4.3. La ciudad Lineal Modelo de Hotelling

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4.3. La ciudad Lineal Modelo de Hotelling"

Transcripción

1 Modelo de Hotelling Mtilde Mchdo pr bjr ls trnsprencis: Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling El modelo:. Ciudd linel es el intervlo [0,]. Los consumidores están distribuidos uniformemente lo lrgo de este intervlo. 3. Hy empress, loclizds cd extremo que venden el mismo bien. L únic diferenci entre ls empress es su loclizción. 4. c coste de unidd del bien 5. t coste de trnsporte por unidd de distnci l cudrdo. Este coste es soportdo por los consumidores cundo eligen un empres o l otr. Represent el vlor del tiempo, gsolin, etc. 6. Los consumidores tienen demnds unitris o comprn unidd o ningun {0,} Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

2 Gráficmente Ms de consumidores dz z x Loclizción de l empres Loclizción de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Los costes de trnsporte del consumidor x: De comprr en l empres son tx De comprr en l empres son ( x) t s excedente bruto del consumidor - (es decir su máxim disponibilidd pgr) Supongmos que s es lo suficientemente grnde pr que el mercdo esté cubierto, es decir pr que todos los consumidores del intervlo puedn comprr. L utilidd de cd consumidor es por tnto dd por: U s-p-td Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

3 Tommos ls loclizciones de ls empress como dds y compiten en precios.. Derivción de ls curvs de demnd. Problem de optimizción en precios y equilibrio Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 El consumidor indiferente entre comprr en l tiend o se sitú en se define como el punto donde Ux ( ) Ux ( ) s p t s p t( ) p + t p + t( ) p + t p + t+ t t t p p + t Comprn Comprn p p + t t Si (p -p ) el consumidor indiferente se mueve hci l derech, es decir ument l demnd de l empres y disminuye l demnd de l empres Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

4 4.3. s U i Coste totl pr el consumidor x: p +tx p +t(-x) p p 0 i El consumidor indiferente Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 Un vez que sbemos cul es el consumidor indiferente podemos definir ls funciones de demnd de ls empress y. p p + t D( p, p) dz z 0 t 0 p p + t p p + t D( p, p) dz z t t L demnd de l empres por ejemplo depende positivmente de l diferenci de precios (p -p ) y negtivmente de los costes de trnsporte. Si ls dos empress colocn el mismo precio p p entonces se reprten el mercdo en prtes igules (el consumidor indiferente se situ en ½). Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

5 Decimos que el mercdo está cubierto cundo el consumidor indiferente quiere comprr, es decir: p p + t s p t 0 t Los beneficios de ls empress son: ( ) ( ) Π ( p, p ) p c D ( p, p ) p c p p + t t Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 El problem de l empres, por ejemplo, es: ( ) ( ) Mx Π ( p, p ) p c D ( p, p ) p c p Π p p + t ( p c) p t t CPO: 0 0 p p + t t p + t+ c p p + t+ c 0 p Como el problem es simétrico p p p* * * * p + t+ c p t+ c * p p t+ c Curv de rección de l empres Cundo t0 volvemos ertrnd p*c; Π*0 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 5

6 Un vez que tenemos los precios de equilibrio podemos clculr tods ls cntiddes de equilibrio: * * * * D( p, p) * * * * * D( p, p) D( p, p) ( ) ( ) * * * * * Π Π p c D t+ c c x Not: cunto myor es t más diferencido está el bien desde el punto de vist de los consumidores, myor es el poder de mercdo, los clientes que están más cerc están más cutivos porque les sle muy cro irse hst l otr empres. Esto permite umentr el precio de equilibrio y los beneficios. Cundo t0 (no hy diferencición) volvemos ertrnd Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling t Observciones: Cd empres sirve medio mercdo D* D* / L prdoj de ertrnd desprece p p >c Un umento de t implic más diferencición de productos. Por lo tnto ls empress compiten con menos vigor y obtienen beneficios myores. t0 volvemos ertrnd Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6

7 s U i p +tx p +t(-x) p t+c p t+c 0 i ½ El consumidor compr l vendedor que le slg más brto incluyendo el coste de trnsporte Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Como cmbin los precios cundo cmbin ls loclizciones de y? Si 0 y hy máxim diferencición Si ˆx Todos los consumidores comprrán l que teng el precio más brto, volvemos ertrnd, p p c y Π Π 0. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4 7

8 Cso Generl loclizciones endógens: periodos: En el primer periodo ls empress seleccionn loclizción En el segundo periodo ls empress compiten en precios dd su loclizción Se resuelve hci trás. Empezmos por el segundo periodo. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 Segundo periodo: L loclizción de l empres está en [0,] L loclizción de l empres está (-b) [0,] Not: L máxim diferencición serí con 0; y -b (es decir b0) l mínim diferencición (sustitutos perfectos) serí con -b +b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 8

9 . El consumidor indiferente: U ( ) U ( ) p + t( ) p + t( ( b)) p + t + t tx p + t + t( b) t( b) t ( b ) p p + t( b) t p p + t( b) t p p + t b t( b ) t( b ) p ( )( p b b+ ) ( ) ( ) p p ( b + ) p ( p b ) ( ) t( b ) + t b b t b Por tnto si p p l demnd de es +(-b-)/ (( ) ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 Ls demnds son: ( ) ( ) ( b ) p p D( p, p) + + t b ( b ) p p D( p, p) t( b ) p p b + + b t b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 9

10 Interpretción de ls funciones de demnd: si p D( p, p) + consumidores cutivos, su izquierd ( b ) mitd de los consumidores entre y -b b D( p, p) + b si p p p mitd de los consumidores entre y -b ( ) consumidores cutivos, su derech b p p D( p, p) + + t( b ) sensibilidd de l demnd frente l diferenci de precios Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 Gráficmente p +t(x-) p p 0 -b Mercdo cutivo de Mercdo cutivo de Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 0 0

11 . Encontrr ls funciones de rección ( ) Π ( ) (, ) ( ) + + b p p Mx p c D p p p c p t( b ) Π ( b ) p p CPO: ( p c) 0 p t( b ) t( b ) p ( b ) p + c + + ( t b ) ( t b ) p ( b ) p + c + + t( b ) t( b ) t p t( b ) + ( b ) p + c Función de rección + Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling. Encontrr ls funciones de rección ( ) b p p Mx Π ( p c) D( p, p) ( p c) b + + p t( b ) Π CPO: 0 p ( b ) p p b+ + + ( p c) 0 t( b ) t( b ) ( b ) p p + c b t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling

12 . Encontrr ls funciones de rección (cont.) ( ) b p + c b p + c b t( b ) t( b ) ( b ) 3p + 3c b + b ( t b ) 4 3p 3c b ( t b ) 4( t b ) t( 3 + b ) ( b ) p c+ 3 b b c+ t( b ) + y p c+ t( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3. Encontrr ls funciones de rección (cont.) * b * b p(, b) c+ t( b ) + y p(, b) c+ t( b ) Los precios son máximos cundo l diferencición es máxim (b0; p p c+t) y mínimos cundo l diferencición es mínim (+b (mism loclizción) y p p c) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 4

13 3. er periodo, elección simultne de y b Los beneficios son: ( ) ( ) Π * * * ( b, ) p( b, ) c D( b,, p( b, ), p( b, )) Π * * * ( b, ) p( b, ) c D( b,, p( b, ), p( b, )) * * * * Se sustituye p( b, ), p( b, ), D( b, ), D( b, ) y nos quedmos con un función solmente de y b. Scmos ls CPO como siempre. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 5 3. er periodo, elección simultne de y b * * b p p b Π ( b, ) c+ t( b) + c t( b) * * b pero p p t( b) 3 lo que simplific: b b b+ Π ( b, ) t( b) b+ t b b 3 b+ 3 6 ( ) ( ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 6 3

14 3. er periodo, elección simultne de y b ( ) ( 3 b+ ) Mx Π (, b) t b 8 Π ( b, ) ( 3 b+ ) 3 b+ CPO: t + t( b) 8 8 t ( b+ )( + b+ ) < 8 ( ) * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 7 3. er periodo, elección simultne de y b Mx Π (, b) t b b ( ) ( 3 + b ) ( ) 8 ( ) Π ( b, ) 3+ b 3+ b CPO: t + t( b) b 8 8 t ( + b )( + b+ ) < b b 8 * * Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 8 4

15 Conclusión: Ls empress se colocn en los extremos, eligen máxim diferencición. Pr l empres por ejemplo, un umento de (movimiento hci l derech) : Tiene un efecto positivo (efecto demnd) Tiene un efecto negtivo (efecto competenci) Si los costes de trnsporte son cudráticos el efecto competenci es más fuerte que el efecto demnd y ls empress prefieren máxim diferencición. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 9 L solución socilmente óptim es l que minimiz los costes de trnsporte y serí /4 y -b3/4. Por tnto desde el punto de vist socil hy demsido diferencición del producto cundo el mercdo es privdo. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 30 5

16 El problem del plnificdor socil: Excedente del consumidor x es: s-t(x-) -p si compr en s-t(x-(-b)) -p si compr en Por cd consumidor el vendedor gn p -c empres p -c empres Los precios son pur trnsferenci entre consumidores y productores, el excedente totl socido l consumidor x es: s-t(x-) -p +p -c s-t(x-) -c si compr en s-t(x-(-b)) -p +p -c s-t(x-(-b)) -c si compr en Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 Pr sber el máximo socil tenemos que derivr el consumidor indiferente: s t( ) c s t( ( b)) c ( ) ( ( b)) + + ( b) ( b) ( b) ( b) [ b ] ( b) ( b )( b+ ) ( b+ ) mitd de l distnci entre y -b ( b ) Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 3 6

17 El monopolist tiene que mx el beneficio socil que es lo mismo que minimizr los costes de trnsporte b+ b Min t( z) dz + t( z ) dz + t(( b) z) dz + t( z ( b)) dz b, 0 b+ b comprn comprn 0 -b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 33 b+ b Min t( z) dz + t( z ) dz + t(( b) z) dz + t( z ( b)) dz b, 0 b+ b comprn comprn ( z) ( z ) ( b z) ( z ( b)) Min + + b, b+ 3 0 b b b b b Min b, b Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 34 7

18 L CPO: b b b Min b, ( b ) 0 () 0 4b ( b ) 0 () b ()-(): 4 4b 0 b b lo que sustituyiendo en () implic que: * * 3 4 ( ) 0 ;( b ) 4 4 Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 35 L conclusión básic del modelo de Hotelling es el principio de diferencición: ls empress quieren diferencirse lo máximo posible pr disminuir l competenci en precios. Por veces puede que hy fuerzs que se oponen l diferencición y que incluso pueden llevr diferencición mínim: ) Ls empress pueden querer estr donde está l demnd (i.e. en el centro) ) En cso de usenci de competenci en precios (por ejemplo por que los precios están reguldos) puede llevr ls empress loclizrse en el centro y reprtirse el mercdo medis. Economí Industril - Mtilde Mchdo L Ciudd Linel El modelo de Hotelling 36 8

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Capítulo 7: El Modelo de OA-DA

Capítulo 7: El Modelo de OA-DA Cpítulo 7: El Modelo de OA-DA Jesús Rodríguez López Universidd Pblo de Olvide Sevill, 2009-2010 Jesús Rodríguez () Cpítulo 7: El Modelo de OA-DA Sevill, 2009-2010 1 / 41 7.1 L ofert gregd L relción de

Más detalles

Ecuaciones de Segundo Grado II

Ecuaciones de Segundo Grado II Alumno: Fech:. ECUACIONES DE SEGUNDO GRADO II Ecuciones de Segundo Grdo II Nturlez de Ríces depende = b - 4c Discriminnte si Propieddes de ls Ríces sum b x x producto c x. x Formción de l Ecución se debe

Más detalles

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía

Microeconomía: Consumo y Producción 1er curso (1º Semestre) Grado en Economía Microeconomí: Consumo y roducción 1er curso (1º Semestre) Grdo en Economí rte II. Tem III: Teorí de l demnd (Cp. 4 indyck, Cp. 4 Frnk, Cps. 6, 8 y 14 Vrin) rofesores: Inmculd Álvrez Ayuso (coordindor)

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

10. Optimización no lineal sin restricciones

10. Optimización no lineal sin restricciones 10. Optimizción no linel sin restricciones 10. Optimizción no linel sin restricciones Conceptos básicos Optimizción sin restricciones en dimensión 1 Métodos numéricos pr dimensión 1 Optimizción sin restricciones

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 28 de abril de 2010 Primer Prcil de Introducción l Investigción de Operciones Fech: 8 de bril de 00 INDICACIONES Durción del prcil: hrs. Escribir ls hojs de un solo ldo. No se permite el uso de mteril ni clculdor Numerr ls

Más detalles

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO

TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO TEMA 11: EL COSTE SOCIAL DEL MONOPOLIO 1. Demnd y excedente del consumidor 2. Decisiones de precio y cntidd: rbitrje, elsticidd e ingreso mrginl 3. Preciosúnicos únicos, mximizción del beneficio y optimlidd

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26 MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:

Más detalles

Matemática DETERMINANTES. Introducción:

Matemática DETERMINANTES. Introducción: Mtemátic Introducción: DETERMINANTES Clculndo el determinnte de un mtriz se puede determinr l cntidd de soluciones que tiene un sistem de ecuciones lineles de igul número de ecuciones que de incógnits.

Más detalles

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES ( )

MATEMÁTICAS III (Carrera de Economía) OPTIMIZACIÓN CON RESTRICCIONES (  ) MATEMÁTICAS III (Crrer de Economí) OPTIMIZACIÓN CON RESTRICCIONES ( http://www.geocities.com/jls ) El propósito centrl de l economí como cienci es el estudio de l signción óptim de los recursos escsos.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1

Tema 10. La competencia monopolística y el oligopolio. Microeconomía Intermedia 2011/12. Tema 10 1 Tem 0 L ompeteni monopolísti el oligopolio Miroeonomí Intermedi 0/. Tem 0 . Crterístis de l ompeteni monopolísti. El equilirio de l ompeteni monopolísti orto plzo lrgo plzo. Crterístis del oligopolio 4.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

UNA EXPERIENCIA PRÁCTICA DE PROGRAMACIÓN MATEMÁTICA CON LINGO

UNA EXPERIENCIA PRÁCTICA DE PROGRAMACIÓN MATEMÁTICA CON LINGO UNA EXPERIENCIA PRÁCTICA DE PROGRAMIÓN MATEMÁTICA CON LINGO P. Dort González, D.R. Sntos Peñte, R. Suárez Veg Deprtmento de Métodos Cuntittivos Universidd de Ls Plms de G.C. Resumen: El softwre mtemático

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Tópicos de incentivos y contratos

Tópicos de incentivos y contratos Tópicos de incentivos y contrtos ISBN: 978-84-69-3816-5 Jun Crlos Bárcen Ruiz 03-09 Tópicos de Incentivos y Contrtos. Jun Crlos Bárcen Ruiz Deprtmento de Fundmentos del Análisis Económico I Fcultd de Ciencis

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a

PROBLEMAS CON FRACCIONES Son problemas en que se pide calcular la parte de un todo, es decir, una fracción de un a Sint Gspr College MISIONEROS DE LA PRECIOSA SANGRE Formndo Persons Íntegrs Deprtmento de Mtemátic RESUMEN PSU MATEMATICA GUÍA NÚMERO 9 ECUACIONES: () Un ecución es un iguldd condiciond en l que plicndo

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE MEDIDA DE LA DISTANCIA FCAL DE UNA LENTE CNVERGENTE Y UNA LENTE DIVERGENTE BJETIV El objetivo de l práctic es l medid de l distnci focl de un lente convergente delgd de otr divergente. Se utilizrán distintos

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

REGLAS DE LOS PRODUCTOS NOTABLES

REGLAS DE LOS PRODUCTOS NOTABLES UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Tipos de Catálisis. Hay dos tipos de catálisis:

Tipos de Catálisis. Hay dos tipos de catálisis: CATáLISIS Un ctlizdor es un sustnci que celer (ctlizdor positivo) o retrd (ctlizdor negtivo o inhibidor) l velocidd de un rección químic, permneciendo éste mismo inlterdo. Un ctlizdor bj l energí de ctivción

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

es una matriz de orden 2 x 3.

es una matriz de orden 2 x 3. TEMA 7: MATRICES. 7.. Introducción l concepto de mtriz. 7.. Tipos de mtrices. 7.. El espcio vectoril de ls mtrices de orden m x n. 7.. INTRODUCCIÓN AL CONCEPTO DE MATRIZ. Se define mtriz de orden m x n

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

2 Números racionales positivos

2 Números racionales positivos Progrm Inmersión, Verno 0 Nots escrits por Dr. M Nots del cursos. Bsds en los pronturios de MATE 00 y MATE 0 Clse #: miércoles, de junio de 0. Números rcionles positivos. Consceptos básicos del conjunto

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles