UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B."

Transcripción

1 DIAGRAMA CIRCULAR DE LA MAQUINA Hoja Nº II-074 SINCRONICA DE ROTOR LISO Para corriente de excitación constante, el extremos A del fasor I describe una circunferencia, cuando el ángulo de carga varía desde 0 hasta 2π El diámetro de la circunferencia, para permeabilidad del hierro constante, está indicado a continuación para tres corrientes de excitación distintas. La circunferencia con el radio MO corresponde a la excitación en vacío

2 DIAGRAMA CIRCULAR DE LA MAQUINA Hoja Nº II-075 SINCRONICA DE ROTOR LISO Para el estado de operación caracterizado por el punto B, la componente activa I a de la corriente de armadura I está en fase con la tensión V.La máquina genera potencia activa y el ángulo de carga correspondiente es positivo. Esto es válido para todo punto por encima del eje imaginario. Por ello, encima del eje imaginario se tiene el régimen como GENERADOR y por debajo, el régimen como MOTOR. Si se mantiene constante la potencia mecánica y con ella el Par y se varía la excitación, entonces el extremo del fasor I se desplaza sobre la recta de líneas interrumpidas, que corresponde a puntos de componente activa de la corriente de armadura constante.

3 DIAGRAMA CIRCULAR DE LA MAQUINA Hoja Nº II-076 SINCRONICA DE ROTOR LISO En la práctica, los posibles estados de operación están limitados por la corriente de armadura (límite térmico del arrollado del estator I max = I N ), la corriente de excitación (límite térmico del arrollado de excitación I fmax = I fn ). Además se tiene el ángulo de carga máximo permisible (teóricamente δ max = 90 ), que en la práctica no supera los 70, y la potencia máxima de accionamiento (Potencia activa nominal). Además existen limitaciones en cuanto a la corriente mínima de excitación permitida. Los diagramas circulares de turbogeneradores modernos no son circunferencias perfectas debido a la saturación magnética del hierro. Además la existencia de profundas ranuras en el rotor, donde va colocado el arrollado de excitación, las cuales ocupan únicamente 2/3 de la periferia, tiene como consecuencia que el entrehierro efectivo no es totalmente constante a lo largo de la periferia.

4 INFLUENCIA DE LA SATURACION MAGNETICA EN LA Hoja Nº II-077 MAQUINA SINCRONICA DE ROTOR LISO En máquinas modernas, de alto grado de utilización, la tensión magnética en el entrehierro juega un papel determinante. La reactancia magnetizante del circuito equivalente depende de la saturación del hierro, la cual a su vez varía con la carga. Para un estado de operación determinado, las reactancias pueden ser obtenidas con ayuda de la característica en vacío y el diagrama fasorial. Característica en vacío: Como característica en vacío se define la relación entre la tensión V del estator y la corriente de excitación I f, para el caso de que la corriente de armadura sea cero (I = 0) y el rotor gire a la velocidad sincrónica n 0. La característica en vacío está representada en la figura. Al mismo tiempo, en líneas interrumpidas está representada la relación entre V e I f que se obtendría para hierro no saturado.

5 INFLUENCIA DE LA SATURACION MAGNETICA EN LA Hoja Nº II-078 MAQUINA SINCRONICA DE ROTOR LISO Para el circuito equivalente, valen las siguientes expresiones: E r = (R 1 + jx 1 ).I + V E r = - j.ω.n 1.K T1.Φ r, Φ r = f(i 0 ) con I 0 = I f + I ó Φ r = f(fmm 0 ) con FMM 0 = FMM f + FMM 1 Si se supone que el flujo rotante Φ r depende en forma lineal de la corriente de excitación I 0, se puede escribir en forma simplificada: E r = - j.x 1m.I f - j.x 1m.I Con la definición E p = -j.x 1m.I se obtiene E r = E p j.x 1m.I La reactancia magnetizante X 1m en el circuito equivalente es por lo tanto una expresión para la parte del flujo en el entrehierro originado por la corriente del estator I. De la misma forma, E p es una medida del flujo rotante originado por el arrollado de excitación en el entrehierro. La suma de ambos flujos proporciona E r. Esta superposición de flujos supone sin embargo una dependencia lineal entre la FMM y el flujo magnético. Esta linealidad en general no se cumple, debido a la saturación del hierro. El circuito equivalente es por tanto solamente una aproximación.

6 INFLUENCIA DE LA SATURACION MAGNETICA Hoja Nº II-079 El diagrama fasorial representa el caso de un generador suministrando potencia reactiva inductiva. La tensión E p es originada por el campo rotante del rotor y la tensión E m = jx 1m.I por el campo rotante del estator. E r es por lo tanto la tensión originada por el campo resultante del entrehierro. Para la máquina sincrónica cargada es en general es en general E r E p. El si E r es menor o mayor que E p, depende del tipo de carga. En el caso de una carga inductiva, tal como está representado en el diagrama fasorial, E r es menor que E p. Evidentemente, las corrientes en el estator originan un campo rotante, que debilita el campo de la rueda polar. Es estos casos de carga, el campo resultante es menor que el campo de la rueda polar. La influencia de las corrientes del estator sobre el campo resultante se designa por reacción de armadura. El único campo en el entrehierro realmente existente, es el campo resultante. Por lo tanto, únicamente la magnitud E r posee un significado físico, mientras que E p es una tensión ficticia y con ello una magnitud de calculo únicamente. Determinante para la saturación del hierro, es por tanto E r. Para dibujar el diagrama fasorial de la máquina bajo carga, hemos supuesto hasta ahora, que se conoce el estado de saturación de la máquina y con ello X m. Veremos ahora, de qué forma puede determinarse el diagrama fasorial sin esta suposición, con ayuda de la característica en vacío. Para ello, consideremos el diagrama fasorial para un generador, donde la secuencia de la construcción se indica con números enmarcados en un círculo. (II-080). Como los campos de fuga o dispersión se cierran en su mayor parte a través del aire, puede considerarse para los casos de carga normales de la máquina, la reactancia de fuga como independiente de la saturación magnética. X 1 es por tanto una constante.

7 INFLUENCIA DE LA SATURACIÓN MAGNETICA Hoja Nº II-079 El diagrama fasorial puede ser trazado por lo tanto sin problema alguno hasta el fasor E r. De II-078 E = jx. I' p 1m f E r = jx1 m.( I + I' f ) I + I' I con f = 0 I 0 es la corriente magnetizante. Para la determinación de I.X 1m, se hace uso de una característica de vacío linealizada. E r = j X m. I 0

8 INFLUENCIA DE LA SATURACIÓN MAGNETICA Hoja Nº II-080 Secuencia de la construcción del Diagrama Fasorial a partir de la característica en vacío (II-077)

9 INFLUENCIA DE LA SATURACIÓN MAGNETICA Hoja Nº II-082 Con ayuda de la característica en vacío, conociendo E r, es posible determinar I 0. I 0 puede ser llevado ahora al diagrama fasorial, adelantado 90º con respecto a E r. Como I + I f = I 0, estando fijado el fasor I, lo estará ahora también el fasor I f. Estando la tensión polar E p en 90º en retraso respecto a I f, también la dirección de E p será conocida.

10 INFLUENCIA DE LA SATURACIÓN MAGNETICA Hoja Nº II-083 La saturación del hierro viene determinada por E r, de manera qua para el estado de operación correspondiente, las tensiones inducidas E P y E m deben estar en la característica de vacío sobre la recta que pasa por O y A. Ya que la característica en vacío real ha de sustituirse por la recta OA, el cálculo se hace en base a una permeabilidad constante, en donde A fija el valor de la permeabilidad. Resumen: La reacción de armadura significa físicamente la influencia de las corrientes del estator sobre el campo en el entrehierro. Esta influencia determina fuertemente el comportamiento de la maquina sincrónica. La reacción de armadura puede ser expresada en dos formas, completamente diferentes: Mediante una capa ampérica ficticia sobre el rotor, la cual es igual a la capa ampérica del estator. Mediante la caída de la tensión en la reactancia magnetizante X m por las corrientes del estator.

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos, Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo

Más detalles

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL.

MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. MÁQUINAS DE CORRIENTE CONTÍNUA. LA MÁQUINA LINEAL. Fuerza sobre el conductor. r r r df = IΛ B dl F = I. B.L Tensión inducida en el conductor. dφ dφ e =, pero dados los sentidos normales se cumple que :

Más detalles

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina

3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE. Un motor de inducción tiene físicamente el mismo estator de una máquina 220 3.2 CONTROL DE GIRO DE UN MOTOR DE INDUCCIÓN DE JAULA DE ARDILLA 3.2.1 Descripción del problema. Un motor de inducción tiene físicamente el mismo estator de una máquina sincrónica con diferente construcción

Más detalles

ESCUELA DE INGENIERÍA ELÉCTRICA TRIANGULO DE POTIER

ESCUELA DE INGENIERÍA ELÉCTRICA TRIANGULO DE POTIER ESCUELA DE INGENIERÍA ELÉCTRICA MÉTODO 1 INTRODUCCIÓN: El Triángulo de Potier es un método gráfico que tiene un papel importante dentro de la selección y puesta en funcionamiento de las maquinas síncronas

Más detalles

Electromagnetismo (Todos. Selectividad Andalucía )

Electromagnetismo (Todos. Selectividad Andalucía ) Electromagnetismo (Todos. Selectividad Andalucía 2001-2006) EJERCICIO 3. (2.5 puntos) Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una

Más detalles

Contenido. Acerca del autor... Prólogo... Agradecimientos...

Contenido. Acerca del autor... Prólogo... Agradecimientos... Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

Capítulo 4: DEVANADOS

Capítulo 4: DEVANADOS Capítulo 4: DEVANADOS Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos J. Pontt O. Felipe Leiva Cruz 4.1 Campo magnético producido en máquinas rotatorias 4.1.1 Estructura de las

Más detalles

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016

Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Universidad de Costa Rica Escuela de Ingeniería Eléctrica IE 0615 - Máquinas Eléctricas II Grupo N 54 - Subgrupo N 03 I Ciclo 2016 Reporte 4: La Máquina Síncrona Polos Lisos. Generador Bajo Carga Mauricio

Más detalles

Curva de vacío. Recta del entrehierro 2.- COMPORTAMIENTO DE UN GENERADOR SINCRONO BAJO CARGA

Curva de vacío. Recta del entrehierro 2.- COMPORTAMIENTO DE UN GENERADOR SINCRONO BAJO CARGA POTENCIA EN LAS MAQUINAS SINCRONAS 1.- COMPORTAMIENTO DE UN GENERADOR EN VACIO Cuando la máquina esta trabajando en vacío (a velocidad constante) la tensión del estator depende del flujo magnético generado

Más detalles

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales

El circuito magnético principal de las máquinas lineales Líneas de fuerza principales de las máquinas lineales 13.2 - El circuito magnético principal de las máquinas lineales 13.2.1 - Líneas de fuerza principales de las máquinas lineales El flujo inductor que atraviesa el entrehierro y que constituye el flujo activo

Más detalles

Fundamentos de los Motores Eléctricos

Fundamentos de los Motores Eléctricos 1 B = Φ A 2 Fuerza sobre un conductor eléctrico. Fuerza proporcional a: Densidad de flujo magnético. Corriente eléctrica que circula por el conductor. Seno del ángulo que forman los campos B e I. Fuerza

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA.

SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. SESION 8: PRINCIPIOS DE FUNCIONAMIENTO DE MAQUINAS DE CORRIENTE CONTINUA. 1. INTRODUCCION Haciendo girar una espira en un campo magnético se produce una f.e.m. inducida en sus conductores. La tensión obtenida

Más detalles

TEMA 4 MÁQUINAS SÍNCRONAS

TEMA 4 MÁQUINAS SÍNCRONAS TEMA 4 MÁQUINAS SÍNCRONAS INDICE 1.- PRINCIPIOS DE FUNCIONAMIENTO Y FUNDAMENTOS TEÓRICOS... 2 2.- FUNCIONAMIENTO DE LA MAQUINA SINCRONA COMO GENERADOR... 5 2.1.- FUNCIONAMIENTO EN VACIO Y EN CARGA DE LA

Más detalles

Motores de corriente directa (DC) Motores de corriente alterna (AC):

Motores de corriente directa (DC) Motores de corriente alterna (AC): De acuerdo a la fuente de tensión n que alimente al motor, podemos realizar la siguiente clasificación: Motores de corriente directa (DC) Motores de corriente alterna (AC): El Motor Asíncrono o de Inducción

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C.

SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C. SESION 9.1: PARTES PRINCIPALES DE UNA MAQUINA DE C.C. 1. INTRODUCCION Las máquinas de corriente contínua(cc) se clasifican en: GENERADORES (DINAMOS) MOTORES ELECTRICOS Son máquinas reversibles, el motor

Más detalles

La Autoexcitación en el Generador DC

La Autoexcitación en el Generador DC La Autoexcitación en el Generador DC Jorge Hans Alayo Gamarra julio de 2008 1. Introducción La invención del proceso de la autoexcitación en las máquinas eléctricas, acreditada a Wener Von Siemens hace

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

SESION 10: GENERADORES DE C.C.

SESION 10: GENERADORES DE C.C. SESION 10: GENERADORES DE C.C. 1. INTRODUCCION Los generadores de c.c. son máquinas de cc que se usan como generadores. No hay diferencia real entre un generador y un motor, pues solo se diferencian por

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

Generador Sincrónico. Dr. Ing. Mario Guillermo Macri

Generador Sincrónico. Dr. Ing. Mario Guillermo Macri Generador Sincrónico Turboalternador Hidroalternador Pelton Francis Kaplan Proceso de Bobinado de un Estator de un Generador Sincrónico Sistema de excitación básico (electromecánico) Sistema de excitación

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

Problemas de Circuitos Magnéticos

Problemas de Circuitos Magnéticos Problemas Circuitos Magnéticos Página 1 de 6 Problemas de Circuitos Magnéticos 1-1. Determinar la intensidad en corriente continua que debe circular por la bobina de la Fig. 1-35 para que en la rama central

Más detalles

Bobi b n i ad a os s de e má m q á u q i u n i as a s de e corrie i n e te e contin i ua u. a

Bobi b n i ad a os s de e má m q á u q i u n i as a s de e corrie i n e te e contin i ua u. a Bobinados de máquinas de corriente continua. N PALLERO 1 Máquinas de Corriente continua Aspectos Constructivos N PALLERO 2 Bobinados de máquinas Rotativas. Bobinados de inducido (MCC) N PALLERO 3 PARAMETROS

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en:

Unidad 7: Motores eléctricos de corriente continua I. Los motores eléctricos se pueden clasificar según la corriente empleada en: INTRODUCCIÓN Los motores eléctricos se pueden clasificar según la corriente empleada en: PARTES DE UN MOTOR ELÉCTRICO Hemos visto que el generador es una máquina reversible. Es decir, puede actuar también

Más detalles

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1

CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4. Análisis de Sistemas de Potencia Grainger-Stevenson. Capítulo 1 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 4 OBJETIVO Representar y analizar un SEP BIBLIOGRAFIA Análisis de Sistemas de Potencia

Más detalles

Motores y máquinas eléctricas TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11

Motores y máquinas eléctricas TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11 TEMA 1. PRINCIPIOS BÁSICOS DE LA CONVERSIÓN DE LA ENERGÍA ELÉCTRICA... 11 1.1 Introducción... 11 1.2 Definición y clasificación de las máquinas eléctricas... 11 1.3 Conceptos básicos... 13 1.3.1 Inductancia

Más detalles

ENCENDIDOS TRANSISTORIDADOS TZ-i y TZ-h

ENCENDIDOS TRANSISTORIDADOS TZ-i y TZ-h ENCENDIDOS TRANSISTORIDADOS TZ-i y TZ-h SISTEMAS AUXILIARES DEL MOTOR IES Mateo Alemán, curso 2010/11 Miguel Antonio Centeno Sánchez Evolución del sistema SZ al TZ 2 Denominación de los modelos de encendido

Más detalles

Ahorro de materiales en equipos, líneas de transmisión y distribución.

Ahorro de materiales en equipos, líneas de transmisión y distribución. MÁQUNA NCRÓNCA 9.1 ntroducción La generación, transmisión y distribución de energía eléctrica se efectúa a través de sistemas trifásicos de corriente alterna. Las ventajas que se obtienen en los sistemas

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS

CRONOGRAMA DE MATERIA PROFESOR: TEL: E. MAIL: PRE-REQUISITOS COMPETENCIAS 1 CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERIAS DIVISIÓN DE INGENIERIAS DEPARTAMENTO DE INGENIERIA MECANICA ELECTRICA CRONOGRAMA DE MATERIA CARRERA: ING. COM. Y ELECT. HORAS SEM: T: 60 hrs. P:

Más detalles

PRUEBAS EN UN COMPRESOR DE AIRE DE DOS. compresor de dos etapas. Obtener la curva de caudal v/s presión de descarga. Compresor de aire a pistón.

PRUEBAS EN UN COMPRESOR DE AIRE DE DOS. compresor de dos etapas. Obtener la curva de caudal v/s presión de descarga. Compresor de aire a pistón. ANEXO Nº 1 2 UNIVERSIDAD TECNOLOGICA METROPOLITANA Facultad de Ingeniería Departamento de Mecánica Ingeniería en Mecánica Experiencia: PRUEBAS EN UN COMPRESOR DE AIRE DE DOS ETAPAS i. Objetivos. Reconstruir

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL - FRBA

UNIVERSIDAD TECNOLÓGICA NACIONAL - FRBA UNIVERSIDD TENOLÓGI NIONL - FR DERTMENTO DE ELETROTENI MÁQUINS ELÉTRIS II DIGRM IRULR DEL MOTOR SINRÓNIO TRIFÁSIO. Introducción El diagrama circular de la máquina asincrónica es el lugar geométrico de

Más detalles

6.1.1)Introducción. 6.1.2)Aspectos constructivos.

6.1.1)Introducción. 6.1.2)Aspectos constructivos. CAPÍTULO 6 6.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 6.1.1)Introducción. Energía hidráulica, nuclear, etc Turbina w,t Generador sincrónico Campo - + I f P V 3f Fig.6.1.: Esquema básico

Más detalles

Bloque II: 5- Motores de corriente alterna (Motores trifásicos)

Bloque II: 5- Motores de corriente alterna (Motores trifásicos) Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección

Más detalles

Máquinas Eléctricas Síncronas y de Corriente Continua

Máquinas Eléctricas Síncronas y de Corriente Continua Máquinas Eléctricas Síncronas y de Corriente Continua Página 1 de 10 Programa de: Máquinas Eléctricas Síncronas y de Corriente Continua UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas

Más detalles

Motor TR - TS CARACTERÍSTICAS

Motor TR - TS CARACTERÍSTICAS Motor TR - TS Sin freno Con freno CARACTERÍSTICAS MOTOR CON/SIN FRENO. Arrollamientos trifásicos a1500 y 3000 Rpm. Arrollamientos monofásicos a 1500 y 3000 Rpm. Trifásicos en conexión Dahlander, polos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo

4. Control Vectorial. 1. Modelo dinámico del motor de inducción. 2. Control vectorial del motor de inducción. 3. Control vectorial Directo 4. Control Vectorial Control de Máquinas Eléctricas Primavera 2009 1. Modelo dinámico del motor de inducción 2. Control vectorial del motor de inducción 3. Control vectorial Directo 4. Control vectorial

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

3. MOTORES MONOFÁSICOS

3. MOTORES MONOFÁSICOS 3. MOTORES MONOFÁSICOS 142 Temario El motor de inducción monofásico. Con un devanado auxiliar. Con arranque por capacitor. Con capacitor permanente. Con arranque por capacitor y operación por capacitor.

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 10: Máquinas de corriente continua PUNTOS OBJETO

Más detalles

Tema 3. Circuitos magnéticos

Tema 3. Circuitos magnéticos Tema 3. Circuitos magnéticos Ya sabemos de temas anteriores la importancia del campo magnético dentro de la electricidad. Hemos estudiado y aprendido la importancia del campo magnético, su inducción, el

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología SISTEMAS DE POTENCIA TRABAJO PRÁCTICO Nº 4 Cálculo de Cortocircuito ALUMNO: AÑO 2015 INTRODUCCIÓN El Cortocircuito es una conexión

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico balanceados, David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite

Más detalles

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable

Electricidad Inducción electromagnética Inducción causada por un campo magnético variable P3.4.3.1-2 Electricidad Inducción electromagnética Inducción causada por un campo magnético variable Medición de la tensión de inducción en un lazo conductor con un campo magnético variable Descripción

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

VARIABLES ESTADÍSTICAS BIDIMENSIONALES

VARIABLES ESTADÍSTICAS BIDIMENSIONALES VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

MOTORES PASO A PASO. Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica.

MOTORES PASO A PASO. Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica. MOTORES PASO A PASO 1. INTRODUCCIÓN Se define un motor como aquella máquina eléctrica rotativa que es capaz de transformar energía eléctrica en energía mecánica. ENERGÍA ELÉCTRICA ENERGÍA MECÁNICA Figura

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones:

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones: PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO MAGNETICO. INDUCCIÓN MAGNETICA José Mª Martín Hernández Fuerza de Lorentz: Efecto del campo magnético sobre una carga 1. (48-S09) Son verdaderas o falsas las siguientes afirmaciones? Razone su respuesta. a) La fuerza ejercida por un campo magnético sobre una

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen

Más detalles

LA MAQUINA SINCRONA EN REGIMEN ESTABLE

LA MAQUINA SINCRONA EN REGIMEN ESTABLE LA MAQUINA SINCRONA EN REGIMEN ESTABLE 7.1 La máquina de rotor cilíndrico 7.2 Circuito equivalente 7.3 Reactancia síncrona 7.4 La regulación 7.5 Características internas: curvas de vacío y de cortocircito

Más detalles

MOTORES SINCRÓNICOS DE POTENCIA FRACCIONARIA

MOTORES SINCRÓNICOS DE POTENCIA FRACCIONARIA UTN FRMza. (Ing. Electrónica) MÁQUINAS E INSTALACIONES ELÉCTRICAS Hoja: 1 de 7 UNIDAD Nº 5 Motores de Reluctancia. Motores de Histéresis. Motores de Inductor. Distintos tipos. MOTORES SINCRÓNICOS DE POTENCIA

Más detalles

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40)

BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) BLOQUE II: MÁQUINAS. TEMA 10. MÁQUINAS ELÉCTRICAS CUESTIONES (40) INTRODUCCIÓN C1. Define qué es una máquina eléctrica. C2. Realiza una clasificación de las máquinas eléctricas, explicando cada una de

Más detalles

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple

Jesús Eduardo Pulido Guatire, marzo Diagrama de Dispersión y Correlación Lineal Simple Jesús Eduardo Pulido Guatire, marzo 0 Diagrama de Dispersión y Correlación Lineal Simple Hasta el momento el trabajo lo hemos centrado en resumir las características de una variable mediante la organización

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

Planificaciones MAQUINAS ELECTRICAS. Docente responsable: RUIZ IGNACIO MANUEL. 1 de 6

Planificaciones MAQUINAS ELECTRICAS. Docente responsable: RUIZ IGNACIO MANUEL. 1 de 6 Planificaciones 8536 - MAQUINAS ELECTRICAS Docente responsable: RUIZ IGNACIO MANUEL 1 de 6 OBJETIVOS Objetivos (Ing. Mecánica) La materia brinda conocimientos teóricos y prácticos fundamentales sobre máquinas

Más detalles

Funcionamiento: Como transformador. Como Motor. Como Generador. Como Freno Electromagnético.

Funcionamiento: Como transformador. Como Motor. Como Generador. Como Freno Electromagnético. ÍNDICE 1. Principio de Funcionamiento.. Deslizamiento. 3. Circuito equivalente del motor y magnitudes características. 4. Aspectos constructivos. 5. Ensayos característicos. 6. Regulación de velocidad.

Más detalles

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207

Nombre de la asignatura: Maquinas Eléctricas. Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCC-0207 . - DATOS DE LA ASIGNATURA Nombre de la asignatura: Maquinas Eléctricas Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCC-0207 Horas teoría-horas práctica - créditos: 4-2-0 2. - UBICACIÓN a)

Más detalles

ME II 03 TEORIA DE BOBINADOS TRIFASICOS

ME II 03 TEORIA DE BOBINADOS TRIFASICOS TIPOS DE CONEXIONES EN MOTORES ASINCRONOS TRIFASICOS Existen dos tipos: Motor trifásico tipo jaula de ardilla. CONEXIONES INTERNAS Este tipo de conexiones se realizan cuando el motor se halla en el proceso

Más detalles

FORMATO DE SILABO I. DATOS GENERALES

FORMATO DE SILABO I. DATOS GENERALES FORMATO DE SILABO I. DATOS GENERALES 1. Nombre de la Asignatura: MAQUINAS ELÉCTRICAS 2. Carácter : OBLIGATORIO 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA 4. Código : IM0605 5. Semestre Académico

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

Máquinas síncronas. Temario. Introducción. Generador síncrono. Motor síncrono. Compensador síncrono. Por: Ing. César Chilet

Máquinas síncronas. Temario. Introducción. Generador síncrono. Motor síncrono. Compensador síncrono. Por: Ing. César Chilet Máquinas síncronas Por: Ing. César Chilet Temario Introducción. Generador síncrono. Motor síncrono. Compensador síncrono. 28/08/2010 cchilet@tecsup.edu.pe 2 1 Introducción El campo magnético giratorio

Más detalles