1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base."

Transcripción

1 EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = { x R 3 x = (λ, 2λ, λ) R 3 } (b) T = {(x, y) R 2 x 2 + y = 0} (c) R = {x, y, z) R 3 x = 0, y = 2t λ, z = t + λ} (d) P = {(x 1, x 2, x 3 ) R 3 x 1 = 2x 2 + x 3 } (e) Q = {(x 1, x 2 ) R 2 x 1 x 2 = 1} 2. Calcula la dimensión del subespacio U generado por los vectores (1, a, 1), (1, 1, 1) y (0, 0, a) según los valores de a. Calcula las ecuaciones paramétricas y cartesianas de U para los valores de a para los que la dimensión de U es igual a Prueba que los vectores (2, 5, 3), (0, 1, 1) engendran el mismo subespacio que los vectores (4, 9, 5), (2, 7, 5). Expresa tres bases distintas de este subespacio. 4. Halla las inversas de las siguientes matrices mediante transformaciones elementales. ( ) Dado el sistema x 1 2x 2 + 2x 3 + x 4 = 0 x 1 + 2x 2 + 2x 3 + 3x 4 = 4 2x 1 x 2 = 2 3x 1 + 3x 2 2x 3 + x 4 = 2 (a) Resuelvelo mediante escalonamiento Gauss-Jordan. Halla una base del subespacio de sus soluciones. (b) Expresa, si es posible, la cuarta ecuación v 4, como combinación lineal de las otras tres, v 1, v 2, v Analiza para qué valores reales de a el siguiente sistema tiene solución y resuélvelos usando el método de eliminación de Gauss. x 1 + x 2 + x 3 = 1 2x 1 + 2x 2 + (1 a 2 )x 3 = 2a x 1 + x 2 + a 2 x 3 = 1 1

2 7. Estudia la compatibilidad del sistema según los valores que toman a y b: x 1 4x 2 + 3x 3 = a x 1 + 2x 2 + 7x 3 = b 2x 1 2x x 3 = 0 8. Dados los subespacios vectoriales U y V de R 3 U x 1 2x 2 + x 3 = 0, x 1 = 2t V x 2 = t x 3 = 3λ Calcula las ecuaciones paramétricas y cartesianas, una base y la dimensión de los subespacios U + V y U V. 9. Dados los subespacios U y V de R 4 U = {< (1, 0, 1, 1), (1, 1, 1, 0), (0, 1, 2, 1) >} V = {x 1, x 2, x 3, x 4 ) R 4 x 1 x 3 x 4 = 0, x 2 + x 3 = 0} Da unas bases y calcula las ecuaciones cartesianas y paramétricas de U, V, U +V y U V. 2

3 2. Aplicaciones lineales. Diagonalización de endomorfismos. 1. Determina si las siguientes aplicaciones son o no lineales. (a) f(x 1, x 2, x 3 ) = (x 1 + x 2 + x 3, 2x 1 x 2 ) (b) f(x 1, x 2, x 3 ) = (x 2 1 x 2 2, 2x 3, 0) (c) f(x 1, x 2 ) = (x 1, x 2 + 2, x 1 + x 2 ) (d) f(x 1, x 2 ) = (x 1 + 2x 2, 0, x 1 x 2 ) 2. Dada la aplicación lineal f(x 1, x 2, x 3 ) = (x 1 + 2x 2 4x 3, 2x 1 + 3x 2 + x 3 ) (a) Calcula la matriz A de f respecto a las bases canónicas. (b) Calcula las ecuaciones cartesianas si las hubiera y paramétricas del núcleo y de la imagen de f. Indicar si f es entonces inyectiva, sobreyectiva o biyectiva. (c) Buscar la relación entre la matriz A y aquella otra B de f que está expresada respecto a las bases {1, 1, 0), ( 2, 0, 1), (0, 0, 2)}, {( 1, 0), ( 2, 1)} 3. La matriz de la transformación ( ) lineal en R 2 expresada respecto a las bases {(3, 1), (1, 1)} 2 0 y {(0, 2), ( 1, 1)} es, Determina matricialmente cual sería la matriz respecto 0 1 a las bases canónicas. 4. Dada la aplicación lineal f(x 1, x 2, x 3 ) = (x 1 + x 2 + x 3, x 1 + x 2, x 3 ) (a) Halla las ecuaciones paramétricas y cartesianas del Núcleo y de la Imagen de f y clasifícala. (b) Halla una base de f(v ) siendo V el subespacio cuya ecuación cartesiana es x 3 = 0 (c) Halla las coordenadas de f(2, 3, 0) en la base de f(v ) obtenida anteriormente. (d) determina f 1 (3, 2, 1) 5. Sabiendo que la aplicación lineal f tiene a ( 2, 0) como autovector asociado al autovalor λ = 2 y que el vector (0, 5) pertenece a Kerf. Calcula la fórmula de f. ( ) Diagonalizar la matriz A =, dando la matriz de paso, la base de vectores propios 3 2 y la relación entre la matriz dada y la diagonal. Calcular A Estudiar para qué valores del parámetro a es diagonalizable el siguiente endomorfismo f : R 3 R 3, donde f(x, y, z) = (x, ax + y, x + y + 2z) 3

4 8. Se considera la matriz A = a a 0 2 b 2, siendo a y b números reales. (a) Calcula el polinomio característico de A, así como sus autovalores. (b) Para qué valores de a y b la matriz A es diagonalizable? 9. Consideremos el endomorfismo f : R 3 R 3 cuya matriz asociada respecto de la base canónica es A = (a) Determina los valores y vectores propios de f (b) Calcula las dimensiones y determinar una base de los subespacios propios asociados a los valores propios. (c) Es posible caracterizar el endomorfismo f mediante una matriz diagonal? 10. Sea f un endomorfismo en R 3 cuya matriz asociada respecto de la base canónica es 1 2 a A = (a) Determina para que valor de a es A diagonalizable. (b) En el caso en que sea posible, halla una base de autovectores B. (c) Da una matriz diagonal D que represente a f respecto de la base B. (d) Qué relación existe entre las matrices A y D? (e) Usa la relación anterior para calcular A La sucesión a n satisface la relación a n = a n 1 + 2a n 2 que matricialmente es expresada como: ( ) ( ) ( ) an 1 2 an 1 = a n a n 2 Si a 0 = 1 y a 1 = 1, calcula a 200. Calcula el término general de la sucesión. 4

5 12. Consideremos la base canónica de R 3 y A la matriz del endomorfismo referida a dicha base. En dicho endomorfismo, los subespacios V 1 = {(x, y, z) R 3 x + y + z = 0} V 2 = {(x, y, z) R 3 x y = 0, x z = 0} están asociados respectivamentes a los autovalores λ 1 = 1 y λ 2 = 1 2 (a) Diagonaliza el endomorfismo. (b) Determina una base de vectores propios. (c) Calcula la matriz A. 5

6 3. Espacio afín y euclídeo. 1. Dada la recta { x + y z = 2 x y + z = 0 y sobre ella el punto A(1, 1, 0), halla los puntos que están situados sobre la recta y que están a una distancia de 3 2 unidades de A. 2. Calcular el plano que pasa por los puntos P = (3, 2, 1) y Q = (3, 1, 5) y es perpendicular al plano 6x + 7y + 2z = Resuelve vectorialmente el ángulo entre una de las diagonales de un cubo, y una de sus caras. 4. Sean los puntos A(1, 0, 1) y B(2, 1, 3). (a) Calcula la distancia del origen de coordenadas a la recta que pasa por A y B. (b) Calcula el área del paralelogramo de vértices consecutivos ABCD sabiendo que la recta determinada por los vértices C y D pasa por el origen de coordenadas. 5. Halla el volumen del prisma cuya base es el paralelogramo de vértices (1, 0, 1), (3, 1, 4), (0, 2, 9) y ( 2, 1, 6), y cuya altura es Dadas las rectas { x1 x r 1 2 2x 3 = 2 3x 1 x 2 = 1 y r 2 x 1 = t, x 2 = 1 + 2t, x 3 = 0 (a) Halla la recta que pasa por (1, 0, 1) y por r 1 y r 2. (b) Halla la recta que pasa por (1, 0, 1) y es perpendicular a r 1 y r 2. (c) Halla la distancia entre r 1 y r Sean los planos: Π 1 2x + y z + 5 = 0 Π 2 x + 2y + z + 2 = 0 Calcula las coordenadas del punto P sabiendo que está en el plano Π 1 y que su proyección ortogonal sobre el plano Π 2 es el punto (1, 0 3). 6

7 8. El punto M(1, 1, 0) es el centro de un paralelogramo y A(2, 1, 1) y B(0, 2, 3) son dos vértices consecutivos del mismo. (a) Halla la ecuación general del plano que contiene al paralelogramo. (b) Determina uno de los otros dos vértices y calcula el área de dicho paralelogramo. 9. Sean los puntos A(0, 0, 1), B(1, 0, 1), C(0, 1, 2) y D(1, 2, 0). (a) Halla la ecuación del plano π determinado por los puntos A, B y C. (b) Demuestra que los cuatro puntos no son coplanarios. (c) Calcula la distancia del punto D al plano π. 10. Determina el punto P de la recta r x+3 coordenadas y del punto A(3, 2, 1). = y+5 = z Considera el punto P (1, 0, 2) y la recta r dada por las ecuaciones r 3 que equidista del origen de (a) Calcula la ecuación del plano que pasa por P y es perpendicular a r. (b) Calcula el punto simétrico de P respecto de la recta r. { 2x y 4 = 0 y + 2z 8 = 0. 7

8 4. Geometría Ortogonal 1. En el espacio vectorial euclídeo R 3 se pide: (a) Determinar un vector unitario que sea ortogonal a los vectores (1, 2, 1), (0, 1, 1). (b) Obtener una base de vectores ortonormales para el subespacio: V =< (1, 2, 1), (0, 1, 1) > (c) Definir en R 3 un producto escalar que no sea el usual y encontrar una base ortonormal respecto de dicho producto escalar. 2. Se define para f, g P 1 (R) el siguiente producto escalar : Calcular: f, g = 1 0 f(t)g(t) dt (a) La matriz del producto escalar referida a la base {1, t} (b) El coseno del ángulo que forman p(t) = t + 3; q(t) = 2t + 4 (c) Una base ortonormal a partir de la base {1, t} 3. Diagonalizar las matrices simétricas siguientes, calculando una matriz de paso ortogonal: A = B = Dada la matriz A = (a) Estudiar si existe una matriz diagonal, D, que sea semejante a A. (b) Encontrar una matriz P tal que P 1 AP = D. (c) Existe una matriz de paso ortogonal? Si es así, calcúlala. Calcula, si es posible, A 1 y A (Proyección Ortogonal.) Halla la matriz de la transformación lineal que transforma un punto del espacio en su proyección sobre el subespacio (plano) que generan los vectores (1, 0, 1), (2, 1, 0). Halla la proyección de la recta r 2 sobre ese plano. 6. En R 3 con el producto escalar usual, se considera el subespacio U generado por los vectores u 1 = (1, 1, 1), u 2 = (1, 2, 1). 8

9 (a) Calcula una base ortonormal {e 1, e 2 } para U. (b) Amplia la base anterior para obtener una base ortonormal {e 1, e 2, e 3 } de R 3. (c) Calcula U el complemento ortogonal de U. (d) Calcula la proyección ortogonal del vector (1, 0, 4) sobre U y sobre U. 7. (Giro alrededor de un eje) Calcula la matriz A respecto a la base canónica de la isometría que realiza un giro de ángulo π alrededor del vector (1, 2, 2) 6 8. (Semejanza en R 2 ) Con respecto a la base canńica, halla las ecuaciones de la transformación afín que transforma los vértices A(1, 1), B(1, 2), C(2, 2) de un triángulo en otro triángulo de vértices respectivos A (1, 1), B (2, 0), C (3 1). Determina si tiene puntos fijos. Qué relación hay entre las áreas de los triángulos? 9. Justifica que la transformación afín, ( ) ( ) ( y1 1/2 3/2 = x1 3/2 1/2 y 2 es un giro. Halla el punto alrededor del cual gira. x 2 ) + ( 2 4 ) 10. En el espacio afín R 3 se considera la transformación afín Θ cuyas ecuaciones son: y 1 = 1 + x 2 y 2 = 3 5 x x 3 y 3 = x x 3 siendo (x 1, x 2, x 3 ) las coordenadas de un punto de R 3 y (y 1, y 2, y 3 ) las de su transformado. Es Θ un movimiento? Cúal es el transformado del (0, 0, 0)? 11. Una afinidad transforma P 1 = (0, 0, 0), P 2 = (1, 0, 0), P 3 = (1, 1, 0), P 4 = (1, 1, 1) en los puntos (1, 1, 1), (1, 2, 3), (1, 2, 4), (0, 0, 0), respectivamente. Hallar las ecuaciones de dicha transformación respecto a la canónica. Si es un movimiento, describe cuál. 12. Halla las ecuaciones de los movimientos en R 2 : (a) La que a cada punto le corresponde su giro de ángulo π/3 respecto al centro (3, 5). (b) La que al realizar un giro de ángulo π lleva el punto (2, 2) al punto (0, 2). Calcular 2 también el centro de giro. (c) La que a cada punto le hace corresponder su simétrico respecto a la recta x 1 +2x 2 = (Simetría en R 3.) Con respecto a la base canónica, halla la ecuación de la transformación afín que en R 3 transforma un punto en su simétrico (reflexión) respecto al plano x+y z = 1. Halla sus puntos fijos si los hubiera. 9

10 5. Cónicas y cuádricas 1. Dada la cónica 2x 1 x x 1 = 1 (a) Expresa la cónica matricialmente como X t AX + BX = 1. (b) Diagonaliza A ortogonalmente, A = QDQ t con Q matriz de paso ortogonal y mediante la sustitución X = QT en la anterior expresión halla la ecuación reducida de la cónica en posición estándar con los nuevos ejes T. Clasifícala. (c) Calcula el centro con respecto a las variables T. original con respecto a sus variables X. Calcula el centro de la cónica (d) Halla la ecuación de la transformación afín que transforma la cónica original a su forma reducida estándar y centrada en (0, 0) 2. Procede como en el ejercicio anterior para cada cónica o cuádrica: (a) 2x 2 + 2y z 2 + 6yz = 9 (b) x 2 y 2 + z 2 + 4xz 12x + 6y 4 = 0 (c) 3x 2 3y 2 8xy + 2x 4y + 4 = 0 (d) 2x x 2 2 4x x 2 x 3 5x 1 + 3x 2 = 2 (e) x 2 2xy + y x = 4 (f) x 2 8xy + 16x 3z = 8 (g) 2xy + 2xz = 1 (h) 4x 2 + 4y 2 + 4z 2 + 4xy + 4xz + 4yz 3 = 0 (i) xy 2x y z + 2 = 0 10

11 6. Ecuaciones Diferenciales Lineales. 1. El volumen de cierta sustancia tiene un crecimiento relativo constante de un 20% cada año. Si ahora el volumen es 2, calcula la función de crecimiento en cualquier tiempo t. 2. Cálculo de la matriz exponencial. Calcula la matriz exponencial e A para cada una de las matrices, ( ) ( ) 1 0 a 1 A=, A= a 3. Resolución de sistemas. Para cada sistema que sigue, halla la matriz de paso P con los vectores propios por columnas. Calcula la solución general x = e At c = P( e Dt P 1 c, ) x1 (0) con c vector constante. Calcula la solución particular para los valores de c = x 2 (0) indicados. (a) Aparecen raíces distintas reales. { x 1 (t) = 3x 1 (t) x 2 (t) x c = 2(t) = 2x 1 (t) + 2x 2 (t) (b) Raíces complejas. { x 1 (t) = x 1 (t) + x 2 (t) x 2(t) = x 1 (t) + x 2 (t) (c) Raíces dobles. { x 1 (t) = 2x 1 (t) x 2 (t) x 2(t) = x 1 (t) + 4x 2 (t) c = c = ( ( ( ) Indicación: Aquí la matriz no es diagonalizable y sólo puede obtenerse un vector propio, el teorema siguiente proporciona una forma de calcular la exponencial. TEOREMA: Si A matriz 2 2 no diagonalizable, con valor propio λ, y único vector propio independiente v 1, C( es la matriz ) ( v 1, v 2 ), donde v 2 es el vector que satisface (A λi) v 2 = v 1, entonces A = CJC 1 con λ 1 J =. 0 λ 4. Una leve modificación del problema anterior para que las raíces sean distintas reales. ( ) ( ) ( ) ( ) x 1 (t) 2 1 x1 (t) 500 x =, c =. Compara la solución con la del 2(t) x 2 (t) 100 problema anterior. ) ) 5. Sistema 3 3. x 1(t) = x 1 (t) x 2 (t) + 4x 3 (t) x 2(t) = 3x 1 (t) + 2x 2 (t) x 3 (t) x 3(t) = 2x 1 (t) + x 2 (t) x 3 (t) c =

12 6. Resuelve el sistema de ecuaciones diferenciales lineales: { x 1 (t) = 1 2 x 1(t)+ x 2 (t) x 2(t) = 1 4 x 1(t)+ 1 2 x 2(t) que corresponde con un modelo de especies en cooperación. 7. Sea A = Sabiendo que (λ 6)(λ + 1)(λ + 3) es su polinomio característico, calcular e A. 8. Problema de mezcla de fluidos. En un tanque 1, hay 1000 litros de agua salada con 100 kilos de sal en ella disuelta. En un segundo tanque 2, hay 1000 litros de agua pura. Se hace fluir agua pura hacia el tanque 1 a razón constante de 20 litros por minuto al mismo tiempo que la mezcla fluye del tanque 1 al 2 a razón de 30 litros por minuto. El tanque 2 a su vez, vuelve a mandar al tanque 1, 10 litros por minuto (se retroalimenta) y otros 20 por minuto hacia afuera del tanque. Halla la cantidad de sal que hay en cada instante t en cada tanque. Indicación: Considera que x 1 (t), x 2 (t) representan la cantidad de sal en los respectivos tanques en un tiempo t, siendo x 1 (0) = 100, x 2 (0) = Una placa rectangular 4 metros de ancha por 2 de alta centrada en (0, 0) con sus lados paralelos a los ejes (el lado más largo es paralelo al eje 0X) se dilata por minuto en la dirección del eje OX un 20% y en la dirección del eje OY un 50%. Calcula las medidas del rectángulo en el minuto t. Determina dónde de encuentra el punto (1, 1) de la placa al cabo de 6 minutos. Nota: Considerar x 1 (t), x 2 (t) las longitudes de la placa en el tiempo t en las direcciones OX y OY respectivamente. 10. Resuelve las siguientes ecuaciones diferenciales: (a) x + 5x + 6x = 0; x(0) = 1, x (0) = 0; (b) x + 6x + 9x = 0; x(0) = 1, x (0) = 2; (c) x + 4x = 0; x(0) = 0, x (0) = 1; (d) x 3x 10x = 0; x(0) = 3, x (0) = 2. 12

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo 1. Ejercicios Ejercicio 1 En R 2, referido a la base canónica, se consideran los vectores u 1 = (1, 1) y u 2 = (2,). Un endomorfismo de R 2, T los transforma en los vectores v 1 = ( 2,1) y v 2 = (, 1)

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad 1 Se sabe que los puntos A (1,0,-1), B (3,, 1) y C (-7, 1, 5) son los vértices consecutivos de un paralelogramo ABCD. (a) Calcula las coordenadas del punto

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R.

Se pide: (b) Ecuaciones que permiten obtener las coordenadas cartesianas en R en función de las de R. ÁLGEBRA Práctica 13 Espacios afines E 2 y E 3 (Curso 2004 2005) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = {O, ē 1, ē 2, ē 3 } y R = {P, ū 1, ū 2, ū 3 }, donde

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

GEOMETRÍA EN EL ESPACIO

GEOMETRÍA EN EL ESPACIO GEOMETRÍA EN EL ESPACIO 1. PUNTOS Y VECTORES OPERACIÓN TEORÍA Y FORMULACIÓN EJEMPLO Coordenadas de un punto Punto medio de un segmento Dividir un segmento en n partes iguales Coordenadas de un vector (

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior

hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior x 1 y 1. Distancia entre la recta = = z y el plano (x, y, z) = (0, 1, 0) + τ(, 5, 1) + λ(1, 0, ) 3 5. Distancia del punto (, 3, 5) a la recta x 1 z = y = x + z y 3. Distancia entre las rectas r = y = y

Más detalles

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos.

TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos. TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN Vectores (1) 1.- Sea el vector AB, en el que el punto A(3, 2) es el origen y B(5, 6) el extremo. a) Si cada uno de los puntos C(9, 3), D( 4,4) y

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

Problemas Tema 9 Enunciados de problemas sobre geometría tridimensional

Problemas Tema 9 Enunciados de problemas sobre geometría tridimensional página 1/10 Problemas Tema 9 Enunciados de problemas sobre geometría tridimensional Hoja 1 1. Dada la recta r : { 4 x 3 y+4 z= 1 3 x 2 y+ z= 3 a) Calcular a para que la recta y el plano sean paralelos.

Más detalles

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80

Index. Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Index Ángulo, 80 entre dos planos, 80 entre dos rectas, 80 entre dos vectores, 59 entre recta y plano, 80 Adjunto, 14 Aplicación, 2 bilineal, 47 biyectiva, 3 compuesta, 3 identidad, 3 inversa, 3 inyectiva,

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas.

b E: base canónica de R 3, E = {1, x, x 2 } base de P 2 2) Analice la verdad o la falsedad de las siguientes proposiciones. Justifique sus respuestas. UTN. FRBA ÁLGEBRA Y GEOMETRÍA ANALÍTICA de Mayo de01 Tema: 1 Apellido y nombres del alumno:...legajo:. 1 4 5 Calificación final La condición para aprobar el examen es tener como mínimo tres ejercicios

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o D.C.E. 1 o L.A.D.E. Curso 2008/09 Relación 2. Aplicaciones Lineales. Diagonalización. Formas Cuadráticas 1. Estudia si son lineales las aplicaciones siguientes: a) La aplicación

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero Curso 13-14 1.-Los puntos A(1,3,1) y B(2,1,3) son vértices consecutivos de un cuadrado. Los otros dos vértices pertenecen a una recta r que pasa por el punto P(2,7,0). a) (3p) Hallar la ecuación de la

Más detalles

ESPACIO AFÍN EUCLÍDEO

ESPACIO AFÍN EUCLÍDEO ESPACIO AFÍN EUCLÍDEO Producto escalar Distancia 1 Sean los vectores x1, 5,, y 3, 4, 1, 6,3, 5 y w4, 6, 6 Halla los siguientes productos escalares: x y, x, ww y w Calcula la distancia entre los puntos

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013)

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013) ÁLGEBRA LINEAL 1S1M-b SOLUCIONES DEL SEGUNDO PARCIAL 17/12/2013 1. Dada una aplicación lineal f : de manera que : Se pide, obtener su matriz con respecto a las bases canónicas. Calculamos =col 2. Calcular

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8

Matemáticas II. d) Perpendicular al plano π: 2x y + 3z 1 = 0, paralelo a la recta r : x 1 2 = y 3 = z 8 I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Geometría analítica en R 3 * 1. Determina cuáles de las siguientes ternas de puntos son puntos alineados. Encuentra la ecuación de la recta que

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea la función f: (0,+ ) R definida por f(x) = ln(x), donde ln denota logaritmo x neperiano. a) [1 punto] Estudia y determina las asíntotas de la gráfica de f. b) [1 5 puntos] Halla

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente

Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente Geometría (Selectividad) 1. Dados los puntos A(1,3,5) y B(-2,4,1), hallar las coordenadas del punto C, perteneciente al plano OXY de forma que A, B y C estén alineados. Sol: 2. Considera la recta de ecuaciones.

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

SEGUNDO PARCIAL - EJERCICIOS DE REPASO

SEGUNDO PARCIAL - EJERCICIOS DE REPASO Algebra y Geometría 28 SEGUNDO PARCIAL - EJERCICIOS DE REPASO 3-6-8 ESPACIOS VECTORIALES. Construya en R 2 un subconjunto que sea: a cerrado para la suma y resta de vectores, pero no para la multiplicacion

Más detalles

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA

3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA 3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA ANALÍTICA EN EL PLANO Y EN EL ESPACIO. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 3.2.1. Rectas en el plano y en el espacio La recta que pasa por el punto

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

3.8 Ejercicios propuestos

3.8 Ejercicios propuestos 3.8 Ejercicios propuestos Ejercicio 3.7 Consideremos la aplicación lineal f : R 3 R 3 definida por f(x, y, z) =(2x + y, z,0) a) Determinar Ker f y hallar una base de dicho subespacio. b) Hallar el rango

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

Geometría. 2 (el   representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones

Más detalles

Álgebra Lineal UCR. Sétimo tema, 2013

Álgebra Lineal UCR. Sétimo tema, 2013 Álgebra Lineal UCR Sétimo tema, 2013 Presentaciones basadas principalmente en Arce,C, Castillo,W y González, J. (2004) Álgebra lineal. Tercera edición. UCR. San Pedro. Otras fuentes serán mencionadas cuando

Más detalles

Problemas de Geometría Proyectiva

Problemas de Geometría Proyectiva Problemas de Geometría Proyectiva José M. Sánchez Abril José M. Rodríguez-Sanjurjo, Jesús M. Ruiz 1995 * I. VARIEDADES PROYECTIVAS Número 1. Se consideran en el plano proyectivo P 2 los cuatro puntos a

Más detalles

BLOQUE II : GEOMETRIA EN EL ESPACIO.

BLOQUE II : GEOMETRIA EN EL ESPACIO. MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Ejercicio 1. Algebra de vectores. 1. Representar los puntos en el mismo sistema de coordenadas tridimensional: a) (2,1,3) b) (5, 2, 2) c) ( 3, 4, 2)

Ejercicio 1. Algebra de vectores. 1. Representar los puntos en el mismo sistema de coordenadas tridimensional: a) (2,1,3) b) (5, 2, 2) c) ( 3, 4, 2) Indicaciones: 1. Formar equipos de 4 personas. Realizar portada impresa. Escribir los siguientes datos: Nombres de los integrantes, hora de la clase, Fecha de entrega 3. Llevar el orden de la numeración

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2). 1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

6 Propiedades métricas

6 Propiedades métricas 6 Propiedades métricas ACTIVIDADES INICIALES 6.I Dados los puntos P(, ) Q(, 5), la recta r :, calcula: a) d(p, Q) b) d(p, r) c) d(q, r) 6.II Se tienen las rectas r :, s : 4 t :. Halla: a) d(r, s) b) d(r,

Más detalles

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES

A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES RESUMEN DE GEOMETRÍA MATEMÁTICAS II A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES Un vector fijo de origen A y extremo B, siendo A y B puntos del espacio, es un segmento orientado caracterizado por:

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

58 EJERCICIOS de RECTAS y PLANOS 2º BACH.

58 EJERCICIOS de RECTAS y PLANOS 2º BACH. 58 EJERCICIOS de RECTAS y PLANOS 2º BACH. NOTA: En los ejercicios de Geometría se recomienda comenzar, antes de nada, por: Imaginarse la situación; podemos ayudarnos, para ello, de bolígrafos (para representar

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2018 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1 FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 0 mayo 006 Tema Apellido y nombres:... 4 5 Calificación final ) Dadas las rectas : x y + z = r : r : ( x, y, z) = (,,) + λ(, ) x z + k = 0 k para que las rectas sean

Más detalles