EXÁMENES DE CURSOS ANTERIORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EXÁMENES DE CURSOS ANTERIORES"

Transcripción

1 EXÁMENES DE CURSOS NTERIORES CURSO ª EVLUCIÓN EXMEN. Sistes de ecuciones lineles. EXMEN. Sistes de ecuciones lineles. Geoetrí fín Euclíde en el espcio tridiensionl. RECUPERCIÓN EXMEN. Sistes de ecuciones lineles. MTEMÁTICS II. º T. ª EVLUCIÓN, EXMEN. (.. ). ) Discute el siste según los vlores del práetro. (, puntos) b) Resuélvelo pr. (, puntos). ) Discute el siste según los vlores que toe el práetro. b) Resuélvelo pr todos los vlores de que lo hgn coptible. (, puntos) (, punto). Un coercinte copró plus estilográfics, lpiceros gos de borrr. Cd plu le costó, cd lpicero, por cd gos pgó. En totl copró rtículos pgó ) Plnte el correspondiente siste de ecuciones resuélvelo. (, puntos) b) Cuántos rtículos copró de cd clse? Ron l respuest (, puntos) INDICCIÓN: ten en cuent que ls soluciones únicente pueden ser núeros nturles, es decir, que no tiene sentido coprr edi plu, ni - lpiceros.. ) Deterin pr qué vlor o vlores del práetro, el siste: dite coo solución,,. ( punto) b) Resuélvelo en ese cso o csos, coprobndo que efectivente,, es solución del siste. (, puntos)

2 SOLUCIONES. ) Toeos ls trices del siste plid, estudieos sus rngos en función se. L tri, tiene rngo puesto que. Sin ebrgo, l tri puede tener rngo ó, dependiendo de que se nule o no su deterinnte. Por consiguiente: rng Rng El siste es coptible deterindo rng Rng El siste es incoptible b) Pr vios que es coptible deterindo porque ls dos trices tienen rngo. Toos un enor de orden tres distinto de cero, por ejeplo el fordo por ls tres priers fils coluns, resolveos utilindo el étodo que nos prec ás conveniente, el siste: cus soluciones son:,,. ) Estudios coo siepre los rngos de ls trices del siste, plid. ; ±. DISCUSIÓN: ± Rng Rng el siste es coptible deterindo. ho que puesto Rng ogéneo es siste el es coptible indeterindo. que puesto Rng que puesto Rng el siste es incoptible b) Vos resolverlo en los csos priero segundo. Si el siste es de Crer, tiene solución únic, es solución depende del vlor que toe.

3 ) ( ) )( ( ) ( ) ( ) )( ( ) ( ) ( ) )( ( ) ( Si el siste es hoogéneo, coptible indeterindo. Tiene infinits soluciones dependiendo de un práetro, ls obteneos resolviendo ls ecuciones correspondientes l deterinnte de orden distinto de cero que indicos. ; ;. ) Lleos: l nº de plus, l nº de lpiceros, l nº de gos de borrr que copró. El siste que podeos plnter con los dtos del proble, tiene dos ecuciones tres incógnits. l resolverlo, nos encontros con que tiene infinits soluciones dependiendo de un práetro: ; 9 ; b) Coo ls soluciones únicente pueden ser núeros nturles, el práetro está obligdo vler o culquier últiplo de pr que ls plus estilográfics sen un núero entero. Pero si cogeos últiplos de ores que, los lpiceros slen negtivos, sí que no nos qued ás reedio que tor, en cuo cso l solución es: { } ; ; Copró plus estilográfics, lpiceros gos de borr.. (Ver probles PU, nº. Septiebre 99) ) Sin ás que sustituir en cd un de ls tres ecuciones,,, podeos concluir que si quereos que (,,) se solución del siste, debe cuplirse lo siguiente:. L segund epresión es un identidd que no nos infor de nd, por tnto sobr. Ls otrs dos son ecuciones que hn de verificrse siultáneente. L prier tiene coo soluciones -. L segund tiene un solución rel - dos soluciones coplejs que no nos interesn (utilir l regl de Ruffini pr coprobrlo). Por consiguiente, l únic solución coún ls dos ecuciones es - Si quereos que un solución se (,,), h de ser - b) hor bien, en ese cso hbrá ás soluciones? Epeceos por plnter el siste pr -:. Estudios el rngo de l tri del siste l tri plid, coprobos que bs tienen rngo por tnto, el

4 siste es coptible indeterindo; hbrá infinits soluciones dependiendo de un práetro. Pr resolverlo, buscos un enor de orden dos no nulo, por ejeplo:. Nos quedos pues con ls dos priers ecuciones, que l tercer es cobinción linel de ells, psos l l otro iebro coo incógnit no principl. Obteneos el siste de dos ecuciones con dos incógnits Cus soluciones son: λ ; λ ; λ Evidenteente, un de ls infinits soluciones (en concreto, si hceos λ ) será:,,.. MTEMÁTICS II. º C. ª EVLUCIÓN, EXMEN. (.. ). Discute resuelve, el siste 9 9 ( puntos). Ddo el siste ) Discútelo segun los vlores del práetro. b) Resuélvelo en los csos que se coptible. (, puntos) ( puntos). ) Hll pr que el siste hoogéneo teng soluciones distints de l trivil. ( punto) b) Resuelve el siste pr el vlor de que hllste el prtdo nterior. ( punto). Un cjero utoático contiene solo billetes de, euros. En totl h billetes por un iporte de. ) Es posible que en el cjero h el triple núero de billetes de que de? (, puntos) b) Suponiendo que el núero de billetes de es el doble que el de billetes de, clcul cuántos billetes h de cd tipo (de, de de ) (, puntos)

5 SOLUCIONES. Utilios ls operciones que nos periten trnsforr un siste en otro equivlente, tringulos nuestro siste: 9 () () () 9 () Operndo con l prier ecución, eliinos en ls otrs tres: E E, E E, E E () Operndo con l tercer ecución, eliinos en l segund l curt: E E, E E () L segund no es un ecución sino un identidd, sí que sobr. El relidd es un siste de tres ecuciones con tres incógnits, coptible deterindo. Un de ls ecuciones, er cobinción linel de ls deás.. Ver puntes: págin, nº, prtdo d) ) DISCUSIÓN: b) SOLUCIONES:, siste es coptible det er in do siste coptible indet er in do biprétrico. siste incoptible, ; ; β ; ; β { }. Ver puntes: págin 9, nº. 9 ) El siste tiene soluciones distints de l trivil, pr. b) Pr ese vlor de, el siste es coptible indeterindo uniprétrico. Soluciones: ; ; 9 9. Lleos: l nº de billetes de, l nº de billetes de l nº de billetes de. ) El siste que podeos plnter con los dtos del proble, es el siguiente: Discutiéndolo, bien por el étodo de Guss o por el Teore de Rouché, llegos l is conclusión: es incoptible. Por tnto, no es posible que el nº de billetes de se el triple que el nº de billetes de. b) Si plnteos hor el siste con el nuevo dto: ; ; Result que es coptible deterindo l solución es:. En este cso, h en el cjero billetes de, de de.

6 EXMEN. Sistes de ecuciones lineles. Geoetrí fín Euclíde en el espcio tridiensionl. º C T. MTEMÁTICS II. ª EVLUCIÓN, EXMEN. (.. ). Crlos Miguel Roán, slen un sábdo de rch. Dice Crlos: Si e dieris dos euros cd uno, tendrí el iso dinero que vosotros dos juntos. Contest Miguel: Pues si e dieris seis euros cd uno, o tendrí el doble de todo vuestro dinero. Y terin Roán: Si os dier o cd uno dos euros, solo tendrí l quint prte de todo lo vuestro junto. ) Plnte el siste de ecuciones que trduc el enuncido lenguje lgebrico. ( punto) b) Resuelve el siste, verigu con cuánto dinero slió cd uno de su cs, coprueb que efectivente ese resultdo se dpt ls condiciones del enuncido. ( punto) ( ). Ddos los plnos: ( ) ( ) ) Deterin su posición reltiv según los distintos vlores que toe el práetro. H un dibujo proido de l situción en cd cso. (, puntos) b) Pr el vlor de que hg que se corten en un rect, hll ls ecuciones prétrics de dich rect. ( punto). Hll el voluen del tetredro cus crs están situds en los plnos: (, puntos). Dds ls rects r s ) Deuestr que se crun. (, puntos) b) Hll l ecución del plno que contiene r es prlelo s. (, puntos) c) Hl l ecución de l rect t, perpendiculr coún r s. (, puntos) d) Hll l distnci de r s. (, puntos)

7 Figur SOLUCIONES. Leos:, l cntidd de euros con que sle de cs Crlos, l de Miguel l de Roán. ) ( ) (. ) Discutos el siste deterindo por ls ecuciones de los tres plnos. Pr ello nlireos los rngos de ls trices: ; ;,, Rng Rng El siste es coptible deterindo Los tres plnos se cortn en un punto P (ver figur ) Rng Rng El siste es incoptible. Los tres plnos no tienen ningún punto en coún. Coo no h dos plnos prlelos, se cortn dos dos forndo un pris coo puede verse en l figur. Rng Rng El siste es coptible indeterindo. H infinits soluciones dependiendo de un práetro. Los tres plnos se cortn lo lrgo de un rect (ver figur ) Rng Rng El siste es incoptible. Los tres plnos no tienen ningún punto en coún. hor bien, en este cso, son prlelos los cort (ver figur ) b) Pr, los tres plnos se cortn en l rect r, cus ecuciones prétrics se hlln resolviendo el siste deterindo por ls ecuciones de los dos últios plnos, puesto que el priero es cobinción linel de los otros dos. r. Pr hllr el voluen del tetredro, necesitos ls coordends de sus vértices,, C D. En cd vértice confluen tres plnos, sí que toos los plnos de tres en tres, resolveos los cutro sistes cus soluciones serán ls coordends de los cutro vértices del tetredro. ), (, : Vértice P Figur Figur Figur

8 ), (, : Vértice ), (, : C C Vértice ), (, : D D Vértice Y hor que sbeos ls coordends de los cutro vértices, hlleos el voluen del tetredro: [ ],,, u D C Voluen. L rect r viene deterind por el punto (,, -) el vector u(,, ). Y l rect s viene deterind por (,, ) v (,, ). ) (,, ). r s se crun. b) El plno que contiene r es prlelo s, viene deterindo por los vectores u, v por el punto. por tnto: c) El vector perpendiculr u v, es k j i k j i w L rect t que nos piden, vendrá dd coo el corte de dos plnos: : Plno que contiene l rect r l vector w. : Plno que contiene l rect s l vector w. 9 t

9 [ ] (), u, v d) d( r, s), u. () En el prtdo ) clculos u v [, u, v] Y coo vios en el prtdo c) u v (,, ) u v u. RECUPERCIÓN º C T. MTEMÁTICS II. RECUPERCIÓN DE L ª EVLUCIÓN, (.. ). En un cjero utoático se introducen billetes de, euros. El núero totl de billetes es de el totl de dinero,. Se sbe que el núero de billetes de es veces los billetes de. ) Clcul el núero de billetes de cd tipo, suponiendo que. ( punto) b) Pr qué ocurre con l situción del cjero plnted?. ( punto) c) Siguiendo con, si se tuviern billetes en el cjero, cuánto dinero deberí hber pr que se posible un coposición del cjero?. ( punto). ) Encuentr, de for rond, el vlor de pr el que los plnos, se cortn en el punto P (,, ). ( punto) b) Pr - deuestr que los tres plnos se cortn en un rect, hll sus ecuciones prétrics. (, puntos). Ddos los puntos (,, ) (,, ) l rect r λ Hll: λ ) Un punto C r de for que el triángulo C se rectángulo con el ángulo recto en C. (, puntos) b) El plno que ps por es prlelo r. ( punto). Ddo el punto P (,, ) hll: ) El siétrico de P respecto del punto (,, -) (, puntos) b) El siétrico de P respecto del plno ( punto) c) El siétrico de P respecto de l rect r ( punto)

10 SOLUCIONES. ) Llndo l nº de billetes que h de, l nº de billetes de l de, el enuncido puede trducirse en el siguiente siste: b) Pr, el siste es sí: Estudieos los rngos de l tri del siste de l plid respectivente: Rng rng El siste es incoptible. En ess condiciones, no se puede coponer el cjero. c) En este cso, llndo k l dinero (en Euros) que h en el cjero, el siste que se plnte es el siguiente: k. Ls trices del siste plid, son hor ests: k Y sbeos por el prtdo nterior, que rng. Si quereos que se posible un coposición del cjero es decir, si quereos que ese siste teng solución (o pr ser ectos, soluciones), heos de obligr l tri tener rngo dos, pr lo cul h de ser cero el siguiente deterinnte: k k k Pr que en ess condiciones se posible un coposición del cjero, tiene que hber.. ) El punto P, h de estr en los tres plnos por tnto, sus coordends deben ser solución de siste. Sin ás que sustituir en cd un de ls tres ecuciones,,, podeos concluir que pr que (,,) se solución del siste, h de ocurrir que: L segund epresión es un identidd que no nos infor de nd por tnto, sobr. Ls otrs dos, son ecuciones que hn de verificrse l ve. L prier tiene coo soluciones : -. L segund tiene un solución rel: - dos soluciones coplejs que no nos interesn (utilir l regl de Ruffini pr coprobrlo). Por consiguiente, l únic solución coún ls dos ecuciones es: -. sí pues, si quereos que un solución se (,,), h de ser -. b) Pr - el siste qued sí:.. Estudios el rngo de l tri del siste l tri plid coprobos que bs tienen rngo, por tnto, el siste es coptible indeterindo; hbrá infinits soluciones dependiendo de un práetro por tnto, los plnos se cortn en un rect, cus ecuciones prétrics son ls soluciones del siste.

11 Pr resolverlo, buscos un enor de orden dos no nulo, por ejeplo:. Nos quedos pues con ls dos priers ecuciones, que l tercer es cobinción linel de ells, psos l l otro iebro coo incógnit no principl. λ Obteneos el siste de dos ecuciones con dos incógnits: cus soluciones son:. λ λ Uno de los puntos de es rect, en concreto si hceos λ, será P(,, ).. El punto C que buscos, coo está en l rect r, tendrá ests coordends:, λ, λ (*) C ( ) Se trt de encontrr el vlor (o vlores) de λ, pr que los vectores C C ortogonles. C, λ, λ C, λ, λ ( ) ( ) λ C C C C λ λ λ λ λ C λ Por tnto, h dos puntos C C en l rect r, pr los que el triángulo C es rectángulo con el ángulo recto en C. Esos dos puntos, se obtienen sustituendo en (*) los dos vlores que cbos de hllr pr λ : C(,,) C',,. ) Pr deterinr el plno, necesitos conocer dos vectores un punto. En este cso, el punto es (,, ) (unque podrí ser si quisiéros) los dos vectores, son ecución del plno, será l siguiente: es decir, que sen (-, -, ) el vector director de l rect r: u (,, ). Ver puntes, págin nº 9. ) El siétrico de P respecto de es P (,, -) b) L rect perpendiculr psndo por es t que cort en el punto Q(,, ) que debe ser el punto edio del segento PP (P es el siétrico que buscos) luego P (,, ) c) El plno que es perpendiculr r ps por P es ' es el punto edio de PP (P es el siétrico que buscos) luego P (-,, ). L. Ese plno cort r en el punto M(-,, ) que r C

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución:

ESTUDIO DE SISTEMAS { } = . Resuélvelo cuando m = Discute según los valores de m, el sistema. Solución: STUDIO D SISTS. Discute según los vlores de, el siste. Resuélvelo cundo. l siste se define edinte ls trices: tri de coeficientes tri plid l estudio de sistes se puede hcer de dos fors diferentes: - por

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones

Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos:

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. 1. Determinar la posición relativa de las siguientes parejas de planos: EJERCICIOS RESUELTOS DE GEOMETRÍA ANALITICA DEL ESPACIO. Deterinr l posición reltiv de ls siguientes prejs de plnos ) b) c) d) 8 ' ' ' ) Discutos el siste 8 l tri de coeficientes l plid son respectivente

Más detalles

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal.

Vamos a estudiar la existencia de soluciones, nº de soluciones y cómo calcular las soluciones de un sistema lineal. Te 3 Sistes de ecuciones lineles. 3. Sistes lineles notciones triciles y vectoriles. 3. Teore de Rouché-Froenius. Sistes lineles hoogéneos. 3.3 Resolución de sistes de ecuciones. 3.4 Discusión de sistes

Más detalles

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9

Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9 Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

Modelo 5 de sobrantes de Opción A

Modelo 5 de sobrantes de Opción A Ejercicio. [ puntos] Se f : R l función dd por Modelo de sobrntes de 6 - Opción. Ln f siendo Ln l función logrito neperino. Estudi l eistenci de síntot horiontl pr l gráfic de est función. En cso de que

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hllr el siétrico del punto (, - ) respecto de M(-, ).. Clcul ls coordends de D pr que el cudrilátero de vértices: (-, -), B(, -), C(, ) D; se un prlelogro.. Ddos los vectores

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

MATEMÁTICAS I SEPTIEMBRE 2004

MATEMÁTICAS I SEPTIEMBRE 2004 TÁTICS I SPTIBR INSTRUCCIONS: l een present dos opciones B; el luno deberá elegir un de ells responder rzondente los cutro ejercicios de que const dich opción. Pr l relizción de est prueb puede utilizrse

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1.

DETERMINANTES. Los menores y los cofactores son de gran utilidad para encontrar determinantes de matrices de orden n>1. DETERINNTES DETERINNTE DE UN TRIZ CUDRD socido cd mtri cudrd h un número llmdo determinnte de, denotdo como det. Los determinntes nos proporcionn un método pr el cálculo de l mtri invers (en cso de eistir)

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO

CASTILLA Y LEÓN / JUNIO 01. LOGSE / MATEMÁTICAS II / EXAMEN COMPLETO CSTILL Y LEÓN / JUNIO. LOGSE / MTEMÁTICS II / EXMEN COMPLETO Se proponen dos pruebs, B. Cd un de ells const de dos problems, PR- PR-, de cutro cuestiones, C-, C-, C- C-4. Cd problem tendrá un puntución

Más detalles

Matrices, determinantes y sistemas de ecuaciones

Matrices, determinantes y sistemas de ecuaciones Mtrices, deterinntes sistes de ecuciones. Probles PAU Junio 9: Un grupo de persons se reúne pr ir de ecursión, juntándose un totl de entre hobres, ujeres niños. Contndo hobres ujeres juntos, su núero result

Más detalles

Resuelve. Unidad 1. Sistemas de ecuaciones. Método de Gauss. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Ecuaciones e incógnitas

Resuelve. Unidad 1. Sistemas de ecuaciones. Método de Gauss. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Ecuaciones e incógnitas Unidd. Sistes de ecuciones. Método de Guss Mteátics licds ls Ciencis Sociles II Resuelve Págin Ecuciones e incógnits. Podeos decir que ls dos ecuciones siguientes son dos dtos distintos? No es cierto que

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

3. SISTEMAS DE ECUACIONES LINEALES

3. SISTEMAS DE ECUACIONES LINEALES Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete

Más detalles

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...

Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ... Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo

Más detalles

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía

PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Salvo el primero, estos problemas provienen de las pruebas de Selectividad de Andalucía Mtrices Deterinntes PROBLEMAS RESUELTOS DE MATRICES Y DETERMINANTES Slvo el priero, estos proles provienen de ls prues de Selectividd de Andlucí ) Clculr el siguiente deterinnte: Un deterinnte de orden

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

4. PRUEBA DE SELECTIVIDAD-MODELO

4. PRUEBA DE SELECTIVIDAD-MODELO Pruebs de Selectividd de Ciencis PRUEB DE SELECTIVIDD-MODELO-- OPCIÓN : ) Hll l longitud de los ldos del triángulo isósceles de áre máim cuo perímetro se m Perímetro b h h re h ( ) Derivmos : bse crece

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f)

Ejercicios. 1.- Simplificar: a) Calcular: x x. x x. x x. 2 e) 2 f) 80 Ejercicios.- Siplificr: ) f).- Clculr: ) 0 .7 Práctico: Epresiones Algebrics Ejercicio : Epresr con un onoio el áre de l prte sobred. Ejercicio : ) Verificr que el áre del trpecio de l figur es A =.

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..

Más detalles

MATEMÁTICAS II SISTEMAS DE ECUACIONES

MATEMÁTICAS II SISTEMAS DE ECUACIONES Mite Gonále Jurrero Proles PU. Sistes de euiones. SISTEMS DE ECUCIONES. Considérese el siguiente siste de euiones lineles (en él,, son dtos; ls inógnits son,, Si, son no nulos, el siste tiene soluión úni.

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

ALGEBRA. 3.- Obtener las matrices A y B tales que cumplen las siguientes condiciones: (Sep ptos) A 1 = a

ALGEBRA. 3.- Obtener las matrices A y B tales que cumplen las siguientes condiciones: (Sep ptos) A 1 = a ALGEBRA Mtrices determinntes.- Se A un mtri cudrd se A l mtri que se obtiene de intercmbir en A ls fils primer segund. Es sbido que entonces se verific que det(a ) = - det(a). Justifíquese este resultdo.

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Resumen de Álgebra. Matemáticas II. ÁLGEBRA

Resumen de Álgebra. Matemáticas II. ÁLGEBRA Resumen de Álger. Mtemátics II. ÁLGEBRA.- RESOLUCIÓN DE SISTEMAS. MÉTODO DE GAUSS El método Guss consiste en convertir l mtriz socid un sistem de ecuciones en otr mtriz equivlente tringulr superior, hciendo

Más detalles

SISTEMA DE COORDENADAS CARTESIANAS

SISTEMA DE COORDENADAS CARTESIANAS SISTEMA DE COORDENADAS CARTESIANAS Definición El siste de coordends crtesins en el plno está constituido por dos rects perpendiculres que se intersecn en un punto O l que se le ll el origen. Un de ls rects

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Álgebr UNIDAD SISTEMAS DE ECUACIONES LINEALES.- Resolver, con el método de Guss, los sistems siguientes: ) b) 9 c) 9 8.- Resuelve utilindo l regl de Crmer: ) 7 b).- Anlir l comptibilidd del sistem siguiente:.-

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales

BLOQUE 1: ÁLGEBRA. Tema 4: Sistemas de Ecuaciones Lineales MTEMÁTICS º Bch BLOQUE : ÁLGEBR José Rmón Pdrón Tem : Sistems de Ecuciones Lineles MTEMÁTICS º Bch Tem : Sistems de Ecuciones Lineles TEOREM DE ROUCHÉ José Rmón Pdrón Supongmos el sistem siguiente: z z

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: º Grupo: Dí: CURSO 5-6 Opción A.- ) [ punto] Si A y B son dos mtrices cudrds y del mismo orden, es ciert en generl l relción (A+B)

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

x que deben ser calculados

x que deben ser calculados UNIDD 9.- Sistes de ecucioes lieles UNIDD 9: Sistes de ecucioes lieles. SISTEMS DE ECUCIONES LINELES U siste de ecucioes lieles co icógits es tod epresió del tipo:.. Llos: - Coeficietes del siste los úeros

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

1. Discutir según los valores del parámetro k el sistema

1. Discutir según los valores del parámetro k el sistema . Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1,

JUNIO 95. Solución Se pide calcular la resultante de tres fuerzas conocidos sus módulos y sus direcciones. Para ello!!! se buscan tres vectores u1, OPIÓN A JUNIO 95 UESTIÓN En un vértice de un cubo se plicn tres fuerzs dirigids según los digonles de ls tres crs que psn por dichos vértices. Los módulos o mgnitudes de ests fuerzs son, y. Hllr el módulo

Más detalles

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn

MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn TE trices TRICES. DEFINICIÓN. Un mtriz de m fils n columns es un serie ordend de m n números ij, i,,...m; j,,...n, dispuestos en fils columns, tl como se indic continución:... n... n............ m m m...

Más detalles

Raíces de una ecuación cuadrática

Raíces de una ecuación cuadrática 8 Ríces de un ecución cudrátic Introducción Se bord en est sección l deducción de l fórmul pr hllr ls ríces de un ecución cudrátic. Se nlizn ls crcterístics de ls soluciones, según l form del discriminnte

Más detalles

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.

Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta. Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A

ÁLGEBRA. e I es la matriz unidad 2 2, conmutan con la A, es decir A B = B A Mtemátics II Pruebs de Acceso l Universidd ÁLGEBRA Junio 94. Comprueb que el determinnte es nulo sin desrrollrlo. Explic el proceso que sigues. [,5 puntos] Junio 94.. Considerr l mtriz A. Probr que ls

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

AUXILIAR 6: CAPM y Teoría de carteras

AUXILIAR 6: CAPM y Teoría de carteras urso: IN56A Seestre: Priver 007 Pro: José Miguel ruz Andrés Kettlún Aux: Lorenzo Réus Jie Sáez AUXILIAR 6: APM y Teorí de crters Pregunt 1 Supong que usted tiene los siguientes dtos sore los retornos esperdos

Más detalles

Matemáticas 2º Bachillerato

Matemáticas 2º Bachillerato Mtemátics º Bchillerto Tem.- Sistems de ecuciones. Método de Guss.- Ecuciones lineles Se llm ecución linel de n incógnits un ecución del tipo: + + + + nn = donde,,,, n, son números reles,,,, n son vriles.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F):

1. Ejercicios Primera parte. 1. Clasifique en verdadero (V) o falso (F): PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Progrm de Perfeccionmiento pr Profesores de Mtemátics del Nivel Secundrio Curso Piloto-Etp distnci 1. Ejercicios 1.1. Primer prte 1. Clsifique en verddero (V) o

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistem de m ecuciones lineles con n incógnits,,,, n es un conjunto de m igulddes de l form: n n n n m m mn n m ij son los coeficientes i los

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 )

Calcular la pendiente y los puntos de intersección con los ejes coordenados de una recta. y (x,y) (x 2,y 2) (x 1,y 1 ) Clse 1: Ecución de l rect Determinr l pendiente del segmento de rect que une dos puntos. Comprender ls distints representciones lgerics de l ecución de l rect. Determinr un ecución pr un rect ddos dos

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

_ b Resolvemos el sistema formado por las ecuaciones 2. a y 3. a : 3 3x

_ b Resolvemos el sistema formado por las ecuaciones 2. a y 3. a : 3 3x loque I. Álger Mtemátics licds ls iencis Sociles II utoevlución Págin Resuelve e interret geométricmente los siguientes sistems: x + y = z x= ) x y = ) x+ z y = x + y = x z= _ ) x + y = x y = ` Resolvemos

Más detalles

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección

Más detalles