerpo . Velocdad y Aceleracón en Marcos de Referenca en Movmento.. Cnemátca de un cuerpo rígdo... Ángulos de Euler.. Teorema de Euler..4 Marcos de Referenca en Movmentos Traslaconal y Rotaconal..5 Dervada de

Más detalles

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3

I Coordenadas generalizadas Constricciones y coordenadas generalizadas Desplazamientos virtuales... 3 .1 Parte I Mecánca de Lagrange Índce I 1 1. Coordenadas generalzadas 1 1.1. Constrccones y coordenadas generalzadas............. 1 1.2. Desplazamentos vrtuales...................... 3 2. Ecs. de Lagrange

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

Mecánica Clásica Alternativa II

Mecánica Clásica Alternativa II Mecánca Clásca Alternatva II Alejandro A. Torassa Lcenca Creatve Commons Atrbucón 3.0 (2014) Buenos Ares, Argentna atorassa@gmal.com - versón 1 - Este trabajo presenta una mecánca clásca alternatva que

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

La representación Denavit-Hartenberg

La representación Denavit-Hartenberg La representacón Denavt-Hartenberg José Cortés Parejo. Marzo 8 Se trata de un procedmeto sstemátco para descrbr la estructura cnemátca de una cadena artculada consttuda por artculacones con. un solo grado

Más detalles

Tema 3-Sistemas de partículas

Tema 3-Sistemas de partículas Tema 3-Sstemas de partículas Momento lneal y colsones Momento lneal de un partícula Segunda ley de Newton dp F dt p mv Impulso I tb ta Fdt Teorema del mpulso I p B p A Centro de masas 1 r M m r con M m

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecansmo: PROYECTO DE TEORIA DE MECANISMOS. Análss cnemátco y dnámco de un mecansmo plano artculado con un grado de lbertad. 10. Análss dnámco del mecansmo medante el método de las tensones en

Más detalles

Resumen TEMA 5: Dinámica de percusiones

Resumen TEMA 5: Dinámica de percusiones TEM 5: Dnámca e percusones Mecánca Resumen TEM 5: Dnámca e percusones. Concepto e percusón Impulsón elemental prouca por una fuerza: F Impulsón prouca por una fuerza en un nteralo (t, t ): F Percusón es

Más detalles

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL

LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL LECCIONES DEL CURSO DE MODELACIÓN MATEMÁTICA Y COMPUTACIONAL POSGRADOS DE CIENCIAS DE LA TIERRA Y DE CIENCIA E INGENIERÍA DE LA COMPUTACIÓN UNAM AUTOR: ISMAEL HERRERA REVILLA 1 Basado en el Lbro Mathematcal

Más detalles

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD

10. VIBRACIONES EN SISTEMAS CON N GRADOS DE LIBERTAD 10. VIBRACIONES EN SISEMAS CON N GRADOS DE LIBERAD 10.1. Matrces de rgdez, nerca y amortguamento Se puede demostrar que las ecuacones lneales del movmento de un sstema dscreto de N grados de lbertad sometdo

Más detalles

TCMM. VUELO VERTICAL DESCENDENTE. Miguel A. Barcala Montejano Ángel A. Rodríguez Sevillano 1

TCMM. VUELO VERTICAL DESCENDENTE. Miguel A. Barcala Montejano Ángel A. Rodríguez Sevillano 1 TCMM. UELO ERTICAL DESCENDENTE Ángel A. Rodríguez Sellano 1 HELICÓPTEROS Profesores: Ángel A. Rodríguez Sellano AERODINÁMICA DEL ROTOR Teoría de Cantdad de Momento Modfcada uelo ertcal Descendente Prmeras

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Coordenadas Curvilíneas

Coordenadas Curvilíneas Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-08 Coordenadas Curvlíneas 1. Introduccón a. Obetvo: Generalar los tpos de coordenadas conocdos. Cartesanas. Clíndrcas, Esfércas,

Más detalles

Tema 3. Sólido rígido.

Tema 3. Sólido rígido. Tema 3. Sóldo rígdo. Davd Blanco Curso 009-010 ÍNDICE Índce 1. Sóldo rígdo. Cnemátca 3 1.1. Condcón cnemátca de rgdez............................ 3 1.. Movmento de traslacón...............................

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo Rígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, Rotacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo)

Cinemática y dinámica del Cuerpo Rígido (no se incluye el movimiento de precesión y el del giróscopo) Cnemátca y dnámca del Cuerpo ígdo (no se ncluye el movmento de precesón y el del gróscopo) El cuerpo rígdo El cuerpo rígdo es un caso especal de un sstema de partículas. Es un cuerpo deal en el cual las

Más detalles

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño

EDO: Ecuación Diferencial Ordinaria Soluciones numéricas. Jorge Eduardo Ortiz Triviño EDO: Ecuacón Dferencal Ordnara Solucones numércas Jorge Eduardo Ortz Trvño Organzacón general Errores en los cálculos numércos Raíces de ecuacones no-lneales Sstemas de ecuacones lneales Interpolacón ajuste

Más detalles

Física Curso: Física General

Física Curso: Física General UTP IMAAS ísca Curso: ísca General Sesón Nº 14 : Trabajo y Energa Proesor: Carlos Alvarado de la Portlla Contendo Dencón de trabajo. Trabajo eectuado por una uerza constante. Potenca. Trabajo eectuado

Más detalles

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica

Departamento: Física Aplicada III. Mecánica Racional (Ingeniería Industrial) Curso Estática Analítica Departamento: Físca Aplcada III Mecánca Raconal (Ingenería Industral) Curso 007-8. Estátca Analítca. Introduccón: Necesdad de elmnar de las ecuacones mecáncas las fuerzas vnculares. Conceptos ncales a.

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Teoría cinético molecular

Teoría cinético molecular 5//00 Teoría cnétco molecular Químca 404 Ileana ees Martínez Tería Cnétco molecular Termodnámca (empírco) Macroscópco: P, V, ρ, T Independente de modelo molecular Teoría atómca molecular Interpretacón

Más detalles

Índice. Teorema de la Cantidad de Movimiento. Conservación.

Índice. Teorema de la Cantidad de Movimiento. Conservación. Concetos Báscos Índce Teorem de l Cntdd de Momento. Consercón. Teorem del Momento del Centro de Mss Teorem del Momento Cnétco resecto de un Punto Fjo y resecto del CM. Consercón. Teorem de l Energí Cnétc.

Más detalles

Vectores en el espacio

Vectores en el espacio ectores en el espaco Los puntos y los vectores en el espaco se pueden representar como ternas de números reales (a,b,c) c b a Por el Teorema de Ptagoras, la norma del vector = (a,b,c) es = a 2 +b 2 +c

Más detalles

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO.

PRACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERPO RÍGIDO ALREDEDOR DE UN EJE FIJO. RACTICA 4: ESTUDIO DEL EQUILIBRADO ESTÁTICO Y DINÁMICO. ROTACIÓN DE UN CUERO RÍGIDO ALREDEDOR DE UN EJE FIJO. 1. -INTRODUCCIÓN TEÓRICA El objeto de la eperenca será el equlbrar estátca y dnámcamente un

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

CAPÍTULO V SISTEMAS DE PARTÍCULAS

CAPÍTULO V SISTEMAS DE PARTÍCULAS CAPÍTULO V SISTEAS DE PARTÍCULAS 3 SISTEAS DE PARTÍCULAS La mayo pate de los objetos físcos no pueden po lo geneal tatase como patículas. En mecánca clásca, un objeto enddo se consdea como un sstema compuesto

Más detalles

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:

Más detalles

Ecuación de Lagrange

Ecuación de Lagrange Capítulo 6 Ecuacón de Lagrange 6. Introduccón a las ecuacones de Lagrange La mecánca que nos presenta Lagrange en su Mécanque Analytque sgnfca un salto conceptual muy grande respecto de la formulacón Newtonana.

Más detalles

Energía potencial y conservación de la energía

Energía potencial y conservación de la energía Energía potencal y conservacón de la energía Mecánca y Fludos Proa. Franco Ortz 1 Contendo Energía potencal Fuerzas conservatvas y no conservatvas Fuerzas conservatvas y energía potencal Conservacón de

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

Dinámica del punto material.

Dinámica del punto material. Departamento: Físca Aplcada III Mecánca aconal (Ingenería Industral) urso 7-8 I. rncpos de la Dnámca. Dnámca del punto materal. 1 Introduccón. Estuda el movmento tenendo en cuenta las fuerzas rncpos váldos

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

Teoría cinético molecular

Teoría cinético molecular 4//04 Teoría cnétco molecular Químca 404 Ileana ees Martínez Tería Cnétco molecular Termodnámca (empírco) Macroscópco: P, V, ρ, T Independente de modelo molecular Teoría atómca molecular Interpretacón

Más detalles

Centro de Masa. Sólido Rígido

Centro de Masa. Sólido Rígido Centro de Masa Sóldo Rígdo El centro de masa de un sstema de partículas es un punto en el cual parecería estar concentrada toda la masa del sstema. En un sstema formado por partículas dscretas el centro

Más detalles

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin.

5ª Lección: Sistema de fuerzas gravitatorias. Cálculo de centros de gravedad de figuras planas: teoremas de Guldin. Capítulo II: MECÁNICA DEL SÓLIDO RÍGIDO 5ª Leccón: Sstema de fuerzas gravtatoras. Cálculo de centros de gravedad de fguras planas: teoremas de Guldn. Sstemas de fuerzas gravtatoras La deduccón parte de

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía

TEMA 3: Dinámica II Capitulo 1. Trabajo y energía TMA 3: Dnáca II Captulo. Trabajo y energía Bran Cox sts the world's bggest acuu chaber (BBC Two) https://www.youtube.co/watch?43-cfukgs TMA 3: Dnáca II. Captulo : trabajo y energía Concepto de trabajo.

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA

FISICOQUÍMICA FARMACÉUTICA (0108) UNIDAD 1. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA FISICOQUÍMICA FARMACÉUTICA (008) UNIDAD. CONCEPTOS BÁSICOS DE CINÉTICA QUÍMICA Mtra. Josefna Vades Trejo 06 de agosto de 0 Revsón de térmnos Cnétca Químca Estuda la rapdez de reaccón, los factores que

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físca General 1 Proyecto PMME - Curso 2007 Insttuto de Físca Facultad de Ingenería UdelaR ANÁLISIS E INFLUENCIA DE DISTINTOS PARÁMETROS EN EL ESTUDIO DE LA ESTÁTICA DE CUERPOS RÍGIDOS. Sebastán Bugna,

Más detalles

Ingeniería de Reactores. Efecto de la caída de presión en el diseño de los reactores químicos

Ingeniería de Reactores. Efecto de la caída de presión en el diseño de los reactores químicos Ingenería de Reactores Efecto de la caída de presón en el dseño de los reactores químcos. Dr. Rogelo uevas García de los reactores químcos Indudablemente este efecto se debe presentar sobre la concentracón

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 8: Métodos aproximados en Mecánica Cuántica

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 8: Métodos aproximados en Mecánica Cuántica Apuntes de la asgnatura Químca Físca II Lcencatura en Químca) Tema 8: Métodos aproxmados en Mecánca Cuántca Ángel José Pérez Jménez Dept. de Químca Físca Unv. Alcante) Índce 1. Ecuacón de Schrödnger y

Más detalles

EQUILIBRIO DE LA BICICLETA

EQUILIBRIO DE LA BICICLETA JUAN RIUS CAMPS EQUILIBRIO DE LA BICICLETA EDICIONES ORDIS 1 2 EDICIONES ORDIS GRAN VIA DE CARLOS III, 59, 2º, 4ª 19 de Marzo de 2010 08028 BARCELONA 3 4 EQUILIBRIO DE LA BICICLETA Resulta muy dfícl explcar

Más detalles

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA

Capítulo 3. Principios Generales de la Mecánica PRINCIPIOS GENERALES DE LA MECÁNICA Capítulo 3. Prncpos Generales e la Mecánca CPÍTULO 3 PRINCIPIOS GENERLES DE L MECÁNIC Introuccón La mecánca e los meos contnuos tene como base una sere e prncpos o postulaos e carácter general que se suponen

Más detalles

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador.

Pista curva, soporte vertical, cinta métrica, esferas metálicas, plomada, dispositivo óptico digital, varilla corta, nuez, computador. ITM, Insttucón unverstara Guía de Laboratoro de Físca Mecánca Práctca : Colsones en una dmensón Implementos Psta curva, soporte vertcal, cnta métrca, eseras metálcas, plomada, dspostvo óptco dgtal, varlla

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Mecánica del Sólido Rígido

Mecánica del Sólido Rígido Mecánca del Sóldo ígdo 1.- Introduccón Cnemátca, Dnámca y Estátca 2.- Cnemátca. Tpos de movmento del sóldo: Traslacón, otacón Movmento Plano General Movmento General 3.- Cnétca. Fuerzas y aceleracones.

Más detalles

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A

CI42A: ANALISIS ESTRUCTURAL. Programa CI42A CI4A: ANALISIS ESTRUCTURAL Prof.: Rcardo Herrera M. Programa CI4A NÚMERO NOMBRE DE LA UNIDAD OBJETIVOS DURACIÓN 4 semanas Prncpo de los trabajos vrtuales y teoremas de Energía CONTENIDOS.. Defncón de trabajo

Más detalles

Importancia de la cinética química. química en el diseño de reactores

Importancia de la cinética química. química en el diseño de reactores Importanca de la cnétca químca en el dseño de reactores Dr. Rogelo Cuevas García 1 Macroescala: Dseño del reactor Importanca de la cnétca químca Mesoesca la Fenómenos de transporte Transferenca de masa

Más detalles

Guía de estudio sobre: Movimiento Rectilíneo Uniforme (MRU)

Guía de estudio sobre: Movimiento Rectilíneo Uniforme (MRU) Departamento de Físca Coordnacón Segundo Medo 07 Guía de estudo sobre: Momento rectlíneo Unorme Varado: MRUV Nombre: Curso: Clascacón de los Momentos en línea recta se clascan de acuerdo a su rapdez: UNIFORMES:

Más detalles

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π

Si consideramos un sistema PVT con N especies químicas π fases en equilibrio se caracteriza por: P v =P L = =P π EQUILIBRIO DE FASES Reglas de las fases. Teorema de Duhem S consderamos un sstema PVT con N especes químcas π fases en equlbro se caracterza por: P, T y (N-1) fraccones mol tal que Σx=1 para cada fase.

Más detalles

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER

17 MOMENTOS DE INERCIA Y TEOREMA DE STEINER 17 MOMENOS DE INERCIA Y EOREMA DE SEINER OBJEIVOS Determnacón e la constante recuperaora e un muelle espral. Comprobacón el teorema e Stener. Determnacón expermental el momento e nerca e ferentes cuerpos

Más detalles

Introducción a la mecánica analítica

Introducción a la mecánica analítica Prof. Jesús Hernández Trujllo Facultad de Químca, UNAM. Mecánca analítca y fscoquímca. La mecánca clásca estuda los movmentos de los cuerpos macroscópcos y las fuerzas que los orgnan. Hay dos tratamentos

Más detalles

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha:

ÁLGEBRA LINEAL. Tarea 1. Nombre: Fecha: ÁLGEBRA LINEAL Tarea. Investque a) Defncón de vector b) Operacones de vectores c) Defncón de matr d) Operacones de matrces e) Defncón de matr traspuesta Bblografía: ÁLGEBRA LINEAL Tarea. a) Investque )

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingenería Químca Undad I. Introduccón a los cálculos de Ingenería Químca

Más detalles

Descripción de la deformación y de las fuerzas en un medio continuo

Descripción de la deformación y de las fuerzas en un medio continuo Descrpcón de la deformacón y de las fuerzas en un medo contnuo Mecánca del Contnuo 15 de marzo de 2010 1. Temas tratados con anterordad: Descrpcón cualtatva de un medo contnuo Hpótess del contnuo Elementos

Más detalles

Cantidad de Momento, Conservación, Choques, Centro de Masa

Cantidad de Momento, Conservación, Choques, Centro de Masa Cantdad de Moento, Conseracón, Choques, Centro de Masa Moentu líneal Las fuerzas aplcadas en una dreccón que no pasa por el centro de graedad de un objeto producen un gro en éste objeto. Para edr la agntud

Más detalles

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica.

TRABAJO Y ENERGÍA INTRODUCCIÓN. requiere como varia la fuerza durante el movimiento. entre los conceptos de fuerza y energía mecánica. TRABAJO Y ENERGÍA INTRODUCCIÓN La aplcacón de las leyes de Newton a problemas en que ntervenen fuerzas varables requere de nuevas herramentas de análss. Estas herramentas conssten en los conceptos de trabajo

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

Introducción a Vacío

Introducción a Vacío Introduccón a Vacío Sstema de vacío Partes generales de un sstema de vacío: Fgura 1: Sstema de vacío con bomba mecánca y dfusora Fgura 2: Prncpo de funconamento de la bomba mecánca La Fg. 2 muestra el

Más detalles

Importancia del estudio de vibraciones. Descripción del fenómeno vibratorio (i)

Importancia del estudio de vibraciones. Descripción del fenómeno vibratorio (i) nversdad Smón Bolívar pos de ectacón pos de vbracón Euro Casanova, 006 del estudo de vbracones MC-45 Vbracones Mecáncas odas las estructuras mecáncas, son susceptbles de epermentar problemas de vbracones

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton 3.6 Máxma transferenca de potenca Th Th L nálss de Crcutos

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

Fuerzas distribuidas. 2. Momento de inercia

Fuerzas distribuidas. 2. Momento de inercia Dpto. Físca y Mecánca Fuerzas dstrbudas d Centro de gravedad centro de masas. Centro de gravedad, centro de masas. Momento de nerca ntroduccón. Fuerzas dstrbudas Cálculo de centrodes y centros de gravedad

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

P 1 = P 2 = P ambiente. h 1 -h 2 = H. Sistemas de control versión 2007 Página 1 de 10. Modelos de nivel de líquido.

P 1 = P 2 = P ambiente. h 1 -h 2 = H. Sistemas de control versión 2007 Página 1 de 10. Modelos de nivel de líquido. tema de control 67- verón 007 Págna de 0 Modelo de nvel de líudo. Bucamo una relacón entre Q y H, por el teorema de Bernoull tomemo la eccón en la uperfce lbre del tanue y la eccón en la alda, en ee cao

Más detalles

ESTÁTICA DEL SÓLIDO RÍGIDO

ESTÁTICA DEL SÓLIDO RÍGIDO DSR-1 ESTÁTICA DEL SÓLIDO RÍGIDO DSR-2 ESTÁTICA DEL SÓLIDO RÍGIDO La estátca estuda las condcones bajo las cuales los sstemas mecáncos están en equlbro. Nos referremos úncamente a equlbro de tpo mecánco,

Más detalles

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS

Capítulo 2: Introducción al método de los Elementos Finitos 2. CAPÍTULO 2 INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS Capítulo 2: Introduccón al método de los Elementos Fntos 2. CAPÍTULO 2 ITRODUCCIÓ AL MÉTODO DE LOS ELEMETOS FIITOS 2.. ITRODUCCIÓ Vrtualmente cada fenómeno en la naturaleza, sea bológco, geológco o mecánco

Más detalles

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que

Y ahora observamos que lo que está entre paréntesis es la derivada de un producto, de modo que Estas son ms notas para las clases del curso Mecánca Raconal (62.11) en la Facultad de Ingenería-UBA. Están aún en proceso de ser completadas, no tenen carácter de texto acabado, por el contraro seguramente

Más detalles

CAMPOS DE VELOCIDADES DE LOS DISCOS

CAMPOS DE VELOCIDADES DE LOS DISCOS CAMPOS DE VELOCIDADES DE LOS DISCOS Los dscos galáctcos se modelan como anllos crculares concéntrcos. S Ω es la velocdad angular del anllo y r el vector que va hasta el centro, sendo n el vector untaro

Más detalles

MÁQUINAS DE CORRIENTE CONTINUA

MÁQUINAS DE CORRIENTE CONTINUA MÁQUINAS D CORRINT CONTINUA n esta stuacón, la energía producda por el motor que funcona como generador es transformada en calor por efecto Joule en las resstencas de carga conectadas al nducdo del motor.

Más detalles

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa

Aplicación de la termodinámica a las reacciones químicas Andrés Cedillo Departamento de Química Universidad Autónoma Metropolitana-Iztapalapa Aplcacón de la termodnámca a las reaccones químcas Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana-Iztapalapa Introduccón Las leyes de la termodnámca, así como todas las ecuacones

Más detalles

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO.

Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. Tema 3. DINÁMICA DE UN SÓLIDO RÍGIDO. CONTENIDOS: 3.1 Intoduccón 3. Cnemátca de la otacón alededo de un eje fjo. 3.3 Momento de una fueza y de un sstema de fuezas. 3.4 Momento angula del sóldo ígdo. 3.5

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles