RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES"

Transcripción

1 OBJETIVO RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES MAGNITUDES DIRECTAMENTE PROPORCIONALES directamente proporcionales cuando la razón entre dos cantidades correspondientes de ambas es constante: a b k a b k se denomina constante de proporcionalidad directa. Si cada kilo de manzanas vale 0 céntimos, averigua la relación que existe entre el peso de manzanas y el precio. Para ello, formamos una tabla de dos filas: en una de ellas representamos las cantidades de una magnitud, y en la otra, las cantidades de la otra magnitud. Peso (en kilos) 5 Precio (en céntimos) Todas las divisiones entre el precio de las manzanas y su peso dan el mismo resultado: k 5 Es decir, el peso de las manzanas y su precio son magnitudes directamente proporcionales. La constante de proporcionalidad es, en este caso, k 0. La tabla representada se denomina tabla de proporcionalidad. Para hacer una tortilla se utilizan huevos. Determina la relación entre estas magnitudes. a) Completa la tabla: Huevos Tortilla 5 6 b) Comprueba el resultado de todas las divisiones entre cantidades correspondientes c) Son magnitudes directamente proporcionales? k Completa las tablas siguientes para que sean tablas de proporcionalidad directa ,5 8,5 8 MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L.

2 OBJETIVO RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES Esta tabla refleja el tiempo y los kilómetros recorridos por un coche que no circula a velocidad constante, es decir, va frenando y acelerando según el tráfico. Averigua si existe proporcionalidad. Horas transcurridas Kilómetros recorridos Realizamos todas las divisiones entre las dos magnitudes: , 5 75, Podemos observar que estas divisiones no dan el mismo resultado. Por tanto, las magnitudes de las horas transcurridas y los kilómetros recorridos no son directamente proporcionales. Por cada ventana instalada nos cobran 500, pero si instalamos más de 0 ventanas nos cobran 50 por cada una. Comprueba si estas magnitudes son directamente proporcionales. a) Completa la tabla con los datos numéricos que faltan. Número de ventanas Precio b) Halla el resultado de las razones entre cantidades correspondientes c) Son magnitudes directamente proporcionales? Estudia si las siguientes magnitudes son directamente proporcionales. a) El lado de un cuadrado y su perímetro. b) El volumen que ocupa un líquido y su peso. c) El número de fotocopias y su precio. 5 Observa la tabla siguiente. Comprueba que las magnitudes M y M son directamente proporcionales, y calcula y e y. Magnitud M Magnitud M 8 y y DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L. 9

3 APLICAR LA REGLA DE TRES SIMPLE DIRECTA OBJETIVO REGLA DE TRES SIMPLE DIRECTA regla de tres simple directa es un procedimiento para conocer una cantidad que forma proporción con otras cantidades conocidas de dos magnitudes directamente proporcionales. Si una docena de huevos cuesta, cuánto cuestan huevos? Como la cantidad de huevos y su precio son magnitudes directamente proporcionales, podemos expresar esta relación de la siguiente manera. Ahora despejamos la x: Los huevos cuestan. cuestan Si huevos costarán huevos x x x x x x En una panadería han pagado por 70 barras de pan. Cuánto tendrían que pagar si hubiesen comprado 85 barras? Si barras barras cuestan costarán Despejamos la x: Las 85 barras cuestan. Si dólares son euros, cuántos euros son,5 dólares? Si dólares dólares son serán euros euros Despejamos la x: Los,5 dólares son euros. 0 DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L.

4 CALCULAR PORCENTAJES OBJETIVO PORCENTAJES porcentajes tantos por ciento Si el 7 % de un terreno es,6 m, cuántos metros cuadrados representan el total del terreno? % m x 7 00, 6 x x x? x Un depósito de 000 litros de capacidad contiene 05 litros. Qué tanto por ciento es? % x Litros x x 05 En época de sequía, un embalse con capacidad máxima de 00 hectómetros cúbicos estaba al 5 %. Qué capacidad de agua contenía en ese momento? Capacidad % x x x A un artículo que vale 0 se le aplica un 0 % de descuento. Cuánto cuesta el artículo? x MATEMÁTICAS. ESO

5 REALIZAR REPARTOS DIRECTAMENTE PROPORCIONALES OBJETIVO REPARTOS DIRECTAMENTE PROPORCIONALES Para realizar el reparto de una cantidad n de forma directamente proporcional a unas cantidades a, b, c : a b c... n a, b, c La Unión Europea ha concedido una subvención de para tres pueblos. El pueblo A tiene 800 habitantes; el B, 700, y el C, 500. Cómo debe repartirse el dinero? A B C Pueblo A Total A B C Habitantes Euros 5000 x y z x: x 000x 800? x x x Pueblo B Total A B C Habitantes Euros 5000 x y z y: y y Pueblo C Total A B C Habitantes Euros 5000 x y z z: z DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO

6 REALIZAR REPARTOS DIRECTAMENTE PROPORCIONALES OBJETIVO Vicente y José abren una cartilla de ahorros en el banco. Vicente ingresa 00 y José ingresa 800. Al cabo de unos años les devuelven 80. Cómo se los tienen que repartir? Vicente José Total Vicente José Dinero invertido Dinero ganado 80 x y = = Despejamos la x: Despejamos la y: x y Tres socios de un negocio aportan 0 000, y 0 000, respectivamente. Si obtienen unos beneficios de 0 000, cuánto le corresponde a cada uno? Total Socio Socio Socio Dinero invertido Beneficios x y z = = = Despejamos la x: Despejamos la y: Despejamos la z: x y z Un padre reparte el premio de una quiniela entre sus tres hijos de 8, y 5 años para ayudar en su formación universitaria, de forma directamente proporcional a sus edades. Si el menor obtiene 000, calcula: a) Cuánto dinero ha repartido el padre? b) Cuánto le ha correspondido a cada hijo? Total Hijo Hijo Hijo Años 8 5 Dinero DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L.

7 RECONOCER MAGNITUDES INVERSAMENTE PROPORCIONALES OBJETIVO 5 MAGNITUDES INVERSAMENTE PROPORCIONALES Dos magnitudes son inversamente proporcionales si el producto de dos valores correspondientes de ambas es constante: a? a b? b k Esta constante k se denomina constante de proporcionalidad inversa. 0 obreros tardan 0 horas en pintar una fachada. Si fuesen 0 obreros tardarían 80 horas, y si fuesen 5 obreros, 0 horas. Qué relación hay entre estas magnitudes? Obreros Horas ? ? ? k 600 Como los productos que obtenemos son iguales, las magnitudes número de obreros y número de horas son inversamente proporcionales. Tardamos horas en hacer el recorrido que hay de casa al colegio a una velocidad de km/h. Si fuésemos a 5 km/h tardaríamos, horas, y si fuésemos a km/h, 9 horas. Comprueba si estas magnitudes son inversamente proporcionales. Velocidad (km/h) 5 Tiempo (horas), 9 Para construir una nave en 60 días son necesarias 0 personas. Si pasados días se incorporan personas más, en cuántos días terminarán? DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L.

8 APLICAR LA REGLA DE TRES SIMPLE INVERSA OBJETIVO 6 REGLA DE TRES SIMPLE INVERSA La regla de tres simple inversa es un procedimiento para conocer una cantidad que forma proporción con otras cantidades conocidas de dos magnitudes inversamente proporcionales. Si trabajadores tardan 0 días en hacer un trabajo, cuánto tardarán trabajadores? Si trabajadores Si trabajadores tardan 0 días 6 x tardarán x días 0 0? 0? x 0 x x, días Los trabajadores tardarán algo más de días. En un depósito hay agua para 0 personas durante 0 días. Para cuánto tiempo durará el agua si fueran personas? Si 0 personas Si personas tienen para 0 tendrán para días6 días Despejamos la x: Las personas tendrán agua para días. Con el agua de un depósito se llenan 60 envases de 5 litros cada uno. Cuántas botellas, de tres cuartos de litro (0,75 l) cada una, se llenarían con el agua del depósito? Si 5 litros litros llenan 60 envases6 botellas llenarían Despejamos la x: Se llenarían botellas de tres cuartos de litro. DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L. 5

9 REALIZAR REPARTOS INVERSAMENTE PROPORCIONALES OBJETIVO 7 REPARTOS INVERSAMENTE PROPORCIONALES Repartir una cantidad n de forma inversamente proporcional a otras cantidades a, b, c es equivalente a repartirla de forma directamente proporcional a los inversos de las cantidades a, b, c n R / a/ b / c entre su cantidad correspondiente a, b, c El premio de una carrera es de 550 y se repartirá entre los tres primeros corredores en acabar la prueba de forma inversamente proporcional al orden de llegada, es decir, inversamente proporcional a, y. Qué cantidad le corresponde a cada corredor? Puestos Sumamos los inversos Dividimos la cantidad, 550, entre la suma de los inversos. Al.º le corresponde Al.º le corresponde Al.º le corresponde : 550? Un padre acude con sus dos hijos a una feria y en la tómbola gana 50 caramelos que los reparte de forma inversamente proporcional a sus edades, que son 9 y 6 años. Cuántos caramelos le da a cada uno? Edades 9 6 Sumamos los inversos Al hijo de 9 años le corresponden Al hijo de años le corresponden 50 6 DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO

10 REALIZAR REPARTOS INVERSAMENTE PROPORCIONALES OBJETIVO 7 Reparte 50 en partes inversamente proporcionales a los números, y. Números Dividimos la cantidad, 50, entre la suma de los inversos: A le corresponde A le corresponde A le corresponde Sumamos los inversos Comprobamos 50 El coste de la matrícula de una academia de música es menor cuantos más notables se han obtenido en el curso anterior. Tres amigos, Pedro, Sara y Leonor, han obtenido, y 5 notables, respectivamente, y entre los tres han pagado 0. Cuánto le ha costado la matrícula a cada uno? Notables 5 Sumamos los inversos Dividimos la cantidad, 0, entre la suma de los inversos: A Pedro le corresponde A Sara le corresponde A Leonor le corresponde Comprobamos 0 DÍA A DÍA EN EL AULA MATEMÁTICAS. ESO Material fotocopiable Santillana Educación, S. L. 7

6 Proporcionalidad numérica

6 Proporcionalidad numérica 85 _ 0-0.qxd 7//07 :7 Página Proporcionalidad numérica INTRODUCCIÓN Es muy importante que los alumnos sean capaces de discernir si dos magnitudes son proporcionales. A veces cometen el error de pensar

Más detalles

IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1

IES CINCO VILLAS TEMA 6 PROPORCIONALIDAD Página 1 SOLUCIONES MÍNIMOS CURSO 1º ESO TEMA 6 PROPORCIONALIDAD Ejercicio nº 1.- Indica los pares de magnitudes que son directamente proporcionales (D.P.), los que son inversamente proporcionales (I.P.) y los

Más detalles

Nº Clavos : ; t 12.5h Tiempo 5 t

Nº Clavos : ; t 12.5h Tiempo 5 t MAGNITUDES DIRECTAMENTE PROPORCIONALES 1 de 14 DESCRIPCIÓN MATEMÁTICA: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES. Grupo: 1ºB Fecha: 21/04/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 9: PROPORCIONALIDAD Y PORCENTAJES Nombre y Apellidos: Grupo: 1ºB Fecha: 21/04/2009 CALIFICACIÓN: Ejercicio

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD

SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD SOLUCIONES MINIMOS 2º ESO TEMA 3 PROPORCIONALIDAD Ejercicio nº 1.- Subraya los pares de magnitudes que sean proporcionales: a) El peso de las naranjas compradas y el precio pagado por ellas. b) La estatura

Más detalles

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa

Guía del estudiante. Clase 36 Tema: Magnitudes directamente proporcionales y regla de tres simple directa MATEMÁTICAS Grado Séptimo Bimestre I Semana 8 Número de clases 36-39 Clase 36 Tema: Magnitudes directamente proporcionales regla de tres simple directa Actividad 1 A partir de la tabla, determine si las

Más detalles

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 14 REFLEXIONA En esta unidad vas a estudiar las relaciones de proporcionalidad, que te ayudarán a superar muchos problemas aritméticos de los que se presentan todos los días. Completa la

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental PROPORCIONALIDAD MAGNITUDES DIRECTAMENTE PROPORCIONALES Al aumentar una doble (doble, triple), la otra aumenta de igual manera (doble, triple). EJEMPLO. En la compra: kg 2 4 6 7

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 9 Proporcionalidad y porcentajes Recuerda lo fundamental Curso:... Fecha:... PROPORCIONALIDAD MAGNITUDES DIRECTAMENTE PROPORCIONALES Al aumentar una doble (doble, triple), la otra aumenta de igual manera

Más detalles

Ficha de Repaso: Proporcionalidad

Ficha de Repaso: Proporcionalidad Ficha de Repaso: Proporcionalidad 1. Indica en las siguientes afirmaciones, cuales son las magnitudes que se relacionan. Escribe esa relación en forma de razón: a) Una paella para 4 personas necesita medio

Más detalles

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad:

Proporcionalidad. En la introducción del tema planteábamos la siguiente situación de proporcionalidad: Proporción y porcentajes Proporcionalidad En la introducción del tema planteábamos la siguiente situación de proporcionalidad: La proporción de agua requerida para la preparación de un zumo a partir de

Más detalles

4 Problemas aritméticos

4 Problemas aritméticos 008 _ 07-000.qxd 9/7/08 9:06 Página 77 Problemas aritméticos INTRODUCCIÓN En la vida real, la mayor parte de las relaciones entre magnitudes son relaciones de proporcionalidad directa o inversa. Es importante

Más detalles

Departamento de Matemáticas. Nombre:.Grupo:..

Departamento de Matemáticas. Nombre:.Grupo:.. I.E.S. Mar Mediterráneo Matemáticas º E.S.O e) 2 [5 (7 2)] f) 22 - [5 - (8 - )] - 6 g) (-5) 2 - (-2) + (-) 6 h) 8 0 : 5 + 6 : 2 i) 5 : [2 + (2-7) + 5] j) 5 (8 - ) (2-7) 5 ( - 6) k) + 6 : 9 50 : [2 + (7

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. 3º E.S.O. A y C

DEPARTAMENTO DE MATEMÁTICAS. 3º E.S.O. A y C DEPARTAMENTO DE MATEMÁTICAS. 3º E.S.O. A y C EJERCICIOS DE RECUPERACIÓN DE LA 2º EVALUACIÓN. 09/10 ENTREGA: VIERNES, 9 de ABRIL (ÚNICO DÍA) EXAMEN DE RECUPERACIÓN: Semana del 19 al 23 de Abril (Se confirmará)

Más detalles

La razón de abetos con el resto de árboles será: 15/65 o mejor simplificando: 3/13.

La razón de abetos con el resto de árboles será: 15/65 o mejor simplificando: 3/13. ) Ha 5 abetos el resto de árboles son 3 + 4 + 5 + 3 65. La razón de abetos con el resto de árboles será: 5/65 o mejor simplificando: 3/3. ) Bastará multiplicar o dividir el numerador el denominador por

Más detalles

Magnitudes directamente proporcionales

Magnitudes directamente proporcionales TEMA PROPORCIONALIDAD. 1º E.S.O. Magnitud Una magnitud es cualquier propiedad o cualidad de los objetos que se puede medir numéricamente. Entre las magnitudes se dan relaciones de proporcionalidad. Magnitudes

Más detalles

12 Funciones de proporcionalidad

12 Funciones de proporcionalidad 8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación

Más detalles

Nombre y Apellidos: N 4. Edición 3.0

Nombre y Apellidos: N 4. Edición 3.0 Nombre y Apellidos: 4 Problemas N 4 Edición 3.0 P á g i n a 1 1. Una máquina etiqueta 64 botellas por minuto. Cuántas botellas etiquetará en total si está funcionando sin parar durante todo un día? 2.

Más detalles

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS

REFUERZO - MATEMÁTICAS OBJETIVOS MÍNIMOS OBJETIVOS MÍNIMOS Realizar operaciones con números enteros [ ] a) 18 ( 8 ) b) [ 1 ( 1 ) ] c) [ ( 8 9) ] 7 ( ) [ ] Realizar operaciones con fracciones 7 1 a) 1 1 b) c) : 1 7 7 1 1 d) : 1 1 e) 1 : 10 1 f)

Más detalles

Actividades para preparar el examen de Proporcionalidad.

Actividades para preparar el examen de Proporcionalidad. Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n

Más detalles

I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 5 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 8: PROPORCIONALIDAD

I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 5 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 8: PROPORCIONALIDAD DEPARTAMENTO DE MATEMÁTICAS Pág. 1 Ejercicio nº 1.- Indica los pares magnitus que directamente proporcionales (D.P.), los que inversamente proporcionales (I.P.) y los que no guardan relación proporcionalidad

Más detalles

$ 2500 9000 5000 9000 : ; x 18000

$ 2500 9000 5000 9000 : ; x 18000 1 de 10 MAGNITUDES DIRECTAMENTE PROPORCIONALES Descripción matemática: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO.

EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. EJERCICIOS Y PROBLEMAS PARA LA PREPARACIÓN DE LA PRUEBA DE MATEMÁTICAS CDI DE 3º ESO. INSTRUCCIONES Estos ejercicios y problemas se realizarán en casa para preparar las pruebas CDI, cada alumno dedicará

Más detalles

Proporcionalidad y porcentajes

Proporcionalidad y porcentajes CLAVES PARA EMPEZAR a) 1 4 2 5 4 10 No son equivalentes. b) 12 7 16 6 4 96 No son equivalentes. c) 4 60 3 0 240 240 Sí son equivalentes. a) 3 2 6 12/3 4 b) 3 6 x 24/6 4 c) x 6 12 7 4/6 14 a) b) c) d) e)

Más detalles

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6

2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 ACTIVIDADES TEMA 1 1.- Escribe con palabras los siguientes números: 1.034.456: 20.004.080: 100.060.201: 35.001.001: 2.- Representa los siguientes números en la recta númerica: 2,5,3,5,8,6 3.- Ordena de

Más detalles

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)

4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2) MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. 1 ENUNCIADOS 1 Completa las siguientes tablas de valores proporcionales e indica cuáles reflejan una relación de proporcionalidad directa y cuáles inversa: MAG. A 1 2 5 10 15 MAG. B 4 22 MAG. C 4

Más detalles

CUADERNILLO DE PROBLEMAS Operaciones combinadas. 2 Nombre: Curso: Colegio:

CUADERNILLO DE PROBLEMAS Operaciones combinadas. 2 Nombre: Curso: Colegio: CUADERNILLO DE PROBLEMAS Operaciones combinadas. 2 Nombre: Curso: Colegio: 1.-Un número dividido por 4 da 232. Cuánto le falta a ese número para llegar a 1.000? 2.-Una familia formada por los padres y

Más detalles

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO

Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de 2º ESO Actividades de la 1ª Evaluación para alumnos con Matematicas Pendientes de º ESO FECHA DEL EXAMEN: 17 DE NOVIEMBRE DE 01 A LAS 10:1 (En el salón de actos) Las actividades realizadas deben entregarse obligatoriamente

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA El éxito no se logra sólo con cualidades especiales. Es sobre todo un trabajo de constancia, de método y de organización. J.P.

Más detalles

2º. Rellena los huecos que faltan y determina la constante de proporcionalidad:

2º. Rellena los huecos que faltan y determina la constante de proporcionalidad: TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO ª EVALUACIÓN CURSO: 3º ESO PROPORCIONALIDAD NUMÉRICA 1º. Busca los valores para que las siguientes proporciones sean ciertas:... 0 45 5 45 5............,...

Más detalles

OBJETIVO 1 LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES 2 15=5 6

OBJETIVO 1 LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES 2 15=5 6 IDENTIICAR OBJETIVO LA RELACIÓN DE PROPORCIONALIDAD ENTRE DOS MAGNITUDES NOMBRE: CURSO: ECHA: RACCIONES EQUIVALENTES Para comprobar si dos fracciones son equivalentes se multiplican en cruz, obteniéndose,

Más detalles

TEMA 1. NÚMEROS RACIONALES Y PROPORCIONALIDAD

TEMA 1. NÚMEROS RACIONALES Y PROPORCIONALIDAD TEMA 1. NÚMEROS RACIONALES Y PROPORCIONALIDAD 1. Indica el conjunto numérico (naturales, enteros racionales o reales) más pequeño al que pertenecen los siguientes números: 8-7 45-1 1,1 -,3. Indica de qué

Más detalles

Curso º ESO. UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón Curso 2º ESO UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS 1. Interpretar y aplicar el tanto por

Más detalles

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:

5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo: Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:

Más detalles

1 La constante de proporcionalidad directa entre dos números es 0,75. El mayor es 20. Calcula el menor.

1 La constante de proporcionalidad directa entre dos números es 0,75. El mayor es 20. Calcula el menor. 1 La constante de proporcionalidad directa entre dos números es 0,7. El mayor es 20. Calcula el menor. 2 Se sabe que la altura y la sombra de un edificio son proporcionales. Si la sombra de un edificio

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño 1. Razón. Proporción numérica La razón de los números a y b es la fracción b a Una proporción numérica es una igualdad entre dos razones numéricas. En cualquier proporción el producto de los etremos es

Más detalles

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196

1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 2. Opera usando las propiedades de las potencias: a) ( 5) 4 ( 2)

Más detalles

c) Es 91 múltiplo de 7? y 7 divisor de 91?

c) Es 91 múltiplo de 7? y 7 divisor de 91? UNIDAD 1: NÚMEROS NATURALES (1 pto) Ejercicio nº 1.- a) Escribe los diez primeros múltiplos de 15: IES EL CORONIL b) Todos los divisores del 60 c) Es 91 múltiplo de 7? y 7 divisor de 91? (1 pto) Ejercicio

Más detalles

Proporcionalidad. Algunas aplicaciones: ofertas de supermercados. 1. Proporción numérica 1.a. Razón y proporción. Razón entre dos números

Proporcionalidad. Algunas aplicaciones: ofertas de supermercados. 1. Proporción numérica 1.a. Razón y proporción. Razón entre dos números Proporcionalidad Algunas aplicaciones: ofertas de supermercados Continuamente vemos distintas ofertas en supermercados y comercios que intentan atraer la atención del consumidor: Llévese 3 y pague 2. La

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO Pág. ENUNCIADOS Indica si los siguientes pares de magnitudes son directa o inversamente proporcionales: a) La distancia recorrida por un caminante, a velocidad constante, y la duración del paseo. b) El

Más detalles

2 Forma fraccionaria y decimal de los números racionales

2 Forma fraccionaria y decimal de los números racionales a las Enseñanzas Aplicadas Forma fraccionaria y decimal de los números racionales Página. Pasa estas fracciones a forma decimal: b) c) d) 0 :, b) : 0, c)! : 0, d)! : 0 0, 0. Pasa a forma fraccionaria.

Más detalles

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales.

Entonces la regla de tres simple se utiliza para calcular magnitudes o cantidades proporcionales. REGLA DE TRES SIMPLE La regla de tres simple es una herramienta muy útil y a la vez muy fácil de usar. La utilizamos diariamente, por ejemplo, cuando deseamos saber cuánto costarán 3 kg de naranjas, si

Más detalles

REGLA DE TRES SIMPLE Y COMPUESTA

REGLA DE TRES SIMPLE Y COMPUESTA 1 REGLA DE TRES SIMPLE Y COMPUESTA Actividad Especial de Recuperación CONCEPTOS BÁSICOS Regla de tres directa: se aplica cuando entre las magnitudes se establecen las relaciones: A más A menos más. menos.

Más detalles

HOJA DE TRABAJO 3. PROPORCIÓN: DIRECTA E INVERSA.

HOJA DE TRABAJO 3. PROPORCIÓN: DIRECTA E INVERSA. Nombre: Curso 2º E.S.O. HOJA DE TRABAJO 3. PROPORCIÓN: DIRECTA E INVERSA. En la unidad didáctica anterior has estudiado las funciones lineales, en concreto, la identidad y la doble. En esta unidad serás

Más detalles

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.-

MATEMÁTICAS 2º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: Ejercicio nº 2.- MATEMÁTICAS º ESO ENTEROS Y DIVISIBILIDAD. Ejercicio nº 1.- Rodea con un círculo los números enteros: 5 6 1, 45 7 19 4 5, 5 1 4 9 Ejercicio nº.- Sitúa cada número (entero o natural) en el conjunto que

Más detalles

Tema 1 Fracciones y decimales

Tema 1 Fracciones y decimales Código 80986 Curso 016-17 MATEMÁTICAS ACADÉMICAS º ESO (EJERCICIOS DE REPASO) Tema 1 Fracciones y decimales 1. que sean mayores que 1 o menores que 1 en parte entera y parte fraccionaria. fracciones que

Más detalles

Razón y proporción (I)

Razón y proporción (I) Matemáticas 2.º ESO Unidad 5 Ficha 1 Razón y proporción (I) Una razón es la división entre dos cantidades comparables. Se representa a b y se lee «a es a b». 1. Calcula mentalmente las razones entre las

Más detalles

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay?

(1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? 5º. P.Orales. El Quinzet 10.2 (1) Hay 3 mesas y en cada una hay 5 chicas. También hay una mesa con 3 chicas. Cuántas chicas hay? (2) Ayer fuimos a coger moras. Yo cogí 17 y mi hermano se comió 11. Cuántas

Más detalles

Nombre y Apellidos: N 3

Nombre y Apellidos: N 3 Nombre y Apellidos: 3 Problemas N 3 P á g i n a 1 1. Cierto electrodoméstico costaba hace años 172. Su precio actual es el triple de que entonces tenía. Cuánto vale ahora dicho electrodomésticos? 2. El

Más detalles

Examen de Matemáticas 4º de ESO Opción A

Examen de Matemáticas 4º de ESO Opción A Examen de Matemáticas 4º de ESO Opción A 1. He invitado a María al cine y por las dos entradas me han cobrado 15. Cuánto hubiera tenido que pagar si hubiera invitado a otros 5 amigos más? 2. Una piscina

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 8. Proporcionalidad numérica 1. Proporcionalidad simple directa Una magnitud es toda cualidad de un ser que pueda medirse. Ejemplos de magnitudes son la longitud, la temperatura,

Más detalles

Examen de Matemáticas Unidad: Las Fracciones

Examen de Matemáticas Unidad: Las Fracciones I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas Unidad: Las Fracciones Nombre y Apellidos: Grupo: º A Fecha: 10/1/008 CALIFICACIÓN: Ejercicio nº 1.- Escribe en cada caso la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 7 PIENSA Y RESUELVE 8 Calcula dos números cuya suma sea 191 y su diferencia 67. Llamamos e y a los números que buscamos. Tenemos que: Sumando: = 58 = 58 = 19 y = 191 = 6 Solución: = 19; y = 6 9 Dos

Más detalles

NÚMEROS DECIMALES y NÚMEROS RACIONALES.

NÚMEROS DECIMALES y NÚMEROS RACIONALES. NÚMEROS DECIMALES y NÚMEROS RACIONALES. RECORDAR: Llamamos: 0' décima, 0' 0 centésima, 0' 00 milésima, 0 00 000 0' 000 diezmilésima,... 0000 limitados decimales exactos 0,5 Tipos de decimales decimales

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA EDISON MEJIA MONSALVE

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA EDISON MEJIA MONSALVE INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS. ASIGNATURA: MATEMATICAS. NOTA DOCENTE: TIPO DE GUIA: EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION

Más detalles

8 Proporcionalidad. 1. Razón y proporción

8 Proporcionalidad. 1. Razón y proporción 8 Proporcionalidad 1. Razón y proporción Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 150 km en 5 horas. En qué unidades expresarías la velocidad? 150 : 5 = 0 km/h P I E

Más detalles

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9 MATEMÁTICAS 2º ESO EJERCICIOS/PROBLEMAS: PROPORCIONALIDAD NOMBRE FECHA 1.- Escribe = o entre cada par de razones según formen o no proporción 1 3 5 15 9 3 2 4 9 9 4 2 2.- Calcula el término desconocido

Más detalles

1. * Si 12 bolas de acero iguales tienen un peso de 7200 gramos, cuánto pesarán 50 bolas iguales a las anteriores? (SOLUCIÓN: gramos = 30kg).

1. * Si 12 bolas de acero iguales tienen un peso de 7200 gramos, cuánto pesarán 50 bolas iguales a las anteriores? (SOLUCIÓN: gramos = 30kg). 1. * Si 12 bolas de acero iguales tienen un peso de 7200 gramos, cuánto pesarán 50 bolas iguales a las anteriores? (SOLUCIÓN: 30.000 gramos = 30kg). 1 2. * Un coche ha dado 60 vueltas a un circuito en

Más detalles

6º. El Quinzet 11.17

6º. El Quinzet 11.17 6º. El Quinzet 11.1 (1) Tres manzanas cuestan 1. Cuántas manzanas puedo comprar con 5? (2) Cuál es la décima parte de 30? (3) Cuántos cuartos de hora hay en 5 horas? (4) Diez cuartos de hora, cuántas horas

Más detalles

ECUACIONES E INECUACIONES

ECUACIONES E INECUACIONES ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x

Más detalles

= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado:

= 10. = 2 h) 2x 5 = 3 4. = 1 3x. = 3 3 7x. Ecuaciones de primer y segundo grado y problemas. 1. Resuelve las siguientes ecuaciones de primer grado: Hoja de Ejercicios Ecuaciones de primer y segundo grado y problemas 1. Resuelve las siguientes ecuaciones de primer grado: a) x x1 b) x c) x 10 x d) 1x 1 1 x e) x 0 x1 f) x g) x1 x1 h) x x i) x x 1 j)

Más detalles

1- Hay que envasar tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar?

1- Hay que envasar tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar? PROBLEMAS 4.º 14 CURSO 2009/2010 UNIDAD- 4 LA DIVISIÓN 1- Hay que envasar 7.056 tomates en botes de 15 tomates cada uno. Si antes de envasarlos se pudren 216 tomates, cuántos botes se podrán llenar? 2-

Más detalles

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg

Kg que compró en última tienda = =Kg que necesitaba - kg comprados en tiendas anteriores = = 12 - ( 4,5 + 2,75 ) = 12-7,25 = 4,75 kg 61.> Vamos a cercar una finca de 145,75 m. y queremos colocar un poste cada 2,5 m. Cuántos postes necesitaremos? Partimos 145,75 m en trozos de 2,5 m = 145,75 : 2,5 = =1457,5 : 25 = 58,3 trozos y por tanto

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES URB. LA CANTERA, S/N. 988 HTTP:/WWW.MARIAAUXILIADORA.COM º ESO SISTEMAS DE ECUACIONES º. Empareja cada sistema con su solución. a) 8 0 b) c) d) ) =, = -/ ) = 8, = ) =, = ) =, = º. De entre los siguientes

Más detalles

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos:

π. C. Calcula la fracción generatriz de los siguientes decimales periódicos: NÚMEROS RACIONALES e IRRACIONALES A. Clasifica los siguientes números situándolos en el siguiente diagrama en el conjunto correspondiente:!!. π Q R Z B. Calcula y simplifica: C. Calcula la fracción generatriz

Más detalles

4. Las fracciones SOLUCIONARIO 1. CONCEPTO DE FRACCIÓN 2. FRACCIONES EQUIVALENTES. 8. Representa en la recta los siguientes números: 1

4. Las fracciones SOLUCIONARIO 1. CONCEPTO DE FRACCIÓN 2. FRACCIONES EQUIVALENTES. 8. Representa en la recta los siguientes números: 1 . Las fracciones. CONCEPTO DE FRACCIÓN PIENSA Y CALCULA Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? / CARNÉ CALCULISTA 0 : C = ; R = APLICA LA TEORÍA.

Más detalles

EJERCICIOS VERANO 2011 MATEMÁTICAS DE 1º ESO

EJERCICIOS VERANO 2011 MATEMÁTICAS DE 1º ESO EJERCICIOS VERANO 2011 MATEMÁTICAS DE 1º ESO Trabajos de repaso para 1º de ESO: 1. Efectúa respetando el orden de las operaciones: a). 4 +. (14 6) 20 : 4 = b) 16. 4 + 1 = 2. Calcula a) + 2 4 b) + 4 + -20.

Más detalles

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego Apuntes de Matemáticas Proporcionalidad y porcentajes Fecha: MAGNITUD: Llamaremos magnitud a todo aquello que se puede pesar, contar o medir de alguna manera. Por tanto, son magnitudes el tiempo, el peso,

Más detalles

Materia: MATEMÁTICAS. Curso: 3º ESO Nº:

Materia: MATEMÁTICAS. Curso: 3º ESO Nº: REPASO GLOBAL COLEGIO HISPANO INGLES Rambla General Franco, 9-800 Santa Cruz de Tenerife + 9 76 06 - Fa: + 9 78 77 Materia: MATEMÁTICAS Evaluación: Fecha: Curso: º ESO Nº: NÚMEROS REALES: ) Aproima el

Más detalles

PROPORCIONALIDAD NUMÉRICA

PROPORCIONALIDAD NUMÉRICA Veremos PROPORCIONALIDAD NUMÉRICA TEMA 9. GRUPO: 2 A La razón de dos números. La proporción. Que es una magnitud y estudiaremos: Magnitudes Dependientes Relación directa: -Directamente proporcional Relación

Más detalles

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos.

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos. MATEMÁTICAS 1º ESO PROBLEMAS: DECIMALES NOMBRE FECHA 1.- La distancia de las casas de cuatro amigos a su instituto son: 1,295 1,234 1,874 y 1,527 metros respectivamente. a) Ordena las distancias de las

Más detalles

TEMA 2: PROPORCIONALIDAD

TEMA 2: PROPORCIONALIDAD TEMA 2: PROPORCIONALIDAD 1. MAGNITUDES DIRECTA E INVERSAMENTE PROPORCIONALES. Definición. Se dice que dos magnitudes son directamente proporcionales si al multiplicar o dividir una de ellas por un número,

Más detalles

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES

ASIGNATURA: MATEMATICAS NOTA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3 7 JUNIO 07 DE UNIDADES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA N DURACION 3

Más detalles

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente:

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente: ECUACIONES Ejercicio nº 1.- Dada la ecuación: x 1 x 1 x 5 3x 7 responde razonadamente: a Qué valor obtienes si sustituyes x 3 en el primer miembro? b Qué obtienes si sustituyes x 3 en el segundo miembro?

Más detalles

Ejercicios pendientes matemáticas 1º ESO Bloque 1 BLOQUE 1

Ejercicios pendientes matemáticas 1º ESO Bloque 1 BLOQUE 1 BLOQUE 1 1.- Resuelve las siguientes operaciones combinadas: 7 9 7 6 1 c) 7 1: d) 1 8 :7 7 e) : 1 7 9: f) 6 1 :6 1: g) 9 1 7 9 6: h) 1 1 8 0: 1 6 i) 1 9: : 1 7 19 j) 6 6 9: 1 1.- Tres amigos han reunido

Más detalles

NOMBRE: 1. Redondea a las centenas de mil los siguientes números:

NOMBRE: 1. Redondea a las centenas de mil los siguientes números: NOMBRE: 1. Redondea a las centenas de mil los siguientes números: a) 6 342 567 b) 12 535 000 c) 542 657 000 d) 67 584 000 2. Si a = 2 3 3 5 7; b = 2 4 3 2 5 7 y c = 2 3 5 7, averigua: a) Si b es múltiplo

Más detalles

1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción:

1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción: TEMA 8. PROPORCIONALIDAD NUMERICA 1. Calcula la razón en cada caso e indica las parejas que pueden formar una proporción: 4 5 8 7 12 15 16 14 8 10 80 70 2. Indica qué proporciones son ciertas: 4 10 8 20

Más detalles

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda

NÚMEROS NATURALES. Evaluación A. Ten en cuenta. Recuerda. Recuerda NÚMEROS NATURALES Evaluación A 1. Realiza las siguientes operaciones. a) 234 + 57 + 2 345 = b) 456 93 = c) 876 49 = d) 875 : 35 = 2. Al dividir un número entre 27 el cociente es 12 y el resto es 9. De

Más detalles

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA Matemáticas 3º eso La proporcionalidad es herramienta que se usa p contar número de individ en grandes poblacione Se elige una parte de l superficie, se realiza

Más detalles

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES 1. Magnitudes Directamente Proporcionales Kg de café Precio ( ) 1 4 2 8 3 12 4 16 5 20 8 32 Estas dos magnitudes, peso en kg de café y su precio en, se dice

Más detalles

NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO

NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO NOMBRE Y APELLIDOS REPASO DE MATEMÁTICAS 1ºESO 1. Responde a las preguntas y justifica tu respuesta: a) El número 14 es divisor de 56? Explica por qué. b) El número 310 es múltiplo de 31? Explica por qué.

Más detalles

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:...

FRACCIONES. a) c) e) 3. - Escribe las fracciones: - Catorce diecinueveavos:... - Ocho onceavos:... FRACCIONES. - Observa el gráfico y responde: a) Cuántos cuadrados ves? b) Cuántos cuadrados negros hay? c) Qué fracción del conjunto representan los cuadrados negros? d) Qué fracción del conjunto representan

Más detalles

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100 1.- Es cribe D en los pares de magnitudes directamente proporcionales, I en las inversamente proporcionales y X en las que no sean ni una cosa ni otra.. El número de personas que van en el autobús y la

Más detalles

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es?

2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I. 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 2º ESO - PROBLEMAS UNIDAD 6: ECUACIONES I PÁGINA 142 1 ) Si al triple de un número le restas 8, obtienes 25. Qué número es? 3x 8 = 25 Solución: 11 Si a cierta cantidad le restas su tercera parte y le sumas

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 22 / 09 / 15 Guía Didáctica 4-3 Desempeños:* Reconoce y aplica las propiedades

Más detalles

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = =

Tema 7: Sistemas de ecuaciones lineales. 1.- Resuelve los siguientes sistemas mediante el método de sustitución: = = Matemáticas º ESO Ejercicios Tema Bloque II: Álgebra Tema : Sistemas de ecuaciones lineales..- Resuelve los siguientes sistemas mediante el método de sustitución: 9 0 0 0.- Resuelve los siguientes sistemas

Más detalles

Unidad 2 Proporcionalidad Introducción

Unidad 2 Proporcionalidad Introducción Unidad 2 Proporcionalidad Introducción Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud), epresiones temporales (tiempo),

Más detalles

1. Números naturales y enteros

1. Números naturales y enteros . Números naturales y enteros EJERCICIO. Resuelve las siguientes operaciones con números enteros: 7 9 + + 7 + = 7 + + 8 = EJERCICIO. Calcula los siguientes productos y divisiones de números enteros: (

Más detalles

Números enteros y racionales

Números enteros y racionales Números enteros y racionales. Operaciones con enteros El día de enero la temperatura máxima en un determinado lugar fue de C, y la temperatura mínima, de 8 C. Cuál ha sido la variación de temperaturas?

Más detalles

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD

1º PCPI: MATEMÁTICAS EFA MORATALAZ (Manzanares C. Real) PROPORCIONALIDAD PROPORCIONALIDAD - Proporcionalidad directa e inversa - Ejercicios y problemas de reglas de tres directas, inversas y compuestas. - Problemas de porcentajes - Problemas de repartos directa e inversamente

Más detalles

Ejercicios para la recuperación de matemáticas de 2º de ESO.

Ejercicios para la recuperación de matemáticas de 2º de ESO. Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)

Más detalles

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES

3º lección TEMA 3.- LA DIVISIÓN DE LOS NÚMEROS NATURALES Una división es exacta cuando su resto es cero. En una división exacta se cumple: Dividendo= divisor x cociente -. Completa la tabla. Haz los cálculos de mentalmente: Ejemplo: 3196 47 376 68 00 resto 3196=

Más detalles

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números?

El producto de dos números es 4, y la suma de sus cuadrados 17. Cuáles son esos números? TEMA 4: INECUACIONES Y SISTEMAS SISTEMAS DE ECUACIONES NO LINEALES Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no es de primer grado. La resolución de estos sistemas se

Más detalles

TEMA 7: MAGNITUDES PROPORCIONALES: Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 7: MAGNITUDES PROPORCIONALES: Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 7: MAGNITUDES PROPORCIONALES: Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. Curso 2011-2012 TEMA : MAGNITUDES PROPORCIONALES: 1.- Proporcionalidad.

Más detalles

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco.

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. 2009 TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 07: MAGNITUDES PROPORCIONALES.

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios y problemas. Ecuaciones de er y º grado Resuelve mentalmente las siguientes ecuaciones: 55 5 0 5/, 5/ 6 6 + /, 8 ( ) + ( ) 56 ( )( + ) 0, 57 ( ) + 0 0, / 58 6 5 0, 65 66 + + 5 ( + )( ) + 7,

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio MATEMÁTICA 2º AÑO TRABAJO PRÁCTICO Nº 10 RAZONES Y PROPORCIONES. PROPORCIONALIDAD DIRECTA E INVERSA Razón Una razón es el cociente entre dos cantidades. En una razón, el numerador se llama antecedente

Más detalles

3. Un automóvil viaja a P km/h. Cuántos kilómetros recorre en 8 horas a la misma rapidez?

3. Un automóvil viaja a P km/h. Cuántos kilómetros recorre en 8 horas a la misma rapidez? GUÍA DE EJERCICIOS Nº 8 Parte 1 Contenidos: Proporcionalidad: proporciones directas; resolución de problemas 1. A y B son magnitudes directamente proporcionales. Respecto a la siguiente tabla, determine

Más detalles