CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:"

Transcripción

1 CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro resumr los datos aú más, calculado alguas meddas descrptvas. Estas meddas so valores que se terpreta fáclmete y os srve para u aálss más profudo que el obtedo por medo de resúmees gráfcos y tabulares. E esta seccó calcularemos meddas de localzacó, es decr, meddas que busca certo lugar del cojuto de datos; cuado el lugar buscado es el cetro de los datos les llamamos meddas de tedeca cetral, etre las que veremos: la meda, la moda y la medaa. La meda muestral de u cojuto de observacoes,,... de ua varable X, la deotaremos por y la calcularemos medate la fórmula: No este ua regla geeral acerca de cuátos decmales reportar e el resultado de este cálculo, pero o tee setdo alejarse mucho del úmero de decmales que posee los datos. Podemos tomar u decmal más que éstos. Nótese que la meda sólo tee setdo para datos a vel de tervalo o de razó y que el valor de la meda muestral puede varar de muestra a muestra. La medaa de u cojuto de observacoes ordeadas,,... es el valor que dvde el cojuto de datos e dos partes guales. Podemos deotar a la medaa por ~ ( tlde). Para ecotrar la poscó o lugar dóde buscar la medaa e u cojuto de observacoes calcularemos: Poscó de la medaa = ( )/ Así, cuado es mpar, la poscó de la medaa cocde co el lugar de uo de los datos. S es par, se localzará e medo de los dos datos cetrales. La moda de u cojuto de observacoes,,... es el valor que se repte co mayor frecueca. La podemos deotar por ˆ. Metras que la medaa se aplca a datos ordeados, la moda puede aplcarse a datos omales. Por ejemplo, s deseamos calcular la meda, la moda y la medaa de los datos, 4, 5, 7, 8, 8 y, tedríamos: La meda es ( 4... )/ Como la poscó de la medaa es (7+)/ = 4, la medaa es ~ 7. Y, falmete, la moda sería el 8, esto es, ˆ 8.

2 Este otras meddas de localzacó para datos ordeados, como so los cuartles, decles y percetles. Los cuartles dvde e cuartos ua dstrbucó de frecuecas. Los deotaremos por q,q y q 3. El segudo cuartl cocde co la medaa. Los decles los deotaremos por d, d,... d9 y so valores que dvde ua dstrbucó de frecuecas e dez partes guales. El quto decl cocde co la medaa. Los percetles se deotará por p, p,... p99 y so valores que dvde ua dstrbucó de frecuecas e ce partes guales. Podemos ecotrar fórmulas aálogas a la de localzacó de la medaa, para localzar los otros cuartles, los decles y los percetles: Poscó de q ( )/ 4 Poscó de q 3( )/ 4 3 Poscó de d 7( )/ 0 7 Poscó de p 85( )/ Hay que recordar que los cálculos aterores os da la poscó dode debemos buscar las meddas aterores. Ya ecotrada la poscó, este alguos crteros para asgar el valor correspodete a la medda buscada. Por ejemplo, s la poscó del percetl 85 es el lugar 3.4, alguos toma el dato que está e el lugar 3, otros el que se ecuetra e el lugar 4 y otros el dato 3 más 0.4 veces la dfereca que este etre el dato 4 y el dato 3, auque esto últmo sólo tee setdo cuado los datos se mde a vel de tervalo. Al utlzar paquetería estadístca se puede observar que puede haber dferecas e estos cálculos, y es debdo a esa razó. Lo msmo se puede observar e el cálculo de cuartles e las calculadoras. Podemos també calcular las meddas de cetralzacó cuado teemos los datos agrupados e ua tabla de frecuecas. S deotamos por m la marca de clase del -ésmo tervalo y f su frecueca absoluta, etoces la meda artmétca se calculará como: m f Dode es el tamaño total de la muestra y k es el úmero de tervalos e la tabla. Co respecto a la moda, auque este alguas fórmulas para calcularla e ua tabla de frecuecas, podemos tomarla smplemete como la marca de clase del tervalo co mayor frecueca. Ua de las fórmulas más usadas es la sguete, que toma e cueta las frecuecas de las clases cotguas a la clase modal: k dode ˆ L c

3 L es la frotera feror de la clase modal, = frecueca de la clase modal frecueca de la clase ateror, = frecueca de la clase modal frecueca de la clase sguete, c = logtud del tervalo de clase. Para calcular la medaa, supodremos que los datos se dstrbuye e ua forma cotua. Así, la medaa es aquel dato que correspode a la mtad de la frecueca total, o sea /, es decr, que deja la mtad de frecuecas por arrba y la otra mtad por debajo. Para ejemplfcar su cálculo, que báscamete es ua terpolacó, cosderemos la tabla de frecuecas, que se muestra a cotuacó: Frecuecas absolutas acumuladas Frecuecas relatvas acumuladas Froteras de clase Marcas de clase Frecuecas absolutas Frecuecas relatvas /40 / /40 3 3/ /40 / /40 / / / / / /40 40 E esta tabla la frecueca total es de 40, de modo que buscaremos la medaa e el dato úmero 40 / 0. S os fjamos e las frecuecas absolutas acumuladas, ecotraremos que la medaa está e el cuarto tervalo, ya que hasta el tercero llevamos ua frecueca acumulada de. Usado terpolacó leal, la medaa será o sea dode 8 / ; ~ 9.5 F ~ L c, f L es la frotera feror de la clase medaa, es el úmero de datos de la muestra, F es la frecueca acumulada ates de la clase medaa, f es la frecueca de la clase medaa, c es la logtud del tervalo de clase. Usado u procedmeto smlar, se puede calcular los otros cuartles, los decles y los percetles. La meda artmétca y la moda de la tabla ateror sería: ( 4.5)() (6.4)()... (5.9)() /

4 frecueca ˆ. o ˆ.74, Segú se tome la marca de clase o se utlce la fórmula para obteer la moda. Eleccó de ua medda de tedeca cetral o de localzacó El cálculo de la moda, medaa o meda artmétca es puramete mecáco y actualmete esto se hace co mayor rapdez e las computadoras e cluso e las calculadoras. S embargo, la eleccó etre estas tres meddas y su terpretacó puede alguas veces requerr detedas refleoes. A cotuacó se preseta alguas cosderacoes que debe estar presetes e mete cuado se esté hacedo frete a la eleccó:. E u grupo pequeño de datos la moda puede ser completamete estable. Por ejemplo la moda del grupo (,,,3,5,7,7,8) es ; pero s uo de los uos se camba por 0 y el otro por, la moda se coverte e 7.. La meda se ve fluda por el valor de cada putuacó del grupo de datos. S ua putuacó cualquera camba por c udades, se cambaría e la msma dreccó por c/ udades. Por ejemplo, s 00 se suma a la tercera putuacó mayor e u grupo de 0, la meda del grupo se aumetara e 0 udades. 3. La medaa o se afecta por u cambo e el valor mayor o meor. Por ejemplo, e u grupo de 50 putuacoes o datos la medaa o cambaría s la putuacó mayor se trplca. 4. Alguos grupos de putuacoes o datos smplemete o mafesta tedeca cetral algua e forma sgfcatva, sedo a meudo egañoso calcular ua medda de tedeca cetral. Esto es partcularmete certo para grupos de datos co más de ua moda. Por ejemplo e la sguete stuacó: U vestgador e desarrollo currcular, sostee que se puede costrur pruebas de redmeto compuestas por 8 ítems de eleccó múltple que separa a los estudates etre los que ha adqurdo el cocepto de suma de dos úmeros y e los que o lo ha adqurdo. Los que lo adqurero se represeta co las putuacoes 6,7,8, y los que o lo adqurero se represeta co putuacoes de 0,, y. Supogamos que u grupo de estudates da lugar a las putuacoes que se preseta e el sguete hstograma de frecuecas que a cotuacó se preseta Putuaco es 4

5 # de estudates # de persoas La meda de las putuacoes represetadas, estaría e el rago de 3 a 5 a pesar de que ade obtuvo gua de esas putuacoes. La medaa del grupo esta apromadamete e el msmo rago. E este caso la meda artmétca la medaa represeta adecuadamete a este grupo de putuacoes o datos, tal vez la medda adecuada sea la moda, mas precsamete bmodal, ya que ua moda sería 0 y la otra sería el La moda es posble localzarla tato e varables cuattatvas, como cualtatvas; la medaa també, s la varable cualtatva es de escala ordal. 6. La medda de tedeca cetral e grupos de putuacoes co valores etremos se mde probablemete mejor por la medaa, s putuacoes o datos so umodales. Como dcamos prevamete, cada dato e u grupo fluye e la meda. Así, u valor etremo puede alejar a la meda de u grupo de su valor cal, de lo que geeralmete se cosdera como la regó cetral. Por ejemplo, s ueve persoas tee gresos mesuales que fluctúa de $4500 a $ 500 co u promedo de $4900 y el greso de ua décma persoa es de $0000, el greso promedo del grupo de las 0 persoas es de $640, Este valor o represeta adecuadamete a guo de los grupos. La medaa sería e este caso preferble como medda de tedeca cetral. 7. E grupos umodales de datos o putuacoes smétrcas la medaa, moda y meda artmétca so guales. Como se lustra e la fgura sguete: peso 8. E el caso de que las putuacoes o los datos tega ua marcada asmetría o sesgo como el que se lustra e la sguete fgura, la moda será meor que medaa y esta a la vez, meor que meda artmétca. E el caso de estr sesgo e la dreccó cotrara etoces la meda artmétca será meor que la medaa y esta a su vez meor que la moda. Calfcacoes 5

6 II Alguas Meddas de Dspersó Puesto que esperamos que las característcas que medmos e la muestra refleje de algua maera las característcas de la poblacó, medremos la varabldad e la muestra para eteder la varabldad que este e la poblacó. Como meddas de varabldad estudaremos el rago muestral, el rago tercuartílco, la varaza, la desvacó estádar y el coefcete de varacó. El rago muestral ya lo hemos calculado aterormete al costrur tablas de frecuecas, y es la dfereca etre el dato mayor y el meor. El rago tercuartílco, como su ombre lo dca, es la dfereca etre el tercer y el prmer cuartl. S lo deotamos por RI, teemos que RI q 3 q. La varaza muestral de u cojuto de observacoes,,... de ua varable aleatora X, se deota por s y se calcula medate la fórmula: ( ) s Se utlzará como deomador e lugar de, pues, como estmador de la varaza poblacoal, cuado se dvde etre tee la propedad de ser sesgado, es decr, de dar valores cuyo promedo es la varaza poblacoal, como se verá e el capítulo cuatro. Cuado el cálculo de la varaza muestral se hace e calculadora, s utlzar las fucoes estadístcas que muchas de éstas tee, es más rápdo y seguro utlzar cualquera de las fórmulas sguetes, que fuero obtedas smplfcado la fórmula de la defcó de varaza e mplca u úmero meor de operacoes. s / o be s La desvacó estádar de u cojuto de datos es smplemete la raíz cuadrada postva de la varaza. La deotaremos por s, y etoces s La varaza y la desvacó estádar so meddas de varacó absoluta y depede de la escala de medcó; s embargo, hay ocasoes e que se ecesta comparar la varacó de dferetes cojutos de datos y se requere ua medda de varacó relatva, como el coefcete de varacó, e el que la desvacó estádar se epresa como u porcetaje de la meda. Lo calcularemos así: 6

7 s Coefcete de varacó = (00) Por ejemplo, calculemos el rago, el rago tercuartílco, la varaza y la desvacó estádar del sguete cojuto de datos:, 4, 6, 9, 9, 0 y 3. etoces ma 3,, q 4, q 0 ; m rago 3, RI 0 4 6, 3 7.6, s / / / y, así, la desvacó estádar es la raíz cuadrada postva de 4.8, esto es, s 3.8. Por otra parte, el coefcete de varacó sería: s 3.8 Coefcete de varacó = ( 00) (00).6%. 7.6 Como ya vmos e la seccó ateror, podemos calcular la meda y los cuartles e ua tabla de frecuecas. De gual maera podemos calcular la varaza y, por lo tato, la desvacó estádar y el coefcete de varacó. La fórmula que utlzaremos para la varaza e ua tabla de frecuecas es: s k m f dode, como se djo aterormete, m y f so la marca de clase y la frecueca absoluta del -ésmo tervalo, k es el úmero de tervalos de clase y es el úmero de datos. Así como cotamos co meddas de localzacó y de dspersó, que os descrbe certas característcas de ua dstrbucó de frecuecas, este otras meddas que os puede ayudar a dstgur cuestoes como smetría o grado de aputameto de ua dstrbucó. Ua dstrbucó que o es smétrca, so que se etede más haca uo de los etremos o colas, se deoma sesgada. S la cola más larga se etede a la derecha, se dce que la dstrbucó está sesgada a la derecha, metras que s la cola más larga se etede a la zquerda, se dce que la dstrbucó está sesgada a la zquerda. El sesgo se puede calcular utlzado los mometos de ua varable aleatora o de ua dstrbucó, k m f 7

8 pero podemos calcular ua medda alteratva de sesgo que emplea coceptos que ya hemos maejado. Esta medda se calcula como: Sesgo 3( ~ ) / s, se llama segudo coefcete de sesgo de Pearso y toma valores etre y. Valores egatvos dcará u sesgo a la zquerda y valores postvos, u sesgo a la derecha. Otra característca de la forma de ua dstrbucó se llama curtoss y os dca el grado de aputameto de la dstrbucó. S la dstrbucó es parecda a ua dstrbucó ormal, que tee ua forma coocda també como campaa de Gauss, se le llama mesocúrtca. S la dstrbucó preseta u aputameto más alto que el de ua dstrbucó ormal, se le llama leptocúrtca y e el caso de presetar meos aputameto que la dstrbucó ormal, se le llama platcúrtca. Al gual que el sesgo, la curtoss se puede calcular usado mometos de ua varable aleatora, pero por ahora usaremos ua fórmula que volucra coceptos ya utlzados. Así, teemos que el coefcete de curtoss percetílco es: K q q 3 p p Co este coefcete de curtoss, cuyos valores se ecuetra etre 0 y, ua dstrbucó es mesocúrtca s K 0.63, leptocúrtca s K y platcúrtca s K Para muestras proveetes de ua dstrbucó ormal, el sesgo y la curtoss o tomará ecesaramete el msmo valor, so que fluctuará debdo a la varacó muestral. 8

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Esta t d a í d s í titcos o TEMA 3.3

Esta t d a í d s í titcos o TEMA 3.3 TEMA 3.3 Defcó úmero obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco)

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva. Estadístca Alguos Coceptos Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres.

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres. ESTADÍSTICA UNIDIMENSIONAL 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA Ejemplo: Se quere hacer u estudo estadístco sobre el país de orge de 40 alumos de u Colego. Poblacó: Cojuto de elemetos sobre los que se realza

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA Área Matemátcas- Aálss Estadístco Módulo Básco de Igeería (MBI) Resultados de apredzaje Apreder el correcto uso de la calculadora cetífca e modo estadístco, además

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma.

CAPITULO II. Medidas estadísticas. Objetivo. Contenido. Calcular las medidas posición, de tendencia central, de dispersión y de forma. CAPITULO II Meddas estadístcas Objetvo Calcular las meddas poscó, de tedeca cetral, de dspersó y de forma. Cotedo * * * * * * Itroduccó Meddas de poscó Meddas de tedeca cetral Meddas de dspersó Meddas

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN

TEMAS CUESTIONARIO DE AUTOEVALUACIÓN TEMAS 1-2-3 CUESTIOARIO DE AUTOEVALUACIÓ 2.1.- Al realzar los cálculos para obteer el Ídce de G se observa que: p 3 > q 3 y que p 4 >q 4 etoces: La prmera desgualdad es falsa y la seguda certa. La prmera

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias:

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias: PARÁMETROS ESTADÍSTICOS Puesto que las represetacoes grácas o sempre cosgue orecer ua ormacó completa de ua sere de datos, es ecesaro aalzar procedmetos umércos que permta resumr toda la ormacó del eómeo

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Grado de ADE. Prmer curso Raquel Mª Álvarez Esteba Descrpcó umérca de ua varable Objetvo: Resumr dsttos aspectos de las dstrbucoes de frecuecas Iterés de los resúmees umércos:

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

UNIDAD DIDÁCTICA 13: Estadística Descriptiva

UNIDAD DIDÁCTICA 13: Estadística Descriptiva Utat d accés accés a la uverstat dels majors de 5 ays Udad de acceso acceso a la uversdad de los mayores de 5 años UNIDAD DIDÁCTICA 13: Estadístca Descrptva ÍNDICE: DESARROLLO DE LOS CONTENIDOS 1 Itroduccó

Más detalles

Ventajas e Inconvenientes.

Ventajas e Inconvenientes. 1. Itroduccó.. Meddas de Poscó..1. La Meda Artmétca..1.1. Propedades..1.. Cálculo Abrevado..1.3. Vetajas e Icoveetes... La Meda Geométrca...1. Propedades.... Vetajas e Icoveetes..3. La Meda Armóca..3.1.

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

Son aquellas medidas que nos ayudan a saber donde están los datos pero sin indicar como se distribuyen.

Son aquellas medidas que nos ayudan a saber donde están los datos pero sin indicar como se distribuyen. Capítulo II CARACTERISTICAS DE UA DISTRIBUCIÓ DE FRECUECIAS.. Itroduccó La fase preva de cualquer estudo estadístco se basa e la recogda y ordeacó de datos; esto se realza co la ayuda de los resúmees umércos

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

TEMA 60. Parámetros estadísticos: Cálculo, propiedades y significado.

TEMA 60. Parámetros estadísticos: Cálculo, propiedades y significado. Tema 60. Parámetros estadístcos: Calculo, propedades, sgcado TEMA 60. Parámetros estadístcos: Cálculo, propedades y sgcado.. Itroduccó La estadístca se puede der como la ceca aplcada que se ocupa del estudo

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 1 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de qué

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles