Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación"

Transcripción

1

2 Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación

3 El primer paso al analizar un sistema de control es establecer un modelo matemático del sistema. Obtenido este modelo matemático se dispone de diversos métodos para analizar el comportamiento del sistema

4 La solución se puede obtener mediante: Resolución de las ecuaciones diferenciales. Métodos basados en la transformada de Laplace. Solución de las ecuaciones de estado.

5 Escalón f ( t) u( t) F( s) 1 s Polo en el origen

6 f ( t) e at F( s) 1 s a polo en a > 0 :: creciente :: Ej: e t polo en a < 0 :: creciente :: Ej: e -t

7

8 f ( t) sen( t) F( s) s Polos imaginarios puros ±jw Un resultado similar para cos(wt)

9

10 f t ( t) e sen( t) F( s) ( s ) Polos complejos p 1, Crece o decrece según σ = σ±jw

11

12

13 Partiendo de una EDO Cuya FT es de la forma a dy( t) dt a y( t) G s u( t b k s a ) Tomando como entrada δ(t),(c.i.=0), la respuesta es: t at y( t) k e k e y(t) Donde τ = 1/a, se conoce como la constante de tiempo del sistema.

14

15

16

17 Si la entrada es el escalón unitario Aplicando fracciones parciales, para t 0 s a s k s U s G s Y 1 ) ( ) ( ) ( ) ( ) (1 ) (1 ) ( t at e k e a k t y

18 Al cambiar el valor de a también cambia el valor del único polo de la FT

19 o Para t = τ el valor de y(t) ha alcanzado el 63. % de su variación total. o Cuanto más pequeña es la constante de tiempo más rápida es la respuesta del sistema

20 Si los polos están en semiplano izquierdo el sistema es estable mientras que si están en el derecho será inestable.

21 Tiempo a partir del cual la respuesta natural (su valor absoluto) no supera un porcentaje de su valor máximo, por ejemplo el 5%. Para el caso del sistema continuo de primer orden, este tiempo t as que satisface:

22 Al alejar el polo del origen (al desplazarlo hacia la izquierda) disminuye el tiempo de asentamiento, es decir, la respuesta es más rápida. Si el polo de la FT cae en esa región podemos asegurar que su tiempo de asentamiento satisface t as 3/a. Nótese que la región de t as máximo esta contenida dentro de la región de estabilidad; ya que esta definición de t as solo tiene sentido para sistemas estables.

23 Expresados por EDO de la siguiente forma d y( t) dt a 1 dy( t) dt a 0 y( t) b 1 du( t) dt b 0 u( t) Se estudiara el caso en el cual b 1 =0, en su forma normalizada K n G( s) s ns n Donde ω n se llama frecuencia natural no amortiguada, mientras que ζ se denomina coeficiente de amortiguamiento

24 Los polos de la FT serán: ) ( ) ( 1 p s p s s s s G n n n n 4 ) 4( 1, n n n p

25 p 1, n n 1 o Sistema oscilatorio ζ= 0 p 1, j n o Sistema Criticamortiguado ζ =1 p1, n o Sistema Subamortiguado 0<ζ <1 p 1, n n 1 j j d o Sistema Sobreamortiguado ζ >1 p 1, n n 1

26 j n 1 n j n 1

27 La distancia de los polos al origen (la magnitud del complejo) es justamente d n n(1 n ) Además, el coseno del ángulo formado con el semieje real negativo, es justamente ζ: cos( ) n n

28 Donde s s s s U s G s Y n n n 1 ) ( ) ( ) ( t t e t y d d t n sen 1 cos 1 ) ( t e t y d t n sen ) ( ) ( cos 1

29

30 ζ = 0.5

31 a. Parte real constante

32 b. Parte imaginaria constante.

33 c. Factor de Amortiguamiento constante

34 o Estabilidad o Tiempo de Asentamiento o Frecuencia de Oscilación o Sobrepico

35

36

37

38

39 Mp e 1 e d

40

41 El sistema es estable El tiempo de asentamiento es menor o igual que 3/a La frecuencia máxima de oscilación de la respuesta natural es ω * Al estimularlo con un escalón unitario el sobrepico máximo es menor que

42 La respuesta transitoria de un sistema de control real ante entrada escalón frecuentemente presenta oscilaciones amortiguadas antes de alcanzar el estado estacionario. Si se conoce la respuesta a una entrada escalón, matemáticamente es posible calcular la respuesta a cualquier entrada.

43 Al especificar las características de respuesta transitoria de un sistema de control a una entrada escalón unitario, es habitual especificar lo siguiente: 1. Tiempo de retardo.. Tiempo de crecimiento. 3. Tiempo de pico. 4. Sobreimpulso máximo. 5. Tiempo de establecimiento.

44 Tiempo de retardo, t d : tiempo que tarda la respuesta en alcanzar por primera vez la mitad del valor final. Tiempo de crecimiento, t r : tiempo requerido para que la respuesta crezca del 10 al 90%, del 5 al 95% o del 0 al 100% de su valor final. t r, d tan 1 d

45 Tiempo de pico, t p : tiempo requerido por la respuesta para alcanzar el primer pico del sobreimpulso. t p d Máximo sobrepico(por ciento), M p : es el valor pico máximo de la curva de respuesta, medido desde la unidad, es común utilizar el máximo sobreimpulso porcentual. Está definido del siguiente modo: M p y( t p ) y( ) y( ) 100% Mp e 1 100%

46 Tiempo de establecimiento, t s : tiempo requerido por la curva de respuesta para alcanzar y mantenerse dentro de determinado rango del valor final de dimensión especificada en porcentaje absoluto del valor final (habitualmente 5% o %). El criterio para la fijación del porcentaje de error a usar depende de los objetivos del diseño del sistema en cuestión. Donde Constante de tiempo del sistema subamortiguado

47

48 Para una respuesta transitoria deseable de un sistema de segundo orden, la relación de amortiguamiento debe estar entre 0.4 y 0.8. Valores pequeños de ζ (0.4<ζ) dan excesivo sobreimpulso en la respuesta transitoria y un sistema con un valor grande de ζ (0.8<ζ) responde muy tardíamente.

49 Definir los parámetros de respuesta transitoria del sistema R(s) 5 s( s 1) 1.5 C(s) Desarrollo: La función de transferencia de lazo cerrado es C( s) R( s) s s 5 Se utiliza la siguiente igualdad s s 5 s n s n n

50 se obtiene 5 n n n d A partir de aquí se obtienen los parámetros de respuesta transitoria M p d e % t p d seg 4 t s seg

51 De los siguientes parámetros de respuesta transitoria obtener la función de transferencia. c(t) t Desarrollo: de la gráfica M p t s seg Estos dos parámetros son suficientes

52 De s t 4 4 ts t M De y conociendo p lnm d M p e Entonces d ( n G s) s s s n d s p n d n n n s

53 El MP y el tiempo de crecimiento están en conflicto entre sí. En otras palabras no se puede simultáneamente lograr un máximo sobreimpulso y un tiempo de crecimiento pequeños. Si se hace pequeño a uno de ellos, necesariamente el otro se hace grande.

54 Hallar FT y parámetros de tiempo de un sistema cuya constante de amortiguamiento es de 0.65 y con una frecuencia natural de 50Hz y ganancia estacionaria unitaria. Hallar la FT para un sistema con un máximo sobrepíco de 10% y un tiempo de establecimiento menor de 3s y ganancia estacionaria de.

55 Para el sistema determine los valores de la ganancia K y Kh para que el máximo sobrepico en la respuesta escalón unitario sea 0% y el tiempo pico sea 1 seg (OG 5ed) Suponga que J =1 kg-m^ y que B= 1 N-m/rad/seg.

56 J = 1 B = 1 s Kn ns n 1 1 Mp e 0. t p 1 d 1 e d d n d 3.14 d n n Kh = ζ KJ B K = K = Jω n = 1.5

57 El sistema está sujeto a una entrada escalón unitario. Determine los valores de K y T a partir de la curva de respuesta.

58 Todo polinomio característico de grado mayor a dos Podrá estar compuesto únicamente por polos y/o ceros La función de transferencia resultante debe ser propia Es la suma de las respuestas de sistemas de primer orden y segundo orden

59

60 DUARTE, Oscar. ANÁLISIS DE SISTEMAS DINÁMICOS LINEALES. Universidad Nacional OGATA, Katsuhiko. INGENIERIA CONTROL MODERNA. Quinta Edición. CHEN, Chi-Tsong. ANALOG AND DIGITAL CONTROL SYSTEM DESIGN. Tercera Edición.

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Esta expresión posee un polo doble en s=0 y dos polos simples en s= 1 y en s= 2.

Esta expresión posee un polo doble en s=0 y dos polos simples en s= 1 y en s= 2. Antitransformada de Laplace (Transformada Inversa de Laplace) Utilizamos la transformada de Laplace para trabajar con modelos algebraicos en los bloques en lugar de modelos en Ecs. Diferenciales que son

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Sistemas de Primer y Segundo Orden

Sistemas de Primer y Segundo Orden Sistemas de Primer y Segundo Orden Oscar Duarte Facultad de Ingeniería Universidad Nacional de Colombia p./66 Sistema Continuo. er Orden Un sistema continuo de primer orden, cuya función de transferencia

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Retardo de transporte

Retardo de transporte Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo

Más detalles

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18.1. DIAGRAMAS POLARES En análisis dinámico de sistemas en el dominio de la frecuencia, además de emplearse los diagramas y el criterio de Bode, se utilizan

Más detalles

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2 DIAGRAMA DE NYQUIST Semestre 2010/2 La respuesta en frecuencia se basa en la respuesta en estado estacionario de un sistema ante una entrada senoidal. Un sistema lineal invariante en el tiempo, si es afectado

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

1 Análisis de la Respuesta Temporal

1 Análisis de la Respuesta Temporal Análisis de la Respuesta Temporal El estudio de la respuesta temporal de un sistema es de vital importancia para el posterior análisis de su comportamiento y el posible diseño de un sistema de control.

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR

CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR SEMANA 10 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR TRANSFORMADA DE LA PLACE I. OBJETIVO Solucionar ecuaciones diferenciales mediante la transformada de la place. III. BIBLIOGRAFIA W.

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2 DIAGRAMA DE BODE Semestre 2010/2 El Diagrama de BODE se conforma por dos gráficas logarítmicas de: La magnitud de una función de transferencia senoidal: 20log G(jw) ; La unidad de medida que se usa, es

Más detalles

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión

TRANSFORMADA DE LAPLACE. Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión TRANSFORMADA DE LAPLACE Definición: Transformada de Laplace. Sea f(t) una función definida para t 0; a la expresión L= = Se le llama Transformada de Laplace de la función f(t), si la integral existe. Notación:

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

DINÁMICA ESTRUCTURAL. Diagramas de bloques

DINÁMICA ESTRUCTURAL. Diagramas de bloques DINÁMICA ESTRUCTURAL Diagramas de bloques QUÉ ES UN DIAGRAMA DE BLOQUES? Definición de diagrama de bloques: Es una representación gráfica de las funciones que lleva a cabo cada componente y el flujo de

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL 1.-Introducción. 2.-Criterio de estabilidad de Nyquist. 3.-Estabilidad relativa. 3.1.-Margen de ganancia. 3.2.-Margen de fase. 4.-Estabilidad mediante

Más detalles

1. Diseño de un compensador de adelanto de fase

1. Diseño de un compensador de adelanto de fase COMPENSADORES DE ADELANTO Y RETARDO 1 1. Diseño de un compensador de adelanto de fase El compensador de adelanto de fase persigue el aumento del margen de fase mediante la superposición de la curva de

Más detalles

T0. TRANSFORMADAS DE LAPLACE

T0. TRANSFORMADAS DE LAPLACE ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA MATEMATICAS T0. TRANSFORMADAS DE LAPLACE Mediante transformadas de Laplace (por Pierre-Simon

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

6. Análisis en el dominio de la frecuencia. Teoría de Control

6. Análisis en el dominio de la frecuencia. Teoría de Control 6. Análisis en el dominio de la frecuencia Teoría de Control Introducción El término respuesta en frecuencia, indica la respuesta en estado estacionario de un sistema a una entrada senoidal. La respuesta

Más detalles

Tema 2.5: Análisis basado en el método del Lugar de las Raíces

Tema 2.5: Análisis basado en el método del Lugar de las Raíces Tema 2.5: Análisis basado en el método del Lugar de las Raíces 1. Lugar de las Raíces 2. Trazado de la gráfica 3. Lugar de las raíces generalizado 4. Diseño de controladores 1. El lugar de las raíces Objetivo:

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt

Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Repaso de Modelos Matemáticos de Sistemas Dinámicos

Repaso de Modelos Matemáticos de Sistemas Dinámicos Repaso de Modelos Matemáticos de Sistemas Dinámicos Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional

Más detalles

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente. Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan

Más detalles

En la figura 1 se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de ganancia K en lazo abierto.

En la figura 1 se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de ganancia K en lazo abierto. Maren de Ganancia y Maren de Fase En la fiura se muestran diferentes trazas polares para G ( jω ) con tres valores diferentes de anancia en lazo abierto. Fiura. Trazas polares de G ( jω ) = ( + jωta )(

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS

METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS METODO DE LOS COEFICIENTES INDETERMINADOS 1 METODO DE COEFICIENTES INDETERMINADOS Para encontrar la solución de la Ecuacion diferencial de orden n definida por Donde los son constantes y f(x) es un función

Más detalles

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado

Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas

Más detalles

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción:

Introducción. Culminación de todos los anteriores capítulos. Tipos de compensación. Acción de control. Tipos de acción: DISEÑO DE SISTEMAS DE CONTROL 1.-Introducción. 2.-El problema del diseño. 3.-Tipos de compensación. 4.-Reguladores. 4.1.-Acción Proporcional. Reguladores P. 4.2.-Acción Derivativa. Reguladores PD. 4.3.-Acción

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas

MAT08-13-CALCULA - La calculadora ClassPad 300 como recurso didáctico en la enseñanza de las matemáticas ENUNCIADO Para completar el curso te proponemos la siguiente actividad: Selecciona cualquier contenido o contenidos del área de Matemáticas (o de otra especialidad si esta no es tu área de trabajo) de

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden

Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Algunas Aplicaciones de la Transformada de Laplace

Algunas Aplicaciones de la Transformada de Laplace Algunas Aplicaciones de la Transformada de Laplace Dr. Andrés Pérez Escuela de Matemática Facultad de Ciencias Universidad Central de Venezuela 11 de marzo de 2016 A. Pérez Algunas Aplicaciones de la Contenido

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode

3. Modelos, señales y sistemas. Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode 3. Modelos, señales y sistemas Panorama Obtención experimental de modelos Respuesta en frecuencia Diagramas de Bode CAUT1 Clase 4 1 Obtención experimental de modelos Muchos sistemas en la práctica pueden

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b.

EC = (f(x) p 1 )dx EP = (p 1 g(x))dx. El valor promedio de una función y = f(x) en su dominio [a, b], viene dado por. V P = 1 b. Universidad de Talca. Matemáticas II Algunas aplicaciones de la Integral indefinida 1) Excedente (Superávit) de Consumidor y Productor El precio de equilibrio es aquel en que la demanda de un producto

Más detalles

Sistemas de Control UTN-FRBA/FRH Consideraciones para el análisis y

Sistemas de Control UTN-FRBA/FRH Consideraciones para el análisis y I. Introducción. En estas, consideraciones para el análisis y diseño de sistemas de control, continuos y LTI, se tienen en cuenta algunas de las relaciones matemáticas y conceptuales, que se requieren,

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

19. DISEÑO DE CONTROLADORES

19. DISEÑO DE CONTROLADORES 381 19. DISEÑO DE CONTROLADORES 19.1. INTRODUCCION Con los diagramas de Bode de la respuesta de un lazo abierto se pueden diseñar controladores con las especificaciones del margen de ganancia, el margen

Más detalles

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA

Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA EN ELECTRÓNICA Control Automático TAREA PROGRAMADA DISEÑO DE UN COMPESADOR DE FILTRO DE MUESCA Alumnos: Johan Carvajal Godinez Vladimir Meoño Molleda

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011 Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace Electrónica Analógica espuesta en frecuencia. Transformada de Laplace Transformada de Laplace. Introducción La transformada de Laplace es una herramienta matemática muy útil en electrónica ya que gracias

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Transformada de Laplace) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Verano 2010, Resumen clases Julio López EDO 1/30 Introducción

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re

Análisis de la Estabilidad de un Sistema Realimentado Se trata de analizar la estabilidad del sistema realimentado neativamente, M(, a partir de la re Tema 7 Análisis Frecuencial de los Sistemas Realimentados Gijón - Junio 5 1 Indice 7.1. Análisis de la estabilidad de un sistemas realimentado 7.. Maren de ase y de anancia 7..1. Diarama de Bode 7... Diarama

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles