CINEMÁTICA DE LAS MÁQUINAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CINEMÁTICA DE LAS MÁQUINAS"

Transcripción

1 UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSÍ FACULTAD DE INGENIERÍA Apuntes para la materia de CINEMÁTICA DE LAS MÁQUINAS ÁREA MECÁNICA Y ELÉCTRICA ING. ARTURO CASTILLO RAMÍREZ

2 PREFACIO El propósito de estos apuntes es presentar una exposición que cubra el contenido del programa de la materia de Cinemática de las Máquinas que se imparte en el Área Mecánica y Eléctrica de la Facultad de Ingeniería de la UASLP, como un requisito previo a estudios específicos y avanzados encaminados al diseño mecánico. En este texto se utiliza de forma amplia el método de análisis gráfico por considerarse que el cálculo gráfico es básico y fácil de usar y casi siempre resulta el método más rápido para verificar los resultados del cálculo de máquinas. Se ha procurado utilizar indistintamente unidades inglesas y del Sistema Internacional de Unidades (SI) para que el estudiante se familiarice con ambos sistemas. Algunos temas que se consideran relevantes, se ampliaron con información que no se contempla específicamente en el programa de la materia, pero que enriquece su contenido. Agradezco la aprobación de este proyecto a mis compañeros de la Academia de Mecánica del Área Mecánica y Eléctrica y el apoyo de las Autoridades de la Facultad de Ingeniería y del Fondo de Apoyo a la Docencia (FAD) de la UASLP, para la elaboración de este material didáctico. Arturo Castillo Ramírez Enero de 2005 Rev. jun-05

3 ÍNDICE Página 1. INTRODUCCIÓN GENERAL Análisis y síntesis Ciencia de la Mecánica Terminologías Definición de máquina, mecanismo y estructura Los componentes de las máquinas La estructura de las máquinas La actividad y formación del ingeniero en el campo de la maquinaría 9 2. ANÁLISIS TOPOLÓGICO DE MECANISMOS Conceptos básicos topológicos Par cinemático Cadenas cinemáticas Mecanismo Ciclo, periodo, fase y transmisión de movimiento Clasificación de los mecanismos en función de sus movimientos Movilidad o número de grados de libertad de un mecanismo plano Inversión cinemática MECANISMOS DE ESLABONES ARTICULADOS Mecanismo de cuatro barras articuladas Ley de Grashof Ventaja mecánica Análisis de posición Curvas del acoplador Mecanismos de línea recta Mecanismos de retorno rápido Ruedas de cámara Mecanismos de movimiento intermitente CENTROS INSTANTÁNEOS Generalidades Localización de centros instantáneos Teorema de Kennedy Número de centros instantáneos Cuadro articulado Centros instantáneos para el mecanismo de corredera biela y manivela Tabulación de centros instantáneos Centrodas o Curvas Polares VELOCIDAD Y ACELERACION EN EL MOVIMIENTO COPLANARIO Velocidades de los centros instantáneos Velocidades lineales por resolución 80

4 5.3 Velocidades angulares Método de imagen La imagen de velocidad Imagen de aceleraciones Construcción gráfica de la aceleración normal Aceleración Coriolis Procedimiento general para resolver problemas por la Ley de Coriolis MECANISMOS DE CORREDERA, BIELA Y MANIVELA Generalidades Primera inversión. Cadena con par en deslizamiento Segunda inversión Tercera inversión. Mecanismo de limadora Cuarta inversión. Cadena con corredera fija LEVAS Levas Diseño del perfil Velocidad constante Aceleración constante Movimiento armónico simple Movimiento cicloidal Selección del movimiento Construcción del perfil de la leva Leva plana o disco Varilla de punzón Varilla con rodaja Varilla con cara plana o plato Ángulo de presión de la leva Diámetro del círculo base Leva de retorno positivo Levas tipo cilíndrica Levas de arco circular Varillas primarias y secundarias CONTACTOS CON RODAMIENTO Condiciones para contactos con rodamiento Relación de velocidad angular Transmisiones friccionales Disco y rodillo Construcción del perfil Rodamiento de dos elipses iguales 167

5 8.7 Relación de velocidad de conos que ruedan ENGRANES Los engranes Clasificación de los engranes Relación de velocidad Terminología de los engranes Paso Ley fundamental del engranaje Acción con deslizamiento de los dientes Perfil del diente Dientes cicloidales Dientes evolventes o de involuta Producción de ruedas dentadas Perfiles de dientes normalizados TRENES DE ENGRANES Valor del tren Un tren de engranaje simple Un tren de engranaje compuesto Trenes de engranaje recurrentes compuestos Trenes de engranes epicicloidales o planetarios Trenes epicicloidales que no tienen un engrane fijo Aplicaciones de trenes de engranaje epicicloidales 223 Bibliografía 229

6 CAPÍTULO 1 INTRODUCCIÓN GENERAL El diseño de una máquina moderna es a menudo muy complejo. Por ejemplo, para diseñar un nuevo motor, el ingeniero en automovilismo debe dar respuesta a muchas preguntas interrelacionadas. Cuál es la relación entre el movimiento del pistón y el del cigüeñal? Cuáles serán las velocidades de deslizamiento y las cargas en las superficies lubricadas y qué lubricantes existen para este fin? Qué cantidad de calor se generará y cómo se enfriará el motor? Cuáles son los requisitos de sincronización y control, y cómo se satisfarán? Cuál será el costo para el consumidor, tanto por lo que respecta a la compra inicial como en lo referente al funcionamiento y mantenimiento continuos? Qué materiales y métodos de fabricación se emplearán? Qué economía de combustible se tendrá? Cuál será el ruido y cuáles las emisiones de salida o escape? Satisfarán estos últimos los requisitos legales? Aunque éstas y muchas otras preguntas importantes se deben responder antes de que el diseño llegue a su etapa final, es necesario reunir personas de las más diversas especialidades para producir un diseño adecuado y hacer acopio de muchas ramas de la ciencia. 1.1 Análisis y síntesis En el estudio de los sistemas mecánicos el diseño y el análisis son dos aspectos completamente distintos. El concepto comprendido en el término diseño podría llamarse más propiamente síntesis o sea, el proceso de idear un patrón o método para lograr un propósito dado. Diseño es el proceso de establecer tamaños, formas, composiciones de los materiales y disposiciones de las piezas de tal modo que la máquina resultante desempeñe las tareas prescritas. Mediante el proceso de síntesis se busca un mecanismo que produzca un movimiento requerido. Aunque existen muchas fases dentro del proceso de diseño que es factible plantear de un modo científico y bien ordenado, el proceso en su conjunto es por su propia naturaleza, tanto un arte, como una ciencia. Requiere imaginación, intuición, creatividad, sentido común y experiencia. El papel de la ciencia dentro del proceso de diseño sirve sencillamente para proveer las herramientas que utilizarán los diseñadores para poner en práctica su arte. Es precisamente en el proceso de

7 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 2 evaluación de varias alternativas interactuantes que los diseñadores se enfrentan a la necesidad de un gran número de instrumentos matemáticos y científicos. Cuando éstos se aplican en forma correcta ofrecen información más exacta y digna de confianza para juzgar un diseño que se pueda lograr a través de la intuición o el cálculo. Por ende, suelen constituir un auxiliar extraordinario para decidir entre varias alternativas. Sin embargo, las herramientas científicas no pueden tomar decisiones suplantando a los diseñadores; éstos tienen todo el derecho de poner en práctica su imaginación y capacidad creativa, incluso al grado de pasar por encima de las predicciones matemáticas. Es probable que el conjunto más abundante de métodos científicos de que dispone el diseñador quede dentro de la categoría denominada análisis. Se trata de técnicas que permiten que el diseñador examine en forma crítica un diseño ya existente o propuesto con el fin de determinar si es adecuado para el trabajo de que se trate. Por ende, el análisis, por sí solo, no es una ciencia creativa sino más bien de evaluación y clasificación de cosas ya concebidas. Es preciso tener siempre en mente que aunque la mayor parte de los esfuerzos realizados se dediquen al análisis, la meta real es la síntesis, es decir, el diseño de una máquina o un sistema. El análisis es una simple herramienta y, sin embargo, es tan vital que se usará inevitablemente como uno de los pasos en el proceso de diseño. 1.2 Ciencia de la Mecánica Mecánica es la rama del análisis científico que se ocupa de los movimientos, el tiempo y las fuerzas, y se divide en dos partes, Estática y Dinámica. La Estática trata del análisis de sistemas estacionarios, es decir, de aquellos en que el tiempo no es un factor determinante, y la Dinámica se refiere a los sistemas que cambian con el tiempo. Como se ilustra en la figura 1.1 la dinámica también está constituida por dos disciplinas generales que Euler fue el primero en reconocer como entidades separadas, en Estos dos aspectos de la dinámica se reconocieron posteriormente como las ciencias diferentes denominadas Cinemática (del vocablo griego kinema, que significa movimiento) y Cinética que se ocupan, respectivamente, del movimiento y de las fuerzas que lo producen. Novi comment, Acad. Petrop., vol. 20, 1775; también en Theoria motus corporum, 1790.

8 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 3 El problema inicial en el diseño de un sistema mecánico es, por consiguiente, la comprensión de su cinemática. MECÁNICA ESTÁTICA DINÁMICA CINEMÁTICA CINÉTICA Figura 1.1. Ciencia de la Mecánica. Cinemática es el estudio del movimiento independientemente de las fuerzas que lo producen. De manera más específica, la Cinemática es el estudio de la posición, el desplazamiento, la rotación, la rapidez, la velocidad y la aceleración. Este texto se concentrará en los aspectos cinemáticos que surgen en el diseño de sistemas mecánicos. Es decir, la cinemática de las máquinas y los mecanismos es el foco de atención principal. Es preciso observar con cuidado que Euler basó su división de la dinámica en cinemática y cinética basándose en la suposición de que deben tratar con cuerpos rígidos. Esta es una suposición de gran importancia que permite que ambos aspectos se traten por separado. En el caso de cuerpos flexibles las formas mismas de los cuerpos y, por ende, sus movimientos, dependen de las fuerzas ejercidas sobre ellos. En tal situación, el estudio de la fuerza y el movimiento se debe realizar en forma simultánea, incrementando notablemente con ello la complejidad del análisis. Por fortuna, aunque todas las piezas de máquinas reales son flexibles en cierto grado, éstas se diseñan casi siempre con materiales más o menos rígidos y manteniendo en un mínimo sus deformaciones. Por lo tanto, al analizar el funcionamiento cinemático de una máquina es práctica común suponer que las deflexiones son despreciables y que las piezas son rígidas, y luego, una vez que se ha realizado el análisis dinámico, cuando las cargas se conocen, se suele diseñar las piezas de manera que esta suposición se justifique.

9 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL Terminologías Definición de máquina, mecanismo y estructura Aun cuando prácticamente todas las personas usan cotidianamente gran número de máquinas, pocas son las que pueden definir con claridad lo que se puede entender por máquina. Ni siquiera los especialistas en este campo han llegado a una definición clara y única de este concepto, debido, entre otras cosas, a su gran complejidad y a los diferentes enfoques que se le puede dar a la propia máquina. Así, se lee el diccionario de la Real Academia Española de la Lengua, máquina es cualquier artificio que sirve para aprovechar, dirigir o regular la acción de una fuerza. Según Reuleaux, define una máquina como una combinación de cuerpos resistentes de tal manera que, por medio de ellos, las fuerzas mecánicas de la naturaleza se pueden encausar para realizar un trabajo acompañado de movimiento determinado. También define un mecanismo como una combinación de cuerpos resistentes conectados por medio de articulaciones móviles para formar una cadena cinemática cerrada con un eslabón fijo, y cuyo propósito es transformar el movimiento. Debido a estas diferencias, para nuestro estudio utilizaremos los siguientes conceptos: Una máquina es una combinación de cuerpos rígidos, conectados por medio de articulaciones que les permiten un movimiento relativo definido y son capaces de transmitir o transformar energía. Una máquina siempre debe ser abastecida con energía de una fuente externa. Su utilidad consiste en su habilidad para alterar la energía suministrada y convertirla eficazmente para el cumplimiento de un servicio deseado. En una máquina, los términos fuerza, momento de torsión (o par de motor), trabajo y potencia describen los conceptos predominantes. Un motor de combustión interna es un ejemplo de una máquina, transforma la energía de presión del gas en trabajo mecánico entregándolo en el cigüeñal, esta máquina transforma un tipo de energía a otro. Un mecanismo es una combinación de cuerpos rígidos, conectados por medio de articulaciones que les permiten un movimiento relativo definido, enfocado a la transformación del movimiento. En un mecanismo, aunque puede transmitir la potencia de una fuerza, el concepto predominante F. Reuleaux ( ), especialista alemán en cinemática cuyo trabajo marcó el principio de un estudio sistemático de la cinemática. Ver A.B.W. Kennedy, Reuleaux, Kinematics of Machinery, Macmillan, Londres, 1876.

10 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 5 que tiene presente el diseñador es lograr un movimiento deseado. Cuando se habla de un mecanismo, se piensa en un dispositivo que producirá ciertos movimientos mecánicos, haciendo a un lado el problema de si está capacitado para hacer un trabajo útil. El modelo en funcionamiento de cualquier máquina, el conjunto de las piezas de un reloj, y las partes móviles de un instrumento de ingeniería, reciben el nombre de mecanismos, por que la energía transmitida es muy poca, precisamente lo suficiente para sobreponer la fricción, y el factor importante lo forman los movimientos producidos. El conjunto formado por manivela, biela y el pistón de un motor de combustión interna, es un ejemplo de un mecanismo. Se puede arrojar más luz sobre estas definiciones contrastándolas con el término estructura, que es también una combinación de cuerpos (rígidos) resistentes conectados por medio de articulaciones, pero cuyo propósito no es efectuar algún trabajo ni transformar el movimiento. Una estructura (como por ejemplo, una armadura o chasis) tiene por objeto ser rígida; tal vez pueda moverse de un lado a otro y, en ese sentido es móvil, pero carece de movilidad interna, no tiene movimientos relativos entre sus miembros, mientras que las máquinas y mecanismos lo tienen. Otros ejemplos serían los puentes y los edificios. Existe una analogía directa entre los términos estructura, mecanismos y máquina y las tres ramas de la Mecánica especificadas en la Figura 1.1. El término estructura es a la Estática lo que el termino mecanismo es a la Cinemática y el término máquina es a la Cinética. Modernamente la máquina se considera el resultado de un diseño (de una construcción) en el que intervienen dos grupos de factores: uno de naturaleza puramente mecánica (las piezas y los mecanismos que la constituyen) y otros de naturaleza no mecánica (estética, mercado, impacto social, régimen político imperante, etc.). Ambas consideraciones hacen que las máquinas modernas adquieran diversas configuraciones y características según el entorno sociopolítico y económico en el que se diseñan, construyen y utilizan. En la era tecnológica que vivimos la máquina ocupa un papel primordial. Sin el concurso de estos ingenios, la vida sería realmente imposible. La máquina se encuentra presente en todas las actividades del ser humano, desde la vida cotidiana hasta los sectores productivos y de servicios, incluyendo los de formación. Con los notables avances realizados en el diseño de instrumentos, controles automáticos y equipo automatizado, el estudio de los mecanismos toma un nuevo significado.

11 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL Los componentes de las máquinas Cualquier máquina se compone de un número determinado de elementos (piezas) componentes, unos fijos y otros móviles, agrupados a veces para ejecutar tareas diferentes dentro de una misma máquina (formando mecanismos diversos). Así, se encuentran máquinas y mecanismos muy simples, constituidas por pocas piezas, hasta otras más complejas, constituidas por miles de piezas como el motor de combustión interna. Figura 1.2 Despiece de motor de combustión interna A pesar de la enorme complejidad, en algunos casos, la realidad es que el número de componentes de las máquinas, conceptualmente diferente, es bastante limitado (aun cuando en cada máquina puedan presentar formas y tamaños diversos). Por ejemplo:

12 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 7 Elementos de soporte: Bastidores Cojines de fricción Cojinetes de rodamientos Ejes Figura 1.3 Rodamiento de bolas Elementos neumáticos e hidráulicos Cilindros Válvulas Bombas Elementos de los sistemas de control Sensores (mecánicos, eléctricos, etc.) Figura 1.4 Amortiguadores con sensores electrónicos Igual que el número de componentes diferentes de las máquinas está limitado, también lo están los diferentes materiales con que pueden ser construidos: Hierro y sus aleaciones Aluminio, magnesio, cobre, etc. y sus aleaciones. Goma, madera, cuero, etc. Plásticos y fibras sintéticas, cerámicas, etc. Es evidente que todos, y cada uno de los elementos de las máquinas han de ser calculados para resistir, sin fallos, todas las acciones que sobre ellos actúan. El número de tales acciones esta también bastante limitado, siendo las más importantes: Fuerzas y pares, permanentes y transitorios. Impactos, choques y vibraciones. Acciones térmicas. Acciones corrosivas. Otras (de menor entidad, como eléctricas, magnéticas, etc.)

13 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL La estructura de las máquinas El conjunto de elementos y mecanismos que constituyen todas las máquinas pueden a su vez agruparse en un conjunto de sistemas o subsistemas que de una u otra forma, con mayor o menor virtualidad, están presentes en todas las máquinas. Estos sistemas son: Sistemas de adquisición, transformación o generación de energía motriz. (En el caso de un automóvil, el motor transforma la energía química del combustible en energía mecánica, es decir, en el giro del cigüeñal con un par determinado). Sistema de transmisión y conversión de movimientos y fuerzas, conducente en última estancia, a la realización del trabajo útil. (En caso del automóvil, este sistema está constituido por el embrague, caja de cambios, transmisión y mecanismo diferencial que acciona las ruedas motrices y permiten el movimiento del vehículo.) Sistema de control. Que permite dirigir y controlar la potencia, movimientos etc., de la propia máquina. (En el caso del automóvil se encuentran dos subsistemas: la dirección, que permite dirigir la ruta del vehículo, y el freno, acelerador y palanca y caja de cambios, que permiten controlar la potencia del motor y la velocidad del vehículo.) Sistema de lubricación, imprescindible en todas las máquinas, que permite disminuir los rozamientos y desgastes entre los elementos en contacto con movimiento relativo entre ellos. (En el caso del automóvil está formado por el depósito de aceite, bomba de impulsión, conductos, filtros, etc.) Sistemas de adquisición, transformación o generación de energía motriz Sistema de transmisión y conversión de movimientos y fuerzas Sistema de lubricación Sistema de control Figura 1.5 Estructura general de las máquinas.

14 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL La actividad y formación del ingeniero en el campo de la maquinaría Se puede asegurar que en la actualidad todas las personas tienen un contacto continuo con multitud de máquinas (a nivel de usuarios y de operadores de estas) y un grupo muy reducido, pero también muy numeroso, tienen un contacto más intenso, en diferentes ordenes de actividad. En el caso de la máquina automóvil, esta es operada por millones de usuarios, comercializada por miles de técnicos, economistas, publicistas, vendedores, etc., mantenida también por miles de técnicos de mantenimiento, fabricada por un número relativamente alto de técnicos e ingenieros de fabricación de diversas especialidades (mecánica, electricidad, química, etc.), diseñada, ensayada y verificada por un número más reducido de técnicos, ingenieros y otros especialistas altamente calificados y, finalmente, los continuos avances habidos en sus materiales, componentes métodos de cálculo y sistemas de producción, son el resultado de las actividades de investigación y desarrollo de un grupo aun más reducido de técnicos y científicos de elevada cualificación y especialización. Con las diferentes actividades relacionadas con el mundo de las máquinas, el ingeniero juega un papel importante y mantiene una relación constante y dinámica. Para desarrollar las actividades expuestas en el punto anterior, es claro que el ingeniero tiene que poner en juego una serie de conductas adquiridas a través de un proceso de aprendizaje. Tales conductas han de adquirirse en tres dominios diferentes: a) el cognoscitivo o adquisición de nuevos conocimientos; b) el psicomotriz, o la adquisición de habilidades manuales; c) el afectivo-volitivo, o la adquisición de conductas en el plano psicológico (como seguridad en sí mismo, capacidad de relacionarse con otros colegas, etc.) En el caso de los ingenieros, su campo de actividad principal se mueve entre los campos de investigación y desarrollo (que son por otra parte las que impulsan el desarrollo tecnológico) y las de diseño, verificación y ensayos, fabricación operación y mantenimiento. Por otra parte, las diferentes actividades exigen conductas predominantes en unos y otros dominios; así, en la fase de investigación, desarrollo y diseño predominan los conocimientos sobre las habilidades manuales, mientras que en las fases de operación y mantenimiento predominan las conductas del área psicomotriz.

15 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 10 En el campo de la maquinaria y en el dominio cognoscitivo, el ingeniero ha de poseer conocimientos sobre la topología de las máquinas (es decir, tipos, formas, usos, etc. de los componentes de las máquinas y sobre sus mecanismos y subsistemas constituyentes). También ha de poseer conocimientos sobre análisis de máquinas, que le permitan interpretar sus diferentes partes y especialmente conocer las relaciones entre los movimientos y las fuerzas que sobre el conjunto y sus partes pueden actuar. Así mismo ha de poseer conocimientos de diseño y cálculo de los elementos mecánicos, que le permitan construir máquinas seguras, que no fallen durante su vida útil. Igualmente debe tener conocimientos sobre síntesis de máquinas y sus mecanismos constituyentes que le permitan el rediseño o diseño puro de nuevas máquinas, en función de las necesidades cambiantes. En el dominio psicomotriz el ingeniero ha de poseer habilidades en el manejo de diverso instrumental al servicio del control de las máquinas (como sensores), así como labores de verificación, ensayos y mantenimiento. Finalmente en el dominio afectivo-volitivo el ingeniero ha de tener la máxima seguridad en sí mismo en cualquier actividad que ejecute relacionada con la maquinaria y capacidad para relacionarse con otros profesionales en el entorno en que confluyen muchas personas, de muchas especialidades diferentes. El aprendizaje de todas estas conductas requiere la posesión de una serie de conductas previas, adquiridas en otras disciplinas de la carrera de ingeniería, y entre las que se podrían destacar en el conjunto de materias básicas las matemáticas y la física (especialmente la mecánica) y en el conjunto de materias tecnológicas, el dibujo técnico, la elasticidad y resistencia de materiales la tecnología mecánica y el conocimiento de materiales. Sin descartar muchas otras materias que con mayor o menor intensidad han de tener presentes para acometer con éxito la amplia gama de actividades relacionadas con la maquinaria.

16 CINEMÁTICA DE LAS MÁQUINAS INTRODUCCIÓN GENERAL 11 CUESTIONARIO Describa las diferencias entre análisis y síntesis Defina Cinemática y ubique su posición dentro de la Mecánica Qué es una máquina? Cuál es la diferencia entre una máquina y un mecanismo? Qué es una estructura? Describa las tareas que desempeña un rodamiento de bolas, el material del que puede estar hecho y el tipo de esfuerzo al que se somete Considerando la estructura general de las máquinas dentro de que sistema ubicaría el sistema de encendido de un motor? y el subsistema del carburador? Dentro de que dominio ubicaría la habilidad de un ingeniero para comunicarse con las personas? Cuál es la diferencia entre el dominio cognoscitivo y psicomotriz? Establezca la relación de la mecánica, y en particular de la cinemática, con otras áreas de conocimiento que se imparten en su carrera.

17 CAPÍTULO 2 ANÁLISIS TOPOLÓGICO DE MECANISMOS Concepto topológico de mecanismos El estudio topológico de mecanismos comprende el análisis de los elementos que lo componen en cuanto a: sus formas, el número de elementos, las uniones entre ellos, los tipos de movimientos que éstos pueden efectuar, las leyes por las que se rigen, etc. El estudio topológico de los mecanismos engloba los aspectos relativos a su configuración geométrica y las consecuencias que de ella puedan derivarse. 2.1 Conceptos básicos topológicos Pieza Cuando en un mecanismo se van separando cada una de las partes que lo forman, se llega finalmente a tener una serie de partes indivisibles, generalmente rígidas (aunque no necesariamente) llamadas piezas. En la Figura 2.1 se ha representado el conjunto de piezas que forman la biela de un automóvil. Eslabón (miembro) Un conjunto de piezas unidas rígidamente entre sí, sin movimiento posible entre ellas, se denomina eslabón o miembro. En Figura 2.2 se presenta el eslabón biela de un motor alternativo. Una vez acopladas las piezas, forman un conjunto rígido, actuando, desde el punto de vista topológico (y también cinemático y dinámico), como un solo miembro o eslabón. Un eslabón es un elemento de una máquina o mecanismo que conecta a otros elementos y que tiene movimiento relativo a ellos. Un eslabón o miembro puede servir de soporte, como guía de otros eslabones, para transmitir movimientos o bien funcionar de las tres formas. Un automóvil de serie llega a tener un promedio de 16,000 piezas.

18 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 13 Figura 2.1 Piezas de una biela Figura 2.2 Eslabón biela de un motor

19 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 14 Clasificación de los eslabones Eslabones rígidos. Están capacitados para transmitir fuerza, para jalar o empujar. A ésta clase pertenece la mayoría de las partes metálicas de las máquinas. Eslabones flexibles. Son los que están constituidos para ofrecer resistencia en una sola forma (rigidez unilateral) Eslabones que actúan a tensión. Cuerdas, bandas, cadenas Eslabones que actúan a presión. Agua, aceite hidráulico, conducen fuerzas de empuje. 2.2 Par cinemático Los eslabones pueden estar conectados unos a otros de varias maneras. El contacto puede ocurrir sobre una superficie, a lo largo de una línea, o en un punto. A aquellas partes de dos eslabones que están en contacto con movimiento relativo entre ellos se les denomina pares. Clasificación de los pares Los pares pueden clasificarse: 1. Atendiendo la superficie de contacto entre los dos miembros que constituyen el par: Pares superiores o de contacto lineal o puntual (leva-varilla, cojinetes de bolas y engranes). Pares inferiores o de contacto superficial (cilindro-embolo, perno-soporte), las superficies de los eslabones son geométricamente similares. Figura 2.3 Pares superiores (a) y pares inferiores (b)

20 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 15 Es importante mencionar que las conexiones de miembros por pares superiores pueden ser reemplazadas por conexiones por pares inferiores, cuando se desee disminuir la presión de contacto y el rozamiento. En la figura 2.4 puede verse el mecanismo empleado para mover bombas de vapor de doble acción; en la figura (a) se observa un par superior entre los eslabones 2 y 3. La figura (b) muestra este mecanismo con par inferior entre 3 y 4. El par inferior fue producido por la adición de un eslabón. a b Figura 2.4 Movimiento de una válvula de una bomba de vapor con pares superiores (a) e inferiores (b). 2. Atendiendo el movimiento relativo entre sus puntos: De primer grado o lineal, cuando cualquier punto de uno de los eslabones describe una línea en su movimiento relativo respecto del otro eslabón del par. a) Par prismático: un punto P describe una línea recta. b) Par rotación: el punto P describe una circunferencia. c) Par helicoidal: el punto P describe una hélice. Figura 2.5 Pares de primer grado

21 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 16 De segundo grado o superficial, cuando cualquier punto de uno de los miembros describe una superficie en su movimiento. Figura 2.6 Pares de segundo grado En la figura 2.6 se puede observar que al realizar el cuerpo su movimiento, el punto P describe: a) Par plano: el punto P describe un plano. b) Par cilíndrico: el punto P describe un cilindro. c) Par esférico: el punto P describe una esfera. De tercer grado o espacial, cuando un punto de uno de los eslabones describe una curva alabada. Por ejemplo, una esfera moviéndose dentro de un tubo de igual diámetro. Figura 2.7 Pares de tercer grado o espacial

22 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS Atendiendo al tipo de rozamiento entre los miembros, se clasifican: Par con deslizamiento: uno de los eslabones se desliza sobre otro en su movimiento relativo. Ejemplo: cilindro-pistón figura 2.3 (b). Par con rodadura: uno de los eslabones rueda sobre otro, en su movimiento relativo. Ejemplo: rueda de tren sobre un riel. Par con pivotamiento: uno de los eslabones pivota sobre otro, en su movimiento relativo. Ejemplo: bisagras de una puerta. 4. Atendiendo a los grados de libertad que posee el movimiento relativo de los miembros que forman el par se clasifican en pares de I, II, III, IV y V grados de libertad. Un cuerpo rígido en el espacio posee seis grados de libertad (puede realizar seis movimientos independientes entre sí; o también se puede decir que hacen falta seis variables para definir el movimiento, Figura 2.8 (a) que vendrán representados por tres rotaciones paralelas al eje x, y, z y tres traslaciones según esos tres ejes coordenados. a) b) Figura 2.8 Grados de libertad de un cuerpo rígido en el espacio y formando un par cinemático Al formarse un par cinemática, un cuerpo libre se ve obligado a permanecer en contacto con otro. Por tanto los seis grados de libertad del primero se reducen, según sea el tipo del par ( de los seis movimientos posibles de un miembro libre, al unirse a otro formando un par los reducirá a 5, 4, 3, 2, o 1). En general es fácil comprender que cuando un eslabón (2) se mantiene en contacto con otro (1), al cuál se pueden fijar los ejes coordenados, los movimientos posibles del eslabón 2 pueden ser

23 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 18 tres rotaciones y sólo dos traslaciones (una separación de 2 respecto de 1, según OZ, implica la rotura del par, es decir, su separación), como se observa en la Figura 2.8 (b). En la tabla 2.1 se expone una clasificación general de los pares cinemáticos, atendiendo a sus grados de libertad. Tabla 2.1 Esquemas, nombres y símbolos de pares cinemáticos

24 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS Clasificación de pares atendiendo al número de barras que conectan. Atendiendo al número de barras que conectan los pares también se pueden clasificar en binarios (cuando conectan dos eslabones) ternarios (conectan tres eslabones), etc. En general p-ario será el que conecta p miembros. En la Figura 2.9 se tienen ejemplos de pares ternarios. Figura 2.9 Ejemplos de pares ternarios 2.3 Cadenas cinemáticas Definición de las cadenas. Cuando un número de eslabones están conectados unos a los otros por pares elementales, de tal forma que permitan que el movimiento se efectúe en combinación, se denomina cadena cinemática. Una cadena cinemática no es necesariamente un mecanismo; se convierte en uno cuando se define el eslabón fijo. Clasificación de las cadenas. Pueden clasificarse en dos grupos: Cadenas cerradas, cuando todos y cada uno de los miembros se une a otros dos. Cadena abierta, cuando hay algún miembro no unido a otros dos.

25 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 20 Constitución de las cadenas. Una cadena cinemática puede estar constituida por pares superiores, inferiores, o ambos simultáneamente. Al mismo tiempo, también puede contener pares de igual o de diferente grado. La cadena cinemática más sencilla contendrá sólo dos miembros (un par), siendo necesariamente abierta. Un ejemplo puede constituirlo la cadena formada por un tornillo y su tuerca o un cerrojo de pasador. Las cadenas cinemáticas cerradas más simples pueden formarse con sólo tres miembros. Sin embargo, no siempre con tres miembros puede formarse una cadena cinemática, dependiendo para lograrlo del tipo de pares que la formen. Utilizando tres miembros con pares de grado diferente se pueden formar una multitud de cadenas cinemáticas. Así, por ejemplo, con dos pares inferiores y uno superior (de contacto puntual o lineal) pueden formarse las cadenas cinemáticas de las levas, engranajes, etc. (Fig.2.10a). Con mayor número de miembros puede formarse todo tipo de cadenas cinemáticas. En la Fig. 2.10b se representa una cadena típica; como se ve consta de 5 eslabones y seis pares. Se puede observar que los eslabones 1 y 4 son ternarios, y los eslabones 2,3 y 5 son binarios. a) b) Figura 2.10 Cadenas cinemáticas Las cadenas cinemáticas se nombran por el número de miembros y de pares de cada grado. Así, la cadena (n2, p2; n3, p3; n4,.. ) es la formada por n2 eslabones binarios, n3 ternarios, y n4 cuaternarios, así como p2 pares binarios, p3 ternarios y ningún cuaternario. La cadena cinemática de la Fig b tiene la configuración (3,6; 2), es decir, 3 eslabones binarios, 6 pares binarios y 2 eslabones ternarios, únicamente.

26 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS Mecanismo Un mecanismo es una cadena cinemática a la que se le ha inmovilizado uno de sus miembros, a este eslabón fijo se le llama bastidor. Puede haber una máquina compuesta por varios mecanismos en la que un miembro móvil de uno de ellos sea el bastidor (eslabón fijo) de otro mecanismo. En la mayoría de las máquinas el eslabón fijo de todos los mecanismos que la componen es un eslabón único (por ejemplo los diferentes mecanismos que componen un motor de explosión tienen como eslabón fijo al bastidor, formado por la culata, el bloque y el carter) lo que tampoco implica que este bastidor sea un elemento totalmente inmóvil (por ejemplo los diferentes mecanismos que componen un vehículo automóvil tienen un bastidor único, pero móvil con el auto). Recordando la definición de Reuleaux de un mecanismo, es evidente que se necesita tener una cadena cinemática cerrada con un eslabón fijo. Cuando se hable de un eslabón fijo se da a entender que se elige como marco de referencia para todos los demás eslabones, es decir, que los movimientos de todos los demás eslabones se medirán con respecto a ése en particular ya que se le considera como fijo. Se suele definir también al mecanismo, como la parte del diseño de las máquinas que se interesa en el diseño cinemático (es decir, se ocupa de los requerimientos de movimientos, sin abordar los requerimientos de fuerza) de los dispositivos que contienen eslabones articulados, levas, engranes y trenes de engranes, que son los componentes que se van a estudiar. Cinemática de un mecanismo. Una vez que se designa el marco de referencia (y se satisfacen otras condiciones) la cadena cinemática se convierte en un mecanismo y conforme el eslabón que acciona al mecanismo (el impulsor) se mueve pasando por varias posiciones denominadas fases, todos los demás eslabones manifiestan movimientos bien definidos con respecto al marco de referencia elegido. Se deduce que de una cadena cinemática pueden obtenerse tantos mecanismos como eslabones se tenga, a medida que se fijen sucesivamente cada uno de ellos. Cada uno de estos mecanismos se llama una inversión del que se ha tomado como fundamental. Para que un mecanismo sea útil, los movimientos entre los eslabones no tienen que ser arbitrarios, éstos también tienen que restringiese para producir los movimientos relativos

27 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 22 adecuados, los que determine el diseñador para el trabajo particular que se deba desarrollar. Estos movimientos relativos deseados se obtienen mediante la selección correcta del número de eslabones y las articulaciones utilizadas para conectarlos. Por consiguiente para determinar la cinemática de un mecanismo se requiere esencialmente: la distancia entre articulaciones sucesivas; la naturaleza de estas articulaciones y los movimientos relativos que permitan. Por esta razón es vital que se examine en forma minuciosa la naturaleza de las articulaciones. Movimientos relativos de las articulaciones. El factor de control que determina los movimientos relativos que permite una articulación dada, es la forma que tengan las superficies o eslabones pareados. Cada tipo de articulación posee sus propias formas características para los elementos y cada una permite un tipo de movimiento específico, el cuál es determinado por la manera posible en que estas superficies elementales se pueden mover una en relación con otra. Por ejemplo, el par cilíndrico (Fig. 2.6b), también llamada articulación de pasador o espiga, tiene elementos cilíndricos y, suponiendo que los eslabones no se pueden deslizar en sentido axial, estas superficies permiten sólo un movimiento rotatorio (par de revolución Tabla 2.1). Por ende, una articulación de revoluta deja que los dos eslabones conectados experimenten una rotación relativa en torno al pasador central. De la misma manera las demás articulaciones tienen sus propias formas de los elementos y sus propios movimientos relativos y constituyen las condiciones limitantes o restricciones impuestas al movimiento del mecanismo. Es conveniente señalar, que a menudo, las formas de los elementos suelen disfrazarse sutilmente, lo que los hace difícil de reconocer. Por ejemplo, una articulación de pasador podría incluir un cojinete de agujas, de modo que las dos superficies pareadas no se distingan como tales. Sin embargo, si los movimientos de los rodillos individuales carecen de interés, los movimientos permitidos por las articulaciones son equivalentes y los pares pertenecen al mismo tipo genérico. Por ende, el criterio para distinguir clases distintas de pares se basa en el movimiento relativo que permiten y no necesariamente en las formas de los elementos, aunque estos suelen revelar indicios muy importantes. El diámetro del pasador usado (u otros datos dimensionales) tampoco tiene más importancia que las magnitudes y formas exactas de los eslabones conectados.

28 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 23 Funciones cinemáticas de eslabones y articulaciones. Como ya se menciono, la función cinemática de un eslabón es mantener una relación geométrica fija entre los elementos del par. Del mismo modo la única función cinemática de una articulación o par es determinar el movimiento relativo entre los eslabones conectados. Todas las demás características se determinan por otras razones y no tienen importancia para el estudio de la cinemática. Representación de los mecanismos. Con el fin de simplificar el estudio de los mecanismos, nunca se dibujan éstos en su totalidad con la forma y dimensiones de cada uno de los eslabones y pares, sino que se sustituye el conjunto por un esquema o diagrama simplificado, formado generalmente por los ejes de los diferentes miembros (o por líneas de unión de cada uno de sus articulaciones). Estas no se dibujan por regla general (aunque algunas veces pueden representarse por medio de pequeños círculos, rectángulos, etc.). En las figuras 2.11 y 2.12 se representan respectivamente una grúa flotante, una puerta de acceso para una aeronave y al lado su correspondiente esquema simplificado. Obsérvese que el eslabón fijo se representa siempre con un rayado de línea de tierra. Figura 2.11 Grúa flotante con su diagrama esquemático En el estudio que seguirá y ha efecto de uniformizar la nomenclatura, se denominará siempre al eslabón fijo de cualquier mecanismo con el número 1, numerando el resto de los eslabones por orden creciente con números sucesivos, 2, 3, etc.

29 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 24 Figura 2.12 Puerta de acceso para aeronave con su diagrama esquemático Puede ser difícil identificar el mecanismo cinemático en una fotografía o en un dibujo de una máquina completa. La figura 2.13 muestra el conjunto cigüeñal-biela-pistón y su correspondiente diagrama cinemático. Figura 2.13 Motor de combustión interna con mecanismo de correderabiela- manivela y su representación gráfica Con este diagrama se puede trabajar mucho más fácilmente y le permite al diseñador separar los aspectos cinemáticos del problema más complejo del diseño de la máquina.

30 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS Ciclo, periodo, fase y transmisión de movimiento Cuando las partes de un mecanismo han pasado por todas las posiciones posibles que pueden tomar después de iniciar su movimiento desde algún conjunto simultaneo de posiciones relativas y han regresado a sus posiciones relativas originales, han creado un ciclo de movimiento. El tiempo requerido para un ciclo de movimiento es el periodo. Las posiciones relativas simultáneas de un mecanismo en un instante dado durante un ciclo determinan una fase. La transmisión del movimiento de un miembro a otro en un mecanismo se realiza en tres formas: a) contacto directo entre dos miembros, tales como levas y seguidor o entre engranes b) por medio de un eslabón intermedio o biela y c) por medio de un conector flexible como una banda o una cadena Clasificación de los mecanismos en función de sus movimientos Mecanismos planos, esféricos y espaciales. Los mecanismos se pueden clasificar de diversas maneras haciendo hincapié en sus similitudes y sus diferencias. Uno de estos agrupamientos en función de los movimientos que producen los mecanismos los divide en: mecanismos en planos, esféricos y espaciales; y los tres grupos poseen muchas cosas en común; sin embargo, el criterio para distinguirlos se basa en las características de los movimientos de los eslabones. Un mecanismo plano es aquel en el que todas las partículas describen curvas planas en el espacio y todas éstas se encuentran en planos paralelos; en otras palabras, los lugares geométricos de todos los puntos son curvas planas paralelas a un solo plano común. Esta característica hace posible que el lugar geométrico de cualquier punto elegido de un mecanismo plano se represente con su verdadero tamaño y forma real, en un solo dibujo o una sola figura. La transformación del movimiento de cualquier mecanismo de esta índole se llama coplanar. El eslabonamiento plano de cuatro barras, la leva de placa y su seguidor, y el mecanismo de corredera-manivela (figura 2.14) son ejemplos muy conocidos de mecanismos planos. La vasta mayoría de mecanismos en uso hoy en día son del tipo plano. Los mecanismos planos que utilizan sólo pares inferiores se conocen con el nombre de eslabonamientos planos y sólo pueden incluir revolutas y pares prismáticos.

31 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 26 El movimiento plano requiere que los ejes de revoluta sean paralelos y normales al plano del movimiento, y todos los ejes de los prismas se encuentren en él. Figura 2.14 Mecanismo de corredera (cruceta), biela y manivela Mecanismo esférico es aquel en el que cada eslabón tiene algún punto que se mantiene estacionario conforme el eslabonamiento se mueve, y en el que los puntos estacionarios de todos los eslabones están en una ubicación común; en otras palabras, el lugar geométrico de cada punto es una curva contenida dentro de una superficie esférica y las superficies esféricas definidas por varios puntos arbitrariamente elegidos son concéntricas. Por ende, los movimientos de todas las partículas se pueden describir por completo mediante sus proyecciones radiales, o "sombras", proyectadas sobre la superficie de una esfera, con un centro seleccionado en forma apropiada. La articulación universal de Hooke es quizá el ejemplo más conocido de un mecanismo esférico. Figura 2.15 Junta universal de Hooke o Cardan Eslabonamientos esféricos son aquellos que se componen exclusivamente de pares de revoluta. Un par esférico no produciría restricciones adicionales y, por ende, sería equivalente a una abertura en la cadena, en tanto que todos los demás pares inferiores poseen movimientos no esféricos. En el caso de eslabonamientos esféricos, los ejes de todos los pares de revoluta se deben intersecar en un punto.

32 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS 27 Los mecanismos espaciales no incluyen, por otro lado, restricción alguna en los movimientos relativos de las partículas. La transformación del movimiento no es necesariamente coplanar, como tampoco es preciso que sea concéntrica. Un mecanismo espacial puede poseer partículas con lugares geométricos de doble curvatura. Cualquier eslabonamiento que comprenda un par de tornillo, por ejemplo, es un mecanismo espacial, porque el movimiento relativo dentro del par de tornillo es helicoide. Por lo tanto, la categoría abrumadoramente más numerosa de mecanismos planos y la de los esféricos son apenas unos cuantos casos especiales, o subconjuntos, de la categoría general de mecanismos espaciales. Estos se obtienen como una consecuencia de la geometría especial en las orientaciones particulares de los ejes de sus pares. Si los mecanismos planos y esféricos son sólo casos especiales de mecanismos espaciales, por qué es aconsejable identificarlos por separado?. Debido a que por las condiciones geométricas particulares que identifican estas clases, es factible hacer multitud de simplificaciones en su diseño y análisis. Figura 2.16 Mecanismo espacial. Mecanismo de placa oscilante Puesto que no todos los mecanismos espaciales poseen la geometría afortunada de un mecanismo plano, su concepción mediante técnicas gráficas se hace más difícil y es necesario desarrollar técnicas más complejas para su análisis como el método analítico. Dado que la inmensa mayoría de mecanismos en uso hoy en día son planos, nuestro estudio se centrará en ellos, sin minimizar la importancia de los mecanismos esféricos y espaciales. Como se señaló con anterioridad, se pueden observar los movimientos de todas las partículas de un mecanismo plano en el tamaño y forma reales, desde una sola dirección. En otras palabras, es factible representar gráficamente todos los movimientos en una sola perspectiva, de donde, las técnicas gráficas son muy apropiadas para su solución.

33 CINEMÁTICA DE LAS MÁQUINAS ANÁLISIS TOPOLÓGICO DE MECANISMOS Movilidad o número de grados de libertad de un mecanismo plano Una de las primeras preocupaciones, ya sea en el diseño o en el análisis de un mecanismo, es el número de grados de libertad, conocido también como movilidad del dispositivo. La movilidad de un mecanismo es el número de parámetros de entrada (casi siempre variables del par) que se deben controlar independientemente, con el fin de llevar al dispositivo a una posición en particular. Si por el momento se hace caso omiso de ciertas excepciones que se mencionarán más adelante, es factible determinar la movilidad de un mecanismo directamente a través de un recuento del número de eslabones y la cantidad y tipos de articulaciones que incluye. Una definición equivalente de movilidad se puede expresar como, el número mínimo de parámetros independientes requeridos para especificar la posición de cada uno de los eslabones de un mecanismo. Un eslabón sencillo, restringido o limitado a moverse con movimiento plano, como el mostrado en la figura 2.17a, posee tres grados de libertad. Las coordenadas x y y del punto P junto con el ángulo θ forman un conjunto independiente de tres parámetros que describen la posición del punto. La figura 2.17b muestra dos eslabones desconectados con movimiento plano. Debido a que cada eslabón posee tres grados de libertad, estos dos eslabones tienen un total de seis grados de libertad. Si los dos eslabones se unen en un punto mediante una unión de revoluta, como se muestra en la figura 2.17c, el sistema formado tendrá sólo cuatro grados de libertad. Los cuatro parámetros independientes que describen la posición de los eslabones podrían ser, por ejemplo, las coordenadas del punto P 1 el ángulo θ 1 y el ángulo θ 2. Hay muchos otros parámetros que podrán utilizarse para especificar la posición de estos eslabones pero sólo cuatro de ellos pueden ser independientes. Una vez que se especifican los valores de los parámetros independientes, la posición de cada punto en ambos eslabones queda determinada.

1º Tema.- Conceptos y definiciones en cinemática.

1º Tema.- Conceptos y definiciones en cinemática. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 1º Tema.-

Más detalles

TEORÍA DE MECANISMOS 1.- INTRODUCCIÓN TMM

TEORÍA DE MECANISMOS 1.- INTRODUCCIÓN TMM TEORÍA DE MECANISMOS 1.- INTRODUCCIÓN TMM Departamento de Ingeniería Mecánica 1 Teoría de Mecanismos NIVELES 0) CONOCIMIENTOS PREVIOS Y FUNDAMENTOS TMM ELEMENTO/MIEMBRO EXPRESIÓN GRÁFICA MECÁNICA RESISTENCIAS

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

Los eslabones tambien se pueden clasificar de acuerdo a si empujan o jalan a otro eslabon:

Los eslabones tambien se pueden clasificar de acuerdo a si empujan o jalan a otro eslabon: Los eslabones tambien se pueden clasificar de acuerdo a si empujan o jalan a otro eslabon: TIPO DE ESLABON DESCRIPCION EJEMPLO Rigidos: Son aquellos que empujan y/o jalan a otro. Tuercas, tornillos, flechas,

Más detalles

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad:

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: Alumno:.. DNI:.. Fecha:... Por el profesor de la práctica.-rafael Sánchez Sánchez NOTA: Este cuadernillo debrá

Más detalles

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

PÓSTER 8. Un ejemplo de aprendizaje basado en proyectos en la Ingeniería Mecánica. Francisco Mata Cabrera

PÓSTER 8. Un ejemplo de aprendizaje basado en proyectos en la Ingeniería Mecánica. Francisco Mata Cabrera PÓSTER 8 Un ejemplo de aprendizaje basado en proyectos en la Ingeniería Mecánica Francisco Mata Cabrera Departamento de Mecánica Aplicada e Ingeniería de Proyectos. Ingeniería Técnica Industrial. Mecánica.

Más detalles

DADME UN PUNTO DE. MUNDO Arquímedes

DADME UN PUNTO DE. MUNDO Arquímedes DADME UN PUNTO DE APOYO Y MOVERÉ EL MUNDO Arquímedes OPERADORES TECNOLÓGICOS Conceptos Básicos: Operador: Es cualquier objeto (o conjunto de objetos) capaz de realizar una función tecnológica dentro de

Más detalles

TRANSMISIONES DEL TRACTOR

TRANSMISIONES DEL TRACTOR TRANSMISIONES DEL TRACTOR En el tractor encontramos: Embrague. Convertidor de par. Doble embrague. Embrague hidráulico Caja de cambio Alta y Baja constante Mecánica Clásica En toma Sincronizada Automática

Más detalles

1.2 SISTEMAS DE PRODUCCIÓN

1.2 SISTEMAS DE PRODUCCIÓN 19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción

Más detalles

TEORÍA DE MÁQUINAS Y MECANISMOS

TEORÍA DE MÁQUINAS Y MECANISMOS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERÍA MECÁNICA PRÁCTICAS DE LABORATORIO DE: TEORÍA DE MÁQUINAS Y MECANISMOS Juan Carlos García Prada Cristina Castejón Sisamón Higinio Rubio Alonso

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

LOGISTICA D E COMPRAS

LOGISTICA D E COMPRAS LOGISTICA D E COMPRAS 1. - Concepto de compras OBTENER EL (LOS) PRODUCTO(S) O SERVICIO(S) DE LA CALIDAD ADECUADA, CON EL PRECIO JUSTO, EN EL TIEMPO INDICADO Y EN EL LUGAR PRECISO. Muchas empresas manejan

Más detalles

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

08/05/2013 FIMAAS UTP. Ing. Automotriz. Profesor: Carlos Alvarado de la Portilla

08/05/2013 FIMAAS UTP. Ing. Automotriz. Profesor: Carlos Alvarado de la Portilla UTP FIMAAS Ing. Automotriz Curso: Mecanismos del automóvil Sesión Nº 5: La caja de transmisión mecánica, funcion, descripción, funcionamiento, tipos. 1 Bibliografía http://www.youtube.com/watch?v=9j- 3xw0VxiM&feature=related

Más detalles

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas.

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Son equipos que proveen de energía eléctrica en forma autónoma ante interrupciones prolongadas y

Más detalles

LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN

LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN Tabla de Contenidos LINEAMIENTOS ESTÁNDARES APLICATIVOS DE VIRTUALIZACIÓN... 1 Tabla de Contenidos... 1 General... 2 Uso de los Lineamientos Estándares...

Más detalles

Expresión Gráfica en Ingeniería Industrial

Expresión Gráfica en Ingeniería Industrial Jesús Miguel Chacón Muñoz Javier Sánchez-Reyes Fernández Expresión Gráfica en Ingeniería Industrial EDITORIAL DONOSTIARRA Pokopandegi, nº 4 - Pabellón Igaralde - Barrio Igara Apartado 671 - Teléfonos 943

Más detalles

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones INDICE 1. La Naturaleza del Diseño Mecánico 1 1.1. Objetivos del capitulo 2 1.2. Ejemplos de diseño mecánico 4 1.3. Conocimientos necesarios para el diseño mecánico 7 1.4. Funciones y especificaciones

Más detalles

OPERADORES MECANICOS

OPERADORES MECANICOS OPERADORES MECANICOS 0.- INTRODUCCION 1.- OPERADORES QUE ACUMULAN ENERGIA MECANICA 1.1.- Gomas 1.2.- Muelles 1.3.- Resortes 2.- OPERADORES QUE TRANSFORMAN Y TRANSMITEN LA ENERGIA MECANICA 2.1- Soportes

Más detalles

DE VIDA PARA EL DESARROLLO DE SISTEMAS

DE VIDA PARA EL DESARROLLO DE SISTEMAS MÉTODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS 1. METODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS CICLO DE VIDA CLÁSICO DEL DESARROLLO DE SISTEMAS. El desarrollo de Sistemas, un proceso

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES

TEORÍA DE MECANISMOS NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES Hoja: 1/12 GP NOMENCLATURA Y TALLADO DE DIENTES DE ENGRANAJES INTRODUCCIÓN El desarrollo de esta práctica consistirá en la simulación del procedimiento de talla de una rueda dentada mediante la generación

Más detalles

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ).

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). 3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). Para evaluar la potencia de un motor termico o de un vehiculo, la forma mas habitual que emplean los fabricantes, es utilizar un

Más detalles

Dpto. de tecnología, IES. Cristóbal de Monroy.

Dpto. de tecnología, IES. Cristóbal de Monroy. 1.- TRENES DE ENGRANAJES Se llama tren de engranajes a aquella transmisión en la que existen más de dos engranajes. Los trenes de engranajes se utilizan cuando: La relación de transmisión que se quiere

Más detalles

ES 2 257 890 A1 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA. 11 Número de publicación: 2 257 890. 21 Número de solicitud: 200202551

ES 2 257 890 A1 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA. 11 Número de publicación: 2 257 890. 21 Número de solicitud: 200202551 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 257 890 21 Número de solicitud: 200202551 51 Int. Cl. 7 : F16H 29/14 12 SOLICITUD DE PATENTE A1 22 Fecha de presentación: 20.01.2005

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

1.1 EL ESTUDIO TÉCNICO

1.1 EL ESTUDIO TÉCNICO 1.1 EL ESTUDIO TÉCNICO 1.1.1 Definición Un estudio técnico permite proponer y analizar las diferentes opciones tecnológicas para producir los bienes o servicios que se requieren, lo que además admite verificar

Más detalles

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS REDES PRIVADAS DISPONIBLES EN EMERGENCIAS TELEFONÍA VÍA SATÉLITE. Índice

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS REDES PRIVADAS DISPONIBLES EN EMERGENCIAS TELEFONÍA VÍA SATÉLITE. Índice Índice 1. REDES PRIVADAS. TELEFONÍA VIA SATÉLITE...2 1.1 SERVICIOS VIA SATELITE... 2 1.1.1 SATELITES GEOESTACIONARIOS... 2 1.1.2 Satelites no Geoestacionarios... 4 1.1.2.1 CARACTERÍSTICAS...4 1.1.2.2 TIPOS.

Más detalles

6 CONCLUSIONES Y RECOMENDACIONES

6 CONCLUSIONES Y RECOMENDACIONES 6 Conclusiones y recomendaciones 109 6 CONCLUSIONES Y RECOMENDACIONES 6.1 CONCLUSIONES La presente investigación se ha dedicado al estudio del ángulo de presión, radio de curvatura y presión de contacto

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

TITULACIÓN: INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA CURSO ACADÉMICO: 2011-2012

TITULACIÓN: INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA CURSO ACADÉMICO: 2011-2012 TITULACIÓN: INGENIERÍA TÉCNICA INDUSTRIAL, ESPECIALIDAD MECÁNICA CURSO ACADÉMICO: 2011-2012 GUÍA DOCENTE de :CINEMÁTICA Y DINÁMICA DE MÁQUINAS EXPERIENCIA PILOTO DE IMPLANTACIÓN DEL SISTEMA DE CRÉDITOS

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

6. DESCRIPCIÓN DEL SOFTWARE

6. DESCRIPCIÓN DEL SOFTWARE Capítulo 2. Equipo 6. DESCRIPCIÓN DEL SOFTWARE 6.1 Introducción El equipo de medida descrito en el capítulo anterior lleva asociado un software que hace de sistema de control del proceso de medición. Este

Más detalles

Características Morfológicas. Principales características de los Robots.

Características Morfológicas. Principales características de los Robots. Características Morfológicas Principales características de los Robots. Se describen las características más relevantes propias de los robots y se proporcionan valores concretos de las mismas, para determinados

Más detalles

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 18: Elementos de máquinas y sistemas (I)

DEPARTAMENTO DE TECNOLOGÍA Actividades complementarias Curso: 1º Bach. Profesor: José Jiménez R. Tema 18: Elementos de máquinas y sistemas (I) PARTAMENTO 1.- Un tocadiscos dispone de unas ruedas de fricción interiores para mover el plato sobre el cual se colocan los discos. La rueda del plato tiene 20 cm de diámetro, y el diámetro de la rueda

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

TIMSS 11.2 DESCRIPCIÓN DE LO EVALUADO EN LOS DOMINIOS DE CONTENIDO MATEMÁTICA Números Incluye la comprensión del proceso de contar, de las maneras de representar los números, de las relaciones entre éstos

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

El presente reporte de tesis describe los procesos llevados acabo para el diseño y

El presente reporte de tesis describe los procesos llevados acabo para el diseño y CAPITULO 1.-INTRODUCCIÓN El presente reporte de tesis describe los procesos llevados acabo para el diseño y construcción de un prototipo de sensor de torque. El primer paso, consistió en realizar un estudio

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS

NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS OBJETIVO Establecer los criterios de presentación y revelación relativos a la compensación de activos financieros y pasivos financieros

Más detalles

Guía Docente Modalidad Semipresencial. Diseño de máquinas y motores. Curso 2015/16. Máster en Ingeniería. de Montes

Guía Docente Modalidad Semipresencial. Diseño de máquinas y motores. Curso 2015/16. Máster en Ingeniería. de Montes Guía Docente Modalidad Semipresencial Diseño de máquinas y motores Curso 2015/16 Máster en Ingeniería de Montes 1 Datos descriptivos de la Asignatura Nombre: Carácter: Código: Duración (Cuatrimestral/Anual):

Más detalles

de la empresa Al finalizar la unidad, el alumno:

de la empresa Al finalizar la unidad, el alumno: de la empresa Al finalizar la unidad, el alumno: Identificará el concepto de rentabilidad. Identificará cómo afecta a una empresa la rentabilidad. Evaluará la rentabilidad de una empresa, mediante la aplicación

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

Analizar, diseñar, calcular y seleccionar diferentes mecanismos involucrados en la transmisión de movimiento de máquinas.

Analizar, diseñar, calcular y seleccionar diferentes mecanismos involucrados en la transmisión de movimiento de máquinas. Nombre de la asignatura: Mecanismos Aportación al perfil Analizar, diseñar, calcular y seleccionar diferentes mecanismos involucrados en la transmisión de movimiento de máquinas. Objetivo de aprendizaje

Más detalles

Una vez descrita la constitución general de un robot, podemos empezar con la

Una vez descrita la constitución general de un robot, podemos empezar con la CAPÍTULO 2 Construcción y Mecanismo de Operación del Brazo Robótico Una vez descrita la constitución general de un robot, podemos empezar con la descripción de nuestro robot, cómo fue construido y cómo

Más detalles

Su éxito se mide por la pertinencia y la oportunidad de la solución, su eficacia y eficiencia.

Su éxito se mide por la pertinencia y la oportunidad de la solución, su eficacia y eficiencia. APUNTES PARA EL CURSO PROCESOS COGNITIVOS: RESOLUCIÓN DE PROBLEMAS Y TOMA DE DECISIONES Elaborado por Vicente Sisto Campos. Se trata de la confluencia de la capacidad analítica del equipo de identificar

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR 2010. ORIENTACIONES SOBRE EXAMEN PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA. materia: DIBUJO TÉCNICO

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR 2010. ORIENTACIONES SOBRE EXAMEN PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA. materia: DIBUJO TÉCNICO PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR 2010 ORIENTACIONES SOBRE EXAMEN PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA. materia: DIBUJO TÉCNICO Duración de la prueba: 1 h y 15 El currículo de esta

Más detalles

CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN

CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN 19 CAPÍTULO 2 CLASIFICACIÓN EL ORDENAMIENTO GENERAL DE LOS SISTEMAS DE DIRECCIÓN 2.1 Sistemas de dirección Los sistemas de dirección son los que permiten controlar el movimiento del vehículo. El mecanismo

Más detalles

DETERMINACIÓN DEL VOLUMEN DE PEDIDO.

DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Lote económico de compra o Lote Optimo DETERMINACIÓN DEL VOLUMEN DE PEDIDO. Concepto que vemos en casi todos libros de aprovisionamiento, habitualmente la decisión de la cantidad a reaprovisionar en las

Más detalles

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES ACTIVIDADES DE RECUPERACIÓN DE LA ASIGNATURA DE TECNOLOGÍA 3 ESO Los alumnos que tienen pendiente la asignatura de Tecnología de 3º de la ESO encontrándose en

Más detalles

INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas

INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas INTRODUCCIÓN: Una Visión Global del Proceso de Creación de Empresas 1 INTRODUCCIÓN. Una visión global del proceso de creación de empresas Cuando se analiza desde una perspectiva integral el proceso de

Más detalles

MÓDULO MERCADOS Y PRODUCTOS FINANCIEROS AVANZADOS

MÓDULO MERCADOS Y PRODUCTOS FINANCIEROS AVANZADOS MÓDULO MERCADOS Y PRODUCTOS FINANCIEROS AVANZADOS Mercados financieros Profesor: Victoria Rodríguez MBA-Edición 2007-2008 ESPECIALIDADES DIRECCIÓN CORPORATIVA Y DIRECCIÓN FINANCIERA : Quedan reservados

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Int. Cl. 6 : A63H 17/12. k 71 Solicitante/s: José Manuel Olmo Avalos. k 72 Inventor/es: Olmo Avalos, José Manuel

Int. Cl. 6 : A63H 17/12. k 71 Solicitante/s: José Manuel Olmo Avalos. k 72 Inventor/es: Olmo Avalos, José Manuel k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k Número de publicación: 1 031 281 21 k Número de solicitud: U 9501504 51 k Int. Cl. 6 : A63H 17/12 k 12 SOLICITUD DE MODELO DE UTILIDAD U k 22 Fecha

Más detalles

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets

Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 1 de 12 Seminario Electrónico de Soluciones Tecnológicas sobre VPNs de Extranets 3 Bienvenida. 4 Objetivos. 5 Interacciones de Negocios

Más detalles

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes:

Máquinas Simples. Cuando hablamos de palancas podemos considerar 4 elementos importantes: Robótica Educativa WeDo Materiales Didácticos Tecnológicos Multidisciplinarios Palancas Constituyen los primeros ejemplos de herramientas sencillas. Desde el punto de vista técnico es una barra rígida

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

PRACTICA LABORATORIO Nº 4 TEORIA DE MAQUINAS LA TRANSMISIÓN APELLIDOS: APELLIDOS: NOMBRE: NOMBRE: 28/04/2005 1 / 9

PRACTICA LABORATORIO Nº 4 TEORIA DE MAQUINAS LA TRANSMISIÓN APELLIDOS: APELLIDOS: NOMBRE: NOMBRE: 28/04/2005 1 / 9 V5 PRACTICA LABORATORIO Nº 4 TEORIA DE MAQUINAS LA TRANSMISIÓN APELLIDOS: NOMBRE: APELLIDOS: NOMBRE: 28/04/2005 1 / 9 PRACTICA 4: La transmisión de un motor de explosión DURACIÓN: 2 HORAS OBJETIVO PRACTICA

Más detalles

CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN

CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN PROPUESTA: CREACIÓN DE UN DEPARTAMENTO DE RELACIONES PÚBLICAS PARA LOS ALMACENES EL CHOCHO Y EL CAMPEÓN Cómo sabemos cada día las empresas se enfrentan a un mundo globalizado, con retos empresariales,

Más detalles

Int. Cl.: 74 Agente: Ungría López, Javier

Int. Cl.: 74 Agente: Ungría López, Javier 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 361 129 1 Int. Cl.: B2J 1/00 (06.01) 12 TRADUCCIÓN DE PATENTE EUROPEA T3 96 Número de solicitud europea: 078289. 96 Fecha de

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 1. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR SEPTIEMBRE 2013 PARTE ESPECÍFICA OPCIÓN B TECNOLOGÍA Materia: DIBUJO TÉCNICO SOLUCIÓN 2. PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR

Más detalles

2.2. LA COMPRA. TOMA DE DECISIONES DEL CLIENTE.

2.2. LA COMPRA. TOMA DE DECISIONES DEL CLIENTE. 2.2. LA COMPRA. TOMA DE DECISIONES DEL CLIENTE. En este epígrafe abordaremos el estudio del comportamiento de compra del consumidor, para ello tendremos que estudiar tanto las distintas situaciones de

Más detalles

TEMA 4.- EL SUBSISTEMA DE PRODUCCIÓN.

TEMA 4.- EL SUBSISTEMA DE PRODUCCIÓN. TEMA 4.- EL SUBSISTEMA DE PRODUCCIÓN. 1. Concepto y elementos del subsistema de producción. 2. Clases de procesos productivos 3. Objetivos y decisiones en la administración de la producción Concepto y

Más detalles

Caja de cambio de 4 y 5 relaciones FUNCIONAMIENTO DE LAS CAJAS DE VITALE MAQUINAS CAMBIO DE 4 Y 5 VELOCIDADES. Andrés y Víctor Menéndez

Caja de cambio de 4 y 5 relaciones FUNCIONAMIENTO DE LAS CAJAS DE VITALE MAQUINAS CAMBIO DE 4 Y 5 VELOCIDADES. Andrés y Víctor Menéndez VITALE MAQUINAS FUNCIONAMIENTO DE LAS CAJAS DE CAMBIO DE 4 Y 5 VELOCIDADES Andrés y Víctor Menéndez 1 ATENCION Este manual de identificación de chasis esta sujeto a los derechos de Copyright, cualquier

Más detalles

Distribuidores de NTN Y SNR

Distribuidores de NTN Y SNR Distribuidores de NTN Y SNR RODAMIENTOS 1 / 14 Distribuidor de NTN y SNR Disponemos de rodamientos de: - Rigidos de bolas - Contacto angular - Axiales de bolas, rodillos y agujas - Conicos de bolas y rodillos

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

CAJAS DE CAMBIOS. La caja de cambios está constituida por una serie de ruedas dentadas dispuestas en tres árboles.

CAJAS DE CAMBIOS. La caja de cambios está constituida por una serie de ruedas dentadas dispuestas en tres árboles. +Función y funcionamiento: CAJAS DE CAMBIOS En los vehículos, la caja de cambios o caja de velocidades (suele ser llamada sólo caja) es el elemento encargado de acoplar el motor y el sistema de transmisión

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

Material estudio Examen Teórico para licencia profesional

Material estudio Examen Teórico para licencia profesional Material estudio Examen Teórico para licencia profesional 1. - Cuales son las piezas principales que componen el motor? Resp: El block, tapa de block, Carter, Cilindros, Pistones con sus aros, Pernos,

Más detalles

forma de entrenar a la nuerona en su aprendizaje.

forma de entrenar a la nuerona en su aprendizaje. Sistemas expertos e Inteligencia Artificial,Guía5 1 Facultad : Ingeniería Escuela : Computación Asignatura: Sistemas expertos e Inteligencia Artificial Tema: SISTEMAS BASADOS EN CONOCIMIENTO. Objetivo

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

Normas chilenas de la serie ISO 9000

Normas chilenas de la serie ISO 9000 Normas chilenas de la serie ISO 9000 Hernán Pavez G. Director Ejecutivo del Instituto Nacional de Normalización, INN, Matías Cousiño N 64, 6 Piso, Santiago, Chile. RESUMEN: en nuestro país las empresas

Más detalles

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN

9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN 9) UPS s: EN QUE CONSISTEN DE QUE Y COMO PROTEGEN En el mercado actual hay gran cantidad de diseños de UPS. Puede llegar a ser confuso determinar que tipo de equipo es el más conveniente para nuestra carga

Más detalles

UBICACIÓN DE LA PLANTA

UBICACIÓN DE LA PLANTA SECCIÓN II UBICACIÓN DE LA PLANTA La adecuada ubicación de la planta industrial, es tan importante para su éxito posterior, como lo es la elección del proceso mismo, y por lo tanto para lograr esto, se

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

Unidad 2. Bases de la Auditoria Administrativa de la Empresa

Unidad 2. Bases de la Auditoria Administrativa de la Empresa Unidad 2 Bases de la Auditoria Administrativa de la Empresa Bases de la Auditoria Administrativa de la Empresa En este capítulo vamos a dejar sentado las bases fundamentales de!a Auditoría Administrativa,

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

LINEAS EQUIPOTENCIALES

LINEAS EQUIPOTENCIALES LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.

Más detalles

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV)

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) POTENCIA Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. Potencia teórica o térmica W F e P = = = F v t t 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) Se denomina

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS El control automático de procesos es parte del progreso industrial desarrollado durante lo que ahora se conoce como la segunda revolución industrial. El uso

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

CÓDIGO DEL PROGRAMA A.N.E.P. Consejo de Educación Técnico Profesional. Educación Media Profesional ELECTROMECÁNICA AUTOMOTRIZ

CÓDIGO DEL PROGRAMA A.N.E.P. Consejo de Educación Técnico Profesional. Educación Media Profesional ELECTROMECÁNICA AUTOMOTRIZ Tipo de Curso CÓDIGO DEL PROGRAMA Plan Orientación Área Asignatura Año A.N.E.P. Consejo de Educación Técnico Profesional Educación Media Profesional ELECTROMECÁNICA AUTOMOTRIZ ASIGNATURA: TECNOLOGÍA DE

Más detalles

Introducción En los años 60 s y 70 s cuando se comenzaron a utilizar recursos de tecnología de información, no existía la computación personal, sino que en grandes centros de cómputo se realizaban todas

Más detalles

I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós

I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA 1 1.INTRODUCCIÓN Los sistemas de representación en perspectiva, tienen como objetivo

Más detalles

Capítulo II. Movimiento plano. Capítulo II Movimiento plano

Capítulo II. Movimiento plano. Capítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento

Más detalles