Electromagnetismo II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Electromagnetismo II"

Transcripción

1 Electromgnetismo II Semestre: 25- TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Por: Pedro Edurdo Romn Tbod.- Problem: (5pts Clcul l fuerz sobre l crg +q de l figur que se muestr continución. El plno XY represent un plno conductor terrizdo. z 3d +q d -2q y Solución problem x Pr resolver este problem usremos el método de imágenes. Pr ésto, reemplzmos el plno conductor en el plno XY por dos crgs imgen: l primer de vlor +2q ubicd en z = d y l segund de vlor q loclizd en z = 2d. Nótese que usndo est configurción de crgs obtenemos ls misms condiciones de fronter del problem originl (el plno XY está potencil igul cero y el potencil muy lejos tiende cero, esto grntiz que l solución obtenid por medio del método de crgs imgen es correct (y únic. L fuerz totl sobre l crg +q está dd por: F = 2 q2 4πɛ = q2 4πɛ d 2 = q2 4πɛ d 2 q2 (2d (4d ê z 36 ( 29 ê z. 72 q2 (6d 2 ê z ( 2. Problem: (25pts ( Usndo l ley de cosenos, muestr que el potencil ddo por l siguiente expresión es cero sobre un esfer de rdio r = R: φ( r = ( q 4πɛ r r + q 2, r r 2 bsándote en l siguiente figur r θ P! r r! r r 2 b q 2 q - -

2 y hciendo uso de q 2 = R q nd b = R2, donde r y θ son ls coordends polres usules, con el eje z lo lrgo de l líne que une ls crgs. (b Clcul l densidd de crg superficil inducid en l esfer, como función del ángulo θ. Integr est expresión pr obtener l crg totl inducid. (c Clcul l energí de est configurción. Solución problem 2 Pr poder demostrr que el potencil es cero en l esfer de rdio R, primero necesitmos escribir el potencil φ( r en términos de ls coordends polres r y θ. Usndo l ley de cosenos y l figur de rrib obtenemos r r = 2 + r 2 2r cos θ y r r 2 = b 2 + r 2 2br cos θ. (2 Por tnto el potencil está ddo por ( φ(r, θ = q 4πɛ 2 + r 2 2r cos θ q ( R (R2 / 2 + r 2 2r(R 2 / cos θ ( = q 4πɛ 2 + r 2 2r cos θ q, R2 + (r/r 2 2r cos θ donde hemos usdo q 2 = R q y b = R2. Ahor clculemos φ(r, θ, tenemos φ(r, θ = ( q 4πɛ 2 + R 2 2R cos θ q =. (4 R R cos θ b L densidd crg superficil inducid está dd por σ = ɛ φ(r, θ n (3, (5 r=r donde φ/ n es l derivd norml de φ evlud en l superficie. En nuestro cso, l dirección norml es ê r, por lo tnto l densidd de crg superficil es φ(r, θ σ(θ = ɛ r r=r = q r + cos θ 4π ( 2 + r 2 2r cos θ + 2 r/r 2 cos θ 3/2 (R 2 + (r/r 2 2r cos θ 3/2 = q R + cos θ 4π ( 2 + R 2 2R cos θ + 2 /R cos θ 3/2 ( 2 + R 2 2R cos θ 3/2 = q R + 2 /R 4π ( 2 + R 2 2R cos θ 3/2 = q R πR ( 2 + R 2 2R cos θ 3/2 r=r (6-2 -

3 Por lo tnto l crg totl inducid es Q T inducid = σ(θ da = σ(θr 2 sin θ dϕ dθ = 2πR 2 σ(θ sin θdθ π = q R 2 (R2 2 ( 2 + R 2 2R cos θ 3/2 sin θ dθ = q R 2 (R2 2 ( 2 + R 2 2R cos θ π /2 R = q 2 (2 R R 2 + 2R 2 + R 2 2R = q 2 (2 R 2 + R, R (7 debido que > R tenemos + R = + R y R = R sí obtenemos Q T inducid = q 2 (2 R 2 + R R = q R ( + R 2 = q R = q 2. (8 c L fuerz sobre l crg q es F = q q 2 4πɛ ( b 2 = q2 R 4πɛ ( R 2 / 2 = q2 4πɛ Finlmente pr trer l crg q desde infinito el trbjo necesrio es W = q2 R 4πɛ ( 2 R 2 2 d = q2 R 4πɛ 2( 2 R 2 R ( 2 R 2 2. (9 = q 2 R 8πɛ 2 R 2. ( 3. Problem: (5pts En el ejercicio 3.2 del libro de Girffiths (visto en clse, se supuso que l esfer conductor estb terrizd (potencil sobre su superficie φ =. Sin embrgo, ñdiendo otr crg puntul más, se puede utilizr el mismo modelo pr clculr el potencil fuer de l esfer cundo ést se mntiene hor un potencil φ diferente de cero. Qué crg hy que usr y dónde colocrl? Clcul l fuerz de trcción entre l crg y un esfer conductor neutr. Solución problem 3 Debido que l esfer es conductor es posible colocr un crg puntul en el centro de l esfer, por ejemplo de vlor q 3, sin cmbir el hecho de que l esfer sig siendo un superficie equipotencil. Sin embrgo, l presenci de l crg modific el potencil sobre l esfer, el cul hor tom el siguiente vlor: sí el vlor de l crg colocrl en el centro está dd por: φ = q 3 4πɛ R, ( q 3 = 4πɛ Rφ. (2-3 -

4 Pr que l esfer conductor se neutr requerimos que q 2 + q 3 =, por lo tnto l fuerz sobre l crg q está dd por: F = q q 3 4πɛ 2 + q q 2 ( b 2 = q q 2 4πɛ 2 + ( b 2 = q ( q R/ ( πɛ = q2 4πɛ ( R ( R 2 / R 2 ( 2 R Problem: (2pts Un tubo metálico de sección trnsversl rectngulr, corre lo lrgo del eje ê z (desde y tiene tres ldos terrizdos: en y =, y = y en x =. El curto ldo restnte, x = b, se mntiene potencil φ (y. ( Escribe l solución generl pr el potencil dentro del tubo. (b Clcul explícitmente el potencil pr el cso φ (y = φ constnte. Solución problem 4 L configurción del problem es independiente de z, de modo que es un problem en 2D. L solución se reduce resolver l ecución de Lplce en dos dimensiones: sujet ls siguientes condiciones de fronter 2 φ x φ y 2 =, (4 φ(x, =, (5 φ(x, =, (6 φ(, y =, (7 φ(b, y = φ (y. (8 Resolveremos l ecución de Lplce usndo el método de seprción de vribles. L solución propuest es de l form φ(x, y = X(xY (y. Sustituyendo en l ecución de Lplce y dividiéndol por φ obtenemos 2 X X x 2 + Y =. (9 y2 Pr que l ecución nterior se cumpl necesitmos que cd uno de los términos del ldo derecho se igul un constnte. Si llmmos l constnte k 2, tenemos 2 X X x 2 = k2 Y Ls soluciones de ls ecuciones diferenciles ordinris son y 2 = k2. (2 X(x = Ae kx + Be kx, Y (y = C sen (ky + D cos (ky, (2 de este modo, l solución generl pr el potencil está ddo por: φ(x, y = (Ae kx + Be kx C sen (ky + D cos (ky. (22-4 -

5 Sin embrgo, ún necesitmos imponer ls condiciones de fronter. L condición (5 requiere que D =, l condición (7 implic B = A y l condición (6 impone l condición k = nπ, donde n es un número nturlo, por tnto el potencil tiene l form: φ(x, y = AC(e nπx/ + e nπx/ sen (nπy/ = 2AC senh (nπx/ sen (nπy/. (23 Ahor bien, l solución más generl l ecución de Lplce es un combinción linel de l solución nterior, es decir, φ(x, y = C n senh (nπx/ sen (nπy/. (24 n= El último pso es determinr el coeficiente C n. Pr ello usmos l condición (8. Multipliquemos l ecución (24 por sen (mπy/, evlumos en x = b e integremos mbos ldos respecto y en el intervlo < x < φ (y sen (mπy/ dy = = 2 C n senh (nπb/ n= sen (nπy/ sen (mπy/ dy C n senh (nπb/δ m,n = 2 C m senh (mπb/, n= (25 finlmente C n = 2 senh (nπb/ φ (y sen (nπy/. (26 b Pr el cso φ (y = φ tenemos C n = 2φ senh (nπb/ sen (nπy/ = 4φ nπ senh (nπb/ si y sólo si n es impr. (27 5. Problem: (25pts Un cj cúbic (de ldo consiste de cinco ldos metálicos terrizdos y el sexto ldo (l tp se encuentr un potencil constnte φ (l tp está isld de ls otrs cinco crs pr evitr corto circuito. Clcul el potencil dentro de l cj (ver figur. Solución problem 5 Pr clculr el potencil necesitmos resolver l ecución de Lplce 2 φ x φ y φ z 2 = (28 sujet ls condiciones de fronter: φ(x,, z =, (29 φ(x,, z =, (3 φ(x,, z =, (3 (32-5 -

6 φ(x,, z =, (33 φ(x, y, =, (34 φ(x, y, = φ. (35 Resolveremos l ecución de Lplce usndo seprción de vribles. L función propuest es de l form φ(x, y, z = X(xY (yz(z, y sustituyendol en l ecución de Lplce y dividiendo por φ obtenemos: Se sigue que Y y 2 = k2, 2 X X x 2 + Y 2 Z Z z 2 y 2 + Z = l2 X 2 Z =. (36 z2 2 X x 2 = k2 + l 2. (37 donde ls contntes fueron elegids rbitrrimente (pero elegids de modo que fciliten el cálculo. Ls soluciones ls ecuciones diferenciles nteriores están dds por: X(x = A sen (kx + B cos (kx, Y (y = C sen (ly + D cos (ly, ( Z(z = E exp k2 + l 2 + F exp ( k 2 + l 2. (38 Utilizndo l condición (29 obtenemos B = ; pr l condición (3 tenemos que k = nπ/; l condición (3 requiere D = ; l condición (33 implic l = mπ/ y finlmente l condición (34 impone que E + G =. Sustituyendo estos resultdos en el potencil obtenemos, escribiendo l solución más generl: φ(x, y, z = n= m= C n,m sen (nπx/ sen (mπy/ sinh ( πz n2 + m 2. (39 Es posible determinr el coeficiente C n,m usndo el truco del problem nterior, de modo que: C n,m = = 4φ senh ( π n 2 + m 2 6φ π 2 nm senh ( π n 2 + m 2 sen (nπx/ sen (mπy/ dx dy si y sólo si n y m son impres. (4 6. Problem TORITO: (2pts Un líne infinit con densidd linel de crg uniforme λ se coloc un distnci d sobre un plno conductor terrizdo. L líne es prlel l eje x y el plno conductor está loclizdo en el plno XY. ( Clcul el potencil en l región superior del plno conductor. (b Clcul l densidd de crg inducid en el plno conductor. Solución problem torito (6 El problem es nálogo l problem, sólo que este cso debemos usr un líne de crg imgen con densidd linel de crg λ loclizd en z = d. El potencil de está configurción fue clculdo en l Tre 2, problem 8, y está ddo por: ( φ(r = λ y2 + (z + d ln. 2 (4 2πɛ y2 + (z d 2-6 -

7 b L densidd de crg superficil está dd por l ecución (5, en este cso, l dirección norml está en l dirección ê z, por lo tnto, evlundo en l superficie del plno (z = tenemos φ(z, θ σ = ɛ z z= ( = λ 2π z ln y2 + (z + d 2 y2 + (z d 2 z= = λ z + d 2π y 2 + (z + d 2 z d y 2 + (z d 2 = λ d 2π y 2 + d 2 d y 2 + d 2 = λ d π y 2 + d 2. z= (42 Cuál deberí ser l crg totl inducid? Puedes decirlo sin hcer ningún clculo? Si no puedes, será mejor que estudies de nuevo el tem

Electromagnetismo I. +q" #2q" d" 2d"

Electromagnetismo I. +q #2q d 2d Electromgnetismo I Semestre: 215-2 Prof. Alejndro Reyes Corondo Ayud. Crlos Alberto Mciel Escudero Ayud. Christin Esprz López Solución l Tre 4 Solución por Christin Esprz López 1.- Problem: (2pts Clcul

Más detalles

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromgnetismo I Semestre: 24-2 TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Solución por Crlos Andrés Escobr Ruíz.- Problem: (25pts) Un esfer de rdio R, centrd en el origen, posee un densidd de crg ρ(r,

Más detalles

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática Electromgnetismo Auxilir: 27 de gosto, 2008 Método de Imágenes en Electrostátic Nuestro objetivo es clculr el cmpo electrostático en el espcio considerndo l presenci de un conductor, ue está expuesto l

Más detalles

Electromagnetismo II

Electromagnetismo II Electomgnetismo II Semeste: 215-1 EXAMEN PARCIAL 2: Solución D. A. Reyes-Coondo Poblem 1 (2 pts.) Po: Jesús Cstejón Figueo ) Escibe ls cuto ecuciones de Mxwell en fom difeencil, escibiendo el nombe de

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidd y Mgnetismo - FIS1533 Interrogción 1 Mrtes 10 de Abril de 2012 Profesores: Mrí Cristin Depssier, Mx Bñdos y Sebstián A Reyes - Instrucciones -Tiene dos hors pr resolver los siguientes problems

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas

Fundamentos Físicos de Ingeniería de Telecomunicaciones Fuerzas electrostáticas Fundmentos Físicos de Ingenierí de Telecomunicciones Fuerzs electrostátics 1. Dos crgs igules de 3.0 µc están sobre el eje y, un en el origen y l otr en y = 6 m. Un tercer crg q 3 = 2.0 µc está en el eje

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución : Ley de Guss jercicio 1 Un cscrón delgdo esférico de rdio, se encuentr rodedo concéntricmente por un cscrón metálico grueso de rdio interno b y externo c. Se sbe que el cscrón grueso tiene crg nul y el

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deprtmento de Físic, UTFSM Físic Generl II / rof: A. Brunel. FÍSICA GENEAL II GUÍA 1 - Cmpo eléctrico: Le de Coulomb Objetivos de prendizje Est guí es un herrmient que usted debe usr pr logrr los siguientes

Más detalles

Electromagnetismo I. Semestre: TAREA 5 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 5 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromgnetismo I Semestre: 20-2 TAREA 5 Y SU SOLUCIÓN Dr. A. Reyes-Corono Solución por Crlos Anrés Escobr Ruíz.- Problem: (20pts) Un moelo primitivo pr el átomo consiste en un núcleo puntul con crg +

Más detalles

Curso de Mecánica Cuántica. Enero-Mayo de 2017

Curso de Mecánica Cuántica. Enero-Mayo de 2017 Curso de Mecánic Cuántic. Enero-Myo de 7 Tre Ejercicios del cpítulo (págin 76) del libro Quntum Mechnics. Concepts nd pplictions. Second edition. Nouredine Zettili........6..9 6.. 7.. 8..7 9..9....8..

Más detalles

(2) Por otro lado, la carga total disponible está fija, entonces,

(2) Por otro lado, la carga total disponible está fija, entonces, 1. Un condensdor cilíndrico de rdio interior, rdio exterior b y crg constnte Q es introducido verticlmente en un líquido dieléctrico (linel) de permitividd ɛ. El líquido puede subir por el espcio entre

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS

CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS CAMPOS ELECTROMAGNÉTICOS ESTÁTICOS PROBLEMAS PROPUESTOS 1: Se hce girr un superficie pln con un áre de 3,2 cm 2 en un cmpo eléctrico uniforme cuy mgnitud es de 6,2 10 5 N/C. ( ) Determine el flujo eléctrico

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Tenemos 2 cargas puntuales q separadas por una distancia 2a: 1) Determine el campo eléctrico E en un punto P cualquiera de la recta mediatriz del

Tenemos 2 cargas puntuales q separadas por una distancia 2a: 1) Determine el campo eléctrico E en un punto P cualquiera de la recta mediatriz del Tenemos crgs puntules q seprds por un distnci : ) Determine el cmpo eléctrico E en un punto P culquier de l rect meditri del segmento de rect comprendido entre ls crgs; ) Determine el punto P en el que

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso -17 Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

CERTAMEN 1 FIS-120, 15 de abril de 2011, 17:00hrs NOMBRE, APELLIDO: PROFESOR: JUSTIFIQUE TODAS SUS RESPUESTAS!!!

CERTAMEN 1 FIS-120, 15 de abril de 2011, 17:00hrs NOMBRE, APELLIDO: PROFESOR: JUSTIFIQUE TODAS SUS RESPUESTAS!!! CETAMEN 1 FIS-120, 15 de bril de 2011, 17:00hrs NOMBE, APELLIDO: POFESO: JUSTIFIQUE TODAS SUS ESPUESTAS!!! Enuncido problems 1, 2 y 3 Considere tres crgs puntules de igul mgnitud Q y signo positivo (Q

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deprtmento de Físic, UTFSM Físic Generl II / rof: A. Brunel. FIS120: FÍSICA GENEAL II GUÍA #1: Cmpo eléctrico, Le de Coulomb Objetivos de prendizje Est guí es un herrmient que usted debe usr pr logrr los

Más detalles

F r Q ( que se puede escribir como. En otras palabras:

F r Q ( que se puede escribir como. En otras palabras: 57 V i R + ε V ue se puede escribir como i R + ε 0. (8.6) En otrs plbrs: L sum lgebric de los cmbios en el potencil eléctrico ue se encuentren en un circuito completo debe ser cero. Est firmción se conoce

Más detalles

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática

Guía Semana 4 1. RESUMEN 2. EJERCICIOS PROPUESTOS. Universidad de Chile. Ingeniería Matemática . RESUMEN Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Vris Vriles 08- Ingenierí Mtemátic Universidd de Chile Guí Semn 4 Grdiente. Sen Ω Ê N un ierto, f

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

Funciones de R en R. y = 1. son continuas sobre el conjunto

Funciones de R en R. y = 1. son continuas sobre el conjunto Funciones de R n en R m Teorem de l Función Invers Funciones de R en R Se f(x) un función rel de vrible rel con derivd continu sobre un conjunto bierto A se x 0 un punto de A donde f (x 0 ) 0. Considere

Más detalles

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR:

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: 2 do Semestre 211 Físic Generl II FIS12: FÍSICA GENERAL II 2do Semestre 211 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: INSTRUCCIONES: L entreg es opttiv, no tiene not y tmpoco se relizrá un corrección

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Integrales Elipticas. Longitud de una Curva

Integrales Elipticas. Longitud de una Curva Unidd 3 Función Logritmo y Exponencil 3. Logritmo trvés de l integrl. Integrles Eliptics Longitud de un Curv Se f un función continu en [, b]. Si {t, t,..., t n } es un prtición de [, b] tenemos que en

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Superior de Ingenieros Cmino de los Descubrimientos s/n 41092 Sevill Exmen de Cmpos electromgnéticos. 2 o Curso de Ingenierí Industril. 8 de septiembre de 2009 PROBLEMA

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

Universidad de Costa Rica. Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO

Universidad de Costa Rica. Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO Universidd de Cost Ric Proyecto MATEM PRIMER EXAMEN PARCIAL CÁLCULO de bril de 017 INSTRUCCIONES GENERALES: Le cuiddosmente, cd instrucción y pregunt, ntes de contestr. Utilice únicmente bolígrfo de tint

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

Electromagnetismo I. Semestre: Prof. Alejandro Reyes Coronado. Ayud. Adrián Alejandro Bartolo González Solución: Tarea 5

Electromagnetismo I. Semestre: Prof. Alejandro Reyes Coronado. Ayud. Adrián Alejandro Bartolo González Solución: Tarea 5 Electromgnetismo I Semestre: 2016-2 Prof. Alejndro Reyes Corondo Ayud. José Ángel Cstellnos Reyes Ayud. Adrián Alejndro Brtolo González : Tre 5 1. Prolem: (20pts) Clcul l cpcitnci por unidd de longitud

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Electromagnetismo I. Semestre: Prof. Alejandro Reyes Coronado. Ayud. Adrián Alejandro Bartolo González Solución: Tarea 4

Electromagnetismo I. Semestre: Prof. Alejandro Reyes Coronado. Ayud. Adrián Alejandro Bartolo González Solución: Tarea 4 Electromgnetismo I Semestre: 6- Prof Alejndro Reyes Corondo Ayud José Ángel Cstellnos Reyes Ayud Adrián Alejndro Brtolo González : Tre 4 Prolem: (pts) Consider tres plcs plns infinits A, B y C prlels entre

Más detalles

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por

Operador nabla. El operador nabla es: = xˆ. Definimos el gradiente de un campo escalar ϕ(x ) por: La divergencia de A se define por Operdor nbl El operdor nbl es: = xˆ x + ŷ y + ẑ z Definimos el grdiente de un cmpo esclr ϕ(x ) por: ϕ =xˆ ϕ x + ŷ ϕ y + ẑ ϕ z e A (x ) =A x (x )xˆ +A y (x )ŷ +A z (x )ẑ un cmpo vectorl. L divergenci de

Más detalles

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN.

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN. 65 ) Clculr el áre interior de l stroide = cos t = sen t, t De l figur, el áre totl uscd A será cutro veces el áre curd: A = (sen t)(cos t)( sent) dt A = sen t cos t dt. Pero: cos sen = ; + cos cos =,

Más detalles

E y E x dx = 4xyz3. 2y 2 z 3 = 2x. 1 2 y2 = x 2 + C 1. E z E x dx = 6xy2 z 2. 2y 2 z 3. 3xdx=zdz, y así

E y E x dx = 4xyz3. 2y 2 z 3 = 2x. 1 2 y2 = x 2 + C 1. E z E x dx = 6xy2 z 2. 2y 2 z 3. 3xdx=zdz, y así CAPÍTULO 7 7.. Se V = 2xy 2 z 3 y = 0. Ddo el punto P, 2,, encuentre: V en P : Sustitu yendo ls coordends en V, encuentre V P = 8V. E en P : Usmos E = V = 2y 2 z 3 x 4xyz 3 y 6xy 2 z 2 z, que, cundo evlumos

Más detalles

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3. págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos

Más detalles

Universidad de Costa Rica Escuela de Física Mecánica Celeste Andrë Oliva I r 2 dv dt = k (1 + m)a(1 e 2 ) (1) = k 2 (1 + m)

Universidad de Costa Rica Escuela de Física Mecánica Celeste Andrë Oliva I r 2 dv dt = k (1 + m)a(1 e 2 ) (1) = k 2 (1 + m) Universidd de Cost Ric Escuel de Físic Mecánic Celeste Andrë Oliv I 2014 Elementos Orbitles 1. Posición en órbits eĺıptics. Ls integrles de áres y de vis viv (energí pr un órbit elíptic son ( dr 2 + r

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Deprtmento de Físic Aplicd III Escuel Técnic Superior de Ingenierí Ingenierí de Telecomunicción Cmpos Electromgnéticos Cmpos Electromgnéticos. Boletín. Diciembre de 00.. Un esfer metálic de rdio se encuentr

Más detalles

1. La integral doble.

1. La integral doble. UNIVESIA POLITÉCNICA E CATAGENA eprtmento de Mtemátic Aplicd y Estdístic Fundmentos Mtemáticos Curso 2008/09. Integrción Múltiples 1. L integrl doble. Supongmos que tenemos un rectángulo en 2 de l form

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Teorema Fundamental. Prof. Farith J. Briceño N. Cálculo Diferencil e Integrl - Teorem Fundmentl. Prof. Frith J. Briceño N. Objetivos cubrir Segundo Teorem Fundmentl del Cálculo. Teorem del Vlor Medio. Teorem sobre simetrí. Código : MAT-CDI. Ejercicios

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

Cavidades resonantes. Resonadores rectangular y cilindrico

Cavidades resonantes. Resonadores rectangular y cilindrico Cviddes resonntes Se puede demostrr que un líne de trnsmisión corto circuitdo en mbos extremos exhibe propieddes resonntes frecuencis cundo l longitud es λ/ o un múltiple de λ/. De l nlogí directo se esper

Más detalles

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas. SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se

Más detalles

Teorema de la Función Inversa

Teorema de la Función Inversa Teorem de l Función Invers Pr el cso de un funcion F : U R R se tiene Nuestro problem es, dds ls funciones x f(u, v) y y g(u, v) que describen x, y como funciones de u, v, cundo es posible estblecer funciones

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

Tema 7 Integral definida

Tema 7 Integral definida Tem 7 Integrl definid 1. INTEGRAL E RIEMANN efinición 1.1: Prtición Llmremos prtición de un intervlo [, b] culquier conjunto ordendo de puntos P = {x, x 1, x,..., x n } tl que = x < x 1 < x

Más detalles

(Chpter hed:)integrles MULTIPLES El concepto de integrl de un función de un sol vrible sobre un intervlo estudido en el Cálculo I, se extiende de mner nturl primero funciones de dos vribles sobre un región

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Lección 4. Desarrollo multipolar del potencial escalar. Las fuentes puntuales del campo electrostático.

Lección 4. Desarrollo multipolar del potencial escalar. Las fuentes puntuales del campo electrostático. Lección 4. Desrrollo ultiolr del otencil esclr. Ls fuentes untules del co electrostático. 121. Clculr el oento diolr de un esfer de rdio uniforeente crgd con densidd ρ, () resecto su centro y (b) resecto

Más detalles

1.4. Sucesión de funciones continuas ( )

1.4. Sucesión de funciones continuas ( ) 1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:

Más detalles

UNIDAD 9 Aplicaciones de las derivadas

UNIDAD 9 Aplicaciones de las derivadas Pág. 1 de 6 1 El perímetro de l ventn del diujo mide 6 metros. Los dos ldos superiores formn entre sí un ángulo de 90. Clcul l longitud de los ldos y pr que el áre de l ventn se máim. L función que hy

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integrción. Integrción or sustitución trigonométric A continución veremos un técnic de integrción, l cul se bs en utilizr unciones trigonométrics r licr cmbios de vrible que tendrán

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

Relación de problemas: Tema 7. F = qv B mv mv

Relación de problemas: Tema 7. F = qv B mv mv Relción de problems: em 7.-Un prtícul puntul de ms m y crg q incide con un velocidd inicil v, prlel l eje x, sobre un zon de inducción mgnétic constnte, de módulo y siguiendo l dirección del eje z. Se

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MTRICES Y DETERMINNTES. Definición de mtriz.. Tipos de mtrices.. Sum de mtrices.. Producto de un número rel por un mtriz.. Producto de mtrices.. Ejercicios. Determinnte de un mtriz. 8. Menor complementrio

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple

Integral de una función real. Tema 08: Integrales Múltiples. Integral definida. Aproximación de una integral simple Integrl de un función rel Tem 08: Integrles Múltiples Jun Igncio Del Vlle Gmbo Sede de Guncste Universidd de Cost ic Ciclo I - 2014 Ls integrles definids clculn el áre bjo un curv y = f (x) pr un región

Más detalles

Ejercicios de las Cónicas

Ejercicios de las Cónicas Ejercicios de ls Cónics Ejemplo 1 Ejemplo Otener l ecución crtesin generl de l circunferenci que coincide con el punto (, 3) cuo centro coincide con el origen. Prtiendo de l ecución ordinri ( - h) + (

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

PROBLEMAS DE LÍNEAS DE TRANSMISIÓN

PROBLEMAS DE LÍNEAS DE TRANSMISIÓN PROBLEMAS DE LÍNEAS DE TRANSMISIÓN Se conect un resistenci R = 100 Ω en un punto rbitrrio entre los dos hilos de un líne de trnsmisión sin pérdids de impednci crcterístic Z o = 50 Ω. En uno de los extremos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático

Más detalles

EFECTO HALL. FUENTES DE CAMPO MAGNETICO - LEY DE BIOT SAVART - LEY DE AMPERE

EFECTO HALL. FUENTES DE CAMPO MAGNETICO - LEY DE BIOT SAVART - LEY DE AMPERE ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 10 EFECTO HALL. FUENTES DE CAMPO MAGNETICO - LEY DE BIOT SAVART - LEY DE AMPERE Bibliogrfí Obligtori (mínim) Cpítulo 30 Físic de Serwy Tomo II Apunte de cátedr:

Más detalles