Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis"

Transcripción

1 Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ La varanza y la desvacón típca Otras meddas de varacón. PROPIEDADE DE LA MEDIA Y LA VARIAZA. AIMETRÍA Y CURTOI 5. EJERCICIO Bblografía: Tema (pág ) Ejerccos recomendados: 1,,, 5, 8, 9, 11, 1, 1, 18, 19, 0,,, 5, 7, 8 y 0. Carmen ménez 1

2 1. MEDIDA DE TEDECIA CETRAL LA MEDIA ARITMÉTICA, Informa sobre la tendenca general de la varable en una muestra de sujetos Fórmula: 55 Ejemplo 1: :, 5,, 5. Donde: - La meda artmétca es el índce de tendenca central más utlzado. - ólo puede calcularse para varables cuanttatvas - Es muy sensble a valores extremos (dstrbucones marcadamente asmétrcas) Conocda, las puntuacones (o puntuacones drectas) pueden expresarse como desvacones a la meda grupal. Esto es, como las denomnadas Puntuacones dferencales: x Con los datos del Ejemplo 1, x: Donde: ( ) 0 (o ben x = 0). Por tanto, x 0 ( ) 0... (o ben x 0) Con los datos del Ejemplo 1: x = = 6 LA MEDIAA, Mdn Puntuacón en que dvde la dstrbucón en dos partes guales: deja por debajo y por encma de sí al 50% de las observacones Cálculo: Ejemplo : 7, 11, 6, 5, 7, 1, 9, 8, 10, 6, 9. 1º. e ordenan los datos de menor a mayor: 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 1. º. es mpar: Mdn = valor central. En el Ejemplo, Mdn = 8 Mdn1 Mdn es par: Mdn = meda artmétca de los valores centrales: º. Mdn tambén puede obtenerse calculando el centl 50 de la dstrbucón. Mdn se dferenca de en que no se ve afectada por los valores extremos que pueda tomar la varable LA MODA, Mo Valor de la varable que más aparece en nuestros datos (el que obtene la mayor frecuenca absoluta n ) En el Ejemplo 1: :, 5,, 5. Donde Mo = 5. * hay dos valores de con la n mayor, la dstrbucón es bmodal (s estos valores son cercanos, para calcular Mo puede hallarse la meda de ambos). Carmen ménez

3 COMPARACIÓ ETRE LA MEDIDA DE TEDECIA CETRAL Crteros a segur: 1º. (entre otras razones porque es el mejor estmador del parámetro poblaconal ). º. no puede calcularse (p.e. varables ordnales, valores extremos) obtener Mdn. º. no puede obtenerse Mdn (p.e. datos nomnales, ntervalos abertos con más del 50% de sujetos) obtener Mo. En algunos casos los tres ndcadores pueden dar valores smlares pero no necesaramente ha de ser así. Mdn = = Mo solo s la dstrbucón es smétrca: Mdn Mo metría Asmetría postva Asmetría negatva. MEDIDA DE VARIACIÓ Para consegur una vsón completa y comprensva de los datos obtendos hay que complementar las meddas de tendenca central con otros estadístcos que reflejen otras propedades. Por ejemplo, el grado en que los datos se parecen o dferencan entre sí, propedad que se denomna varabldad o varacón. Ejemplo. Consderemos los sguentes datos en para los grupos A y B: Totales: Medas: A : A 10 B : B 10 Las medas en A e B son guales, pero on los datos smlares? Para cuantfcar esta varacón podemos calcular la meda de las dstancas al cuadrado de las puntuacones a la meda (la varanza). Es decr: Totales: Medas: x A : x B : x A : x B : ,8 Carmen ménez

4 La Varanza, Es el promedo de las dstancas al cuadrado desde los valores en hasta la meda (es decr, de las puntuacones dferencales al cuadrado) en una muestra de n sujetos. Fórmulas: Fórmula alternatva: ( ) x En el Ejemplo 1: :, 5,, 5. x : 0, 1, -, 1. x : 0, 1,, 1. La Desvacón Típca, 011 1, 5 O ben: En el Ejemplo 1: 1,5 1, La Cuasvaranza, ( ) Propedades: OTRA MEDIDA DE VARIACIÓ Ampltud total o rango: ; -1 A T = máx - mín Coefcente de varacón: CV 100. PROPIEDADE DE LA MEDIA Y DE LA VARIAZA 1. puede tomar cualquer valor mentras que valor mínmo 0. (en puntuacones dferencales) ( ) ( -1) ,5 y son sempre postvas, sendo su. tenemos una msma varable que ha sdo medda en k grupos y conocemos las medas y varanzas en cada grupo, entonces podemos calcular los estadístcos globales: k 1 k T Ejemplo : k 5 ( ) j j j j T T 5 6 j j 6() () (5) 6,15 6() (5) (6) 6(,15) (,15) (5,15) 6,5 1 1 T e utlza más que la varanza porque al calcular la raíz cuadrada se retoman las undades de medda orgnales para resumr las dstancas entre las y la. Carmen ménez T

5 . AIMETRÍA Y CURTOI Además de la tendenca central y la varacón, hay otras dos característcas que nos permten descrbr una dstrbucón de frecuencas. Tenen que ver con la forma de la dstrbucón. e trata de la asmetría y la curtoss. Índce de asmetría La asmetría de una dstrbucón hace referenca al grado en que los datos se reparten por encma y por debajo de la tendenca central. x Índce: As. Donde, x ( ) A B C ITERPRETACIÓ: A. As > 0: Asmetría postva B. As = 0: metría C. As < 0: Asmetría negatva * ota: el índce mostrado es el más común, aunque sólo puede calcularse para varables donde pueda obtenerse la meda y la varanza (cuanttatvas). Índce de curtoss La curtoss hace referenca al grado de apuntamento de una dstrbucón. Índce: x Cr. Donde, x ( ) A B C ITERPRETACIÓ: A. Cr > 0: dstrbucón Leptocúrtca B. Cr = 0: dstrbucón Mesocúrtca C. Cr < 0: dstrbucón Platcúrtca Ejemplo 5 x x x x : Meda: = Varanza: = 6 =,5 x As 0,8 ; ()(,5 ) 8 x Cr - 1 ()(,5 ) 88 Carmen ménez 5

6 5. EJERCICIO EJERCICIO x = - x = ( - ) : 1. Calcule la meda de. Rellene los huecos de la tabla EJERCICIO Calcule la medana y la meda en los sguentes conjuntos de datos: a) 5, 6, 7, 7, 8, 9, 9, 10, 10 b) 1, 1, 1, 1, 15, 16, 16, 17 c),,, 5, 5, 6, 6, 6, 6, 155 EJERCICIO n 1 n n n Calcule la moda para cada una de las dstrbucones que aparecen en la tabla: EJERCICIO Obtenga la varanza en cada uno de los sguentes conjuntos de datos: : 7 5 x: x : Y: y: y : W: 1, 1,7 1,6 1, 1,5 7,5 w: -0, 0, 0,1-0,1 0 w : EJERCICIO 5 e evalúa el nvel de tabaqusmo en una muestra de varones y 5 mujeres. Género Tabaqusmo ( ) V V V M 7 M 5 M M 10 M 6 1. Calcule la meda y varanza para mujeres y varones (por separado). Calcule la meda y la varanza para el grupo total (aplcando las propedades). Qué grupo es más homogéneo? Carmen ménez 6

7 EJERCICIO 6 La dreccón general de tráfco está nteresada en estudar la educacón val en los jóvenes. Para ello seleccona una muestra aleatora de sujetos que acaban de obtener el carnet de conducr (grupo 1) y otra con sujetos que lo tenen hace 5 años (grupo ) y regstra el nº de veces que han perddo puntos en el últmo año. Los resultados se muestran a contnuacón: Grupo 1: 1 1. Grupo : , ,5 1 1 Calcule los índces de asmetría y curtoss para cada grupo y elabore la representacón gráfca de las dos dstrbucones en una sola gráfca. Interprete los resultados obtendos. Carmen ménez 7

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

1. Notación y tabulación

1. Notación y tabulación Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÓN

ESTADISTICA APLICADA A LA EDUCACIÓN UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA FACULTAD DE EDUCACIÓN DEPARTAMENTO DE MÉTODOS DE INVESTIGACIÓN Y DIAGNÓSTICO EN EDUCACIÓN I Grados de Educacón Socal y Pedagogía ESTADISTICA APLICADA A LA

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN

TEMA 5. ANÁLISIS DE UNA VARIABLE (III). MEDIDAS DE ASIMETRÍA, CURTOSIS Y CONCENTRACIÓN DEPARTAMENTO DE ECONOMÍA GENERAL Y ETADÍTICA UNIDAD DOCENTE DE ETADÍTICA Y ECONOMETRÍA UNIVERIDAD DE HUELVA ANÁLII ETADÍTICO DEL TURIMO I 200-200200 DIPLOMATURA EN TURIMO TEMA 5 ANÁLII DE UNA VARIABLE

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN

SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN Estadístca SEMANA 5 MEDIDAS DE TENDENCIA CENTRAL Y POSICIÓN LOGRO DE APRENDIZAJE: Al fnalzar la sesón, el estudante estará en la capacdad de calcular e nterpretar meddas de tendenca central y poscón de

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Métodos Estadísticos de la Ingeniería Tema 3: Medidas Estadísticas Grupo B

Métodos Estadísticos de la Ingeniería Tema 3: Medidas Estadísticas Grupo B Métodos Estadístcos de la Ingenería Tema 3: Meddas Estadístcas Grupo B Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Enero 2010 Contendos...............................................................

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca www.aulatecnologa.com 1 ETADÍTICA DECRIPTIVA Lo prmero que buscamos con la Estadístca es el tratamento matemátco a partr de una nformacón epermental. Cuando queremos observar la evolucón de

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

LECTURA 05 : MEDIDAS DE DISPERSIÓN Y DE FORMA TEMA 18: MEDIDAS DE DISPERSION

LECTURA 05 : MEDIDAS DE DISPERSIÓN Y DE FORMA TEMA 18: MEDIDAS DE DISPERSION Unverdad Católca Lo Ángele de Chmbote LECTURA 0 : MEDIDAS DE DISPERSIÓN Y DE FORMA TEMA 8: MEDIDAS DE DISPERSION. DEFINICION La medda de dperón on aquella que cuantfcan el grado de concentracón o de dperón

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos:

Además podemos considerar diferentes tipos de medidas de resumen. Entre ellas tenemos: MEDIDAS DE POSICIÓN Y DISPERSIÓN Estadístca En la clase anteror vmos como resumr la nformacón contenda en un conjunto de datos medante tablas y gráfcos. En esta clase vamos a ver como resumrlos medante

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS.

5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. 5.0 ESTADÍSTICOS PARA DATOS AGRUPADOS. Para organzar los datos a medda que el número de observacones crece, es necesaro condensar más los datos en tablas apropadas, a fn de presentar, analzar e nterpretar

Más detalles

DATOS AGRUPADOS POR INTERVALOS DE CLASE

DATOS AGRUPADOS POR INTERVALOS DE CLASE 3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

MEDIDAS DE DISPERSIÓN

MEDIDAS DE DISPERSIÓN MEDIDAS DE DISPERSIÓ Introduccón Al estudar característcas o varables de una poblacón o muestra, sempre se manfestan dscrepancas o dferencas en los resultados ndvduales de las observacones. La varabldad

Más detalles

el blog de mate de aida CSI: Estadística unidimensional pág. 1

el blog de mate de aida CSI: Estadística unidimensional pág. 1 el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Algunas aplicaciones del test del signo

Algunas aplicaciones del test del signo 43 Algunas aplcacones del test del sgno Test de Mc emar para sgnfcacón de cambos: En realdad este test se estuda en detalle en Métodos no Paramétrcos II, en el contexto de las denomnadas Tablas de Contngenca.

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 2: ESTADÍSTICA DESCRIPTIVA 1. RESUMEN Métodos para resumr y descrbr

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

GUÍA DE APOYO AL APRENDIZAJE N 2

GUÍA DE APOYO AL APRENDIZAJE N 2 GUÍA E APOYO AL APREIZAJE Meddas de Tendenca Central ó de Resumen Las meddas de resumen son valores de la varable que permten resumr la normacón que hay en una tabla undamentalmente estas meddas se usan

Más detalles

3.3 Caracterización de grupos: Estadísticos de forma de la distribución

3.3 Caracterización de grupos: Estadísticos de forma de la distribución 3.3 Caracterzacón de grupos: Estadístcos de forma de la dstrbucón 1. Smetría 2. Apuntamento o curtoss 3. Descrpcón estadístca de una varable: tabla resumen Ya ha sdo abordado en temas precedentes el análss

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Tema ESTADÍSTICA DESCRIPTIVA 1.- DISTRIBUCIOES UIDIMESIOALES. CÁLCULO DE PARÁMETROS PARÁMETROS DE CETRALIZACIÓ En la búsqueda de la concrecón y la smplcacón, la normacón recogda en una tabla o gráca estadístca

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva ÍDICE ESTADÍSTICA DESCRIPTIVA. Poblacón y Muestra 4. Varables estadístcas 4 3. Frecuencas 5 4. Dstrbucones 7 5. Representacón gráfca 5. De caracteres cuanttatvos 5.. De varables estadístcas

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles

Estadístca Edad meda para los ccos: 18+ 8 1+ 1 0+ 10 1+ 5 + 3 1016 = = 0,3años. + 8+ 1+ 10+ 5+ 50 La edad meda para las ccas: 18+ 1+ 6 0+ 1+ 17 + 1 3 1071 = = 1, años. + + 6+ + 17+ 1 50 La edad meda del

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 18: MEDIDAS DE DISPERSION

LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 18: MEDIDAS DE DISPERSION Unverdad Católca Lo Ángele de Chmbote LECTURA 08 : MEDIDAS DE DISPERSIÓN Y MEDIDAS DE FORMA (PARTE I) MEDIDAS DE DISPERSIÓN TEMA 8: MEDIDAS DE DISPERSION. DEFINICION La medda de dperón on aquella que cuantfcan

Más detalles

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

USO Y MANEJO DEL SOFTWARE STATGRAPHICS

USO Y MANEJO DEL SOFTWARE STATGRAPHICS USO Y MANEJO DEL SOFTWARE STATGRAPHICS I.- ESTADISTICA DESCRIPTIVA. 1.1.- Defncón de Estadístca. 1.2.- Estructura y Tpos de Datos Estadístcos. 1.3.- Construccón de la Matrz de Datos 1.4.- Recuperacón de

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

LECTURA 09 : MEDIDAS DE DISPERSIÓN Y DE FORMA (PARTE I) TEMA 18: MEDIDAS DE DISPERSION

LECTURA 09 : MEDIDAS DE DISPERSIÓN Y DE FORMA (PARTE I) TEMA 18: MEDIDAS DE DISPERSION Unverdad Católca Lo Ángele de Chmbote LECTURA 09 : MEDIDAS DE DISPERSIÓN Y DE FORMA (PARTE I) TEMA 8: MEDIDAS DE DISPERSION. DEFINICION La medda de dperón on aquella que cuantfcan el grado de concentracón

Más detalles

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)

Más detalles

Estadística Descriptiva Análisis de Datos

Estadística Descriptiva Análisis de Datos El concepto de Estadístca Estadístca Descrptva Análss de Datos 8.1 INTRODUCCION El orgen de la Estadístca se remonta a dos tpos de actvdades humanas: los juegos de azar y las necesdades de los Estados:

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

Estadistica No Parametrica

Estadistica No Parametrica Estadstca No Parametrca CLASE 3 Pruebas Basadas en la Dstrbucon Bnomal JAIME MOSQUERA RESTREPO Bnomal Test La prueba bnomal es quzás la prueba mas antgua encontrada en al lteratura. Se encuentra asocada

Más detalles

Capítulo III Medidas de posición y de dispersión

Capítulo III Medidas de posición y de dispersión Capítulo III Meddas de poscón y de dspersón Introduccón Hasta ahora, para descrbr un conjunto de datos, se han empleado tablas y gráfcos. Estos son útles para dar rápdamente una vsón general del comportamento

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctco de Boestadístca Con Herramentas De Excel Fabrzo Marcllo Morla MBA barcllo@gmal.com (593-9) 419439 Otras Publcacones del msmo autor en Repostoro ESPOL Fabrzo Marcllo Morla Guayaqul, 1966.

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles