( ) " f $ ( x) integramos a ambos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( ) " f $ ( x) integramos a ambos"

Transcripción

1 Guia No Calculo Integral Grupo UNAD Escuela de Ciencias Básicas Tecnologías e Ingeniería Métodos de Integración Integración por partes Funciones trigonometricas Sustitución trigonometricas Fracciones parciales Sustituciones especiales Cuando la antiderivada (integral) de ciertas funciones no son inmediatas o no se pueden hallar por el método de cambio de variable (sustitución) anterior, debemos usar otros métodos. Integración por partes Tomemos dos funciones derivables f (x), y, g(x), hallamos la derivada del producto de las dos. d dx [ f (x) g ( x )] = f x Despejemos f x ( ) g ( x) + g( x) f ( x) ( ) g ( x) tenemos. ( ) f x lados g ( x)= d dx [ f (x) g ( x )] g x ( ) f ( x) integramos a ambos

2 % f (x) g (x) dx = % d dx [ f (x) g(x) ] dx g(x) % f (x) dx Si el concepto de integral esta bien claro sabemos que la integral de la derivada son operaciones inversas, es decir la integral de la derivada de una función es la función tenemos que. d dx [ f (x) g(x) ] dx = f (x) g(x) Entonces % f (x) g (x) dx = f (x) g(x) g(x) f (x) dx % Esta es una formula para integrar ciertas funciones que generalmente son el producto de dos funciones, como por ejemplo un polinomio por una trigonometrica, un polinomio por una exponencial, trigonometrica por logarítmica Simplificando la formula anterior llegamos a la expresión que aparece en todos los libros de calculo. Sea u = f ( x), v = g x du = f x ( ) diferenciando tenemos ( ) dx dv = g( x) dx reemplazando Tenemos u dv = u v v du Ejemplo

3 xe x dx Si hacemos u = x du = dx dv = e x dx dv = e x dx,v = e x xe x dx = xe x e x dx = x e x e x. x sec x dx u = x, dv = sec x dx du = dx,v = sec x dx = tg x x sec x dx = x tg x tg x dx senx = x tg x cos x dx = x tg x lnsec x 3. e x cos x dx u = cos x,dv = e x dx du = senx dx,v = e x e x cos x dx = e x cos x + e x senx dx de nuevo por portes e x cos x x + u = senx, dv = e x dx e x cos x x + du = cos x,v = e x e x cos x + e x senx e x cos x dx [ ] La mueva integral es la inicial, entonces la posamos al lado izquierdo efectuamos la suma y despejamos así:

4 e x cos x dx = e x cos x + e x senx o sea e x cos x dx = ex cos x + e x senx Método Integración de Funciones Trigonometricas. Debemos repasar identidades trigonometricas que se usan en este método son: sen x os x = sen x = cos x cos x = sen x tg x += sec x tg x = sec x ot x = csc x ctg x = csc senx = csc x, cos x = sec x, tgx = ctgx cos(x) sen x = os(x), cos x = Veamos primero las funciones trigonometricas que tienen antiderivada (integral) inmediata. Ejercicios. cos x dx, cual es la función que al derivarla da cos x?. Es sen x entonces cos x dx = senx porque d ( dx senx ) = cos x + 0 = cos x

5 . senx dx = cos x d dx cos x ( ) = senx ( ) + 0 = senx 3. sec x dx = tgx 4. csc x dx = ctgx 5. sec x tgx dx = sec x 6. x + dx = tg x recuerde que tg se lee arcotangente x o inverso tangente x 7. dx x = sen x 8. x dx x = sec x Ahora veamos unas funciones trigonometricas que se pueden integrar por el método de cambio de variable Ejercicio:. senx cos x dx u = senx du = cos x dx u du = u 0. sen x cos x dx u = senx u du = u3 3 sen 3 x 3 du = cos x dx

6 . sen 3 x cos x dx u = senx u 3 du = u4 4 sen 4 x 4 du = cos x dx Podemos generalizar: sen n x cos x dx = sen n + x n +. También cuando el coseno elevado a cualquier exponente esta multiplicado por sen seria: cos 5 x senx dx ; u = cos x du = senx dx u 5 du = u6 6 % cos6 x 6 Podemos generalizar: cos n x senx dx = cosn + x n + Cuando la función seno esta elevada a cualquier potencia y la función coseno esta elevada a una potencia IMPAR procedemos así: sen 5 x cos 3 x dx = sen 5 x cos x cos x dx

7 Nota: Rebajamos una unidad al exponente del coseno. sen 5 x cos 3 x dx = sen 5 x cos x cos x dx ; reemplazamos cos x = sen x ( ) cos x dx ; suprimimos() sen 7 x cos x dx sen 5 x sen x sen 5 x cos x dx sen 6 x 6 sen 8 x 8 Cuando la función coseno esta elevado a cualquier potencia y la función seno esta elevada a una potencia IMPAR procedemos así: 4. cos 4 x sen 5 x dx Nota: Rebajamos una unidad al exponente del seno. cos 4 x sen 4 x senx dx reemplazamos sen x = cos x y elevamos al cuadrado porque tenemos sen 4 x ( ) senx dx efectuamos el cuadrado cos 4 x cos x cos 4 x( cos x os 4 x)senx dx sup rimimos() cos 4 x senx dx cos 6 x senx dx os 8 x senx dx cos 5 x 5 % cos7 x ( ' * cosc & 7 )

8 Cuando la función seno o coseno esta elevado a una PAR usamos la IDENTIDAD DE ANGULOS DOBLES. % sen x = cos ( x ) ( ) os x o cos x = & ( ' 5 sen x dx usamos la identidad cos( x) dx sacamos dx de int egral y sup rimimos () cos( x)dx,laint egral de dx es inmediata dx cos( x)dx, laint egral de dx es inmediata y la de cos( x) es sen ( x ) x senx( x) 4 Vamos a la integrales de funciones tangente, cotangente, secante y cosecante. 6. senx tgx dx,usamos la identidad tgx cos x senx dx, hacemos cambio de var iable cos x u = cos x du u = ln u lncos x tambien se puede escribir como du senx dx du u = lncos ln cos x lnsec x

9 Usando una de las propiedades de los logaritmos ln x n = n ln x 7. tg x dx usamos la identidad tg x = sec x sec x dx = sec x dx dx = tgx x 8. ( ) tgx sec x dx u du = u tg x u = tgx du = sec x dx. tg 5 x sec x dx u = tgx du = sec x dx u 5 du = u6 6 tg tg 3 x sec x dx u = tgx du = sec x dx u 3 du = u5 = tg5 x

10 Cuando tangente esta elevada a cualquier potencia multiplicada por secante elevada a una potencia PAR.. tg 3 x sec 4 x dx, rebajamos dos unidades al exponente de la secante. tg 3 x sec 4 x dx Tangente y secante con exponentes IMPARES. ( sec x ) tg 3 x sec 3 x dx rebajamos una unidad a ambos exponentes tg x sec x tgx sec x dx usamos tg x = sec x sec x tgx sec x dx sec 4 x tgx sec x sec x tgx sec x dx u = sec x u 4 du u du = u5 5 u3 3 sec 5 x 5 sec3 x 3 du = sec x tgx dx

11 Secante elevada e una potencia PAR 3. sec 4 x dx rebajamos dos unidades al exponente sec x sec x dx usamos la identidad sec x = tg x + ( tg x +) sec x dx tg x sec x dx + sec x dx tg 3 x 3 + tgx Secante elevado e una potencia IMPAR 4 sec 3 x dx = sec x tgx tg x sec x dx = sec x tgx ( sec x )sec x dx = sec x tgx sec 3 x dx + sec x dx = sec x tgx sec 3 x dx + lnsec x + tgx sec 3 x dx = sec x tgx + lnsec x + tgx sec xtgx lnsec x + tgx sec 3 x dx = + Artificio matemático para sec x dx = = sec x( sec x + tgx)dx sec xtgx % sec x + sec xtgx sec x + tgx & ( dx ' sec x dx = = sec x( sec x + tgx)dx sec xtgx % sec x + sec xtgx sec x + tgx & ( dx '

12 u = sec x + tgx du = ( sec x + tgx + sec x)dx du u = ln u = lnsec x + tgx METODO POR SUSTITUCION TRIGONOMETRICA Este es un método basado en cambios de variables especiales con funciones trigonometricas, se presentan tres casos: CASO I Cuando se presentan integrandos con radicales a b, se hace x = a sen dx = a cos d 5. 4 x dx, se hace x = sen 4 4sen cos d = 4sen ( ) cos d 4 sen = sen dx = cos d sen cos d cos cos d = = sen sen cos d sen = ctg d = ( csc )d = cot

13 Debemos escribir la respuesta en función de x para la cual usamos un triangulo rectángulo cuyos elementos se obtienen así: En este triangulo hallamos cog = cateto adyacente cateto opuesto ctg = 4 x x tambien hallamos el angulo de sen = x % x ( = sen ' * & ) La respueta queda asi : 4 x x % x ( sen ' * & ) CASO II Cuando se tienen integrales con un radical de la forma a + x el cambio de variable es x = a tg, dx = a sec d

14 6. x dx x + x = 3tg dx = 3sec d reemplazamos en la int egral 3tg 3sec tg + = tg sec d ( ) tg + tg sec d = tg sec d sec 3 sec 3 tg sec d = 3sec Despejamos tg en x = 3tg tg = x 3 = cateto opuesto cateto adyacente En este triangulo rectángulo tg en x = 3tg sec = + x 3 = 3sec = 3 + x 3 hipotenusa cateto adyacente = + x CASO III Cuando se tienen integrales con radicales de la forma x a el cambio de var iable x = asec dx = asec tg d

15 7. dx como la constante a es 3 a = 3 x 4 x 3 3sec% tg% d% ( 3) 4 sec 4 % 3sec % sec% tg% d% ( ) sec 4 % 3 sec % sec% tg% d% sec 4 % 3 tg % x = 3 sec% dx = 3 sec% tg% d% sec% tg% d% sec 4 % tg% d% sec 3 % = cos 3 % d% = cos % cos% d% ( sen %)cos% d% = cos% d% sen % cos% d% sen% sen 3 % 3 sen% 7 sen 3 % como x = 3 sec% sec% = x 3 sen% = x 3 x x 3 x x 3 x hipotenusa adyacente la respuesta queda x 3 & 3 ) ( ' x + * ( x 3) x 3 x 3

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRACIÓN POR CAMBIO DE VARIABLE Propósitos Identificar las operaciones algebraicas que convierten una integral a una forma inmediata (cambio de variable). Utilizar las tablas de integrales inmediatas

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0

Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0 Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma

Más detalles

LA DERIVADA DE UNA CONSTANTE

LA DERIVADA DE UNA CONSTANTE DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Antiderivada o Promitiva agosto 2012 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada. En esta Presentación... En esta Presentación veremos: Definición de Antiderivada.

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina

Más detalles

Técnicas de Integración

Técnicas de Integración Técnicas de Integración Índice Capítulo único: Técnicas de Integración. Integración Directa....................................... Integración por Sustitución.................................. Integración

Más detalles

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS www.cedicaped.com CENTRO DE ESTUDIOS, DIDÁCTICA Y CAPACITACIÓN RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS 1. DEFINICIÓN Se dice que un triángulo es rectángulo

Más detalles

DERIVADAS (1) (para los próximos días)

DERIVADAS (1) (para los próximos días) DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

ACTIVIDAD 4.0 DEL PARCIAL 2

ACTIVIDAD 4.0 DEL PARCIAL 2 CECTEM ACTIVIDAD 4.0 DEL PARCIAL 2 En esta actividad trabajaremos con las integrales por partes, para lo cual definiremos u y dv, la u se derivara y la dv se integrara, para lo cual se utilizara la siguiente

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

Integrales de algunas funciones trigonométricas

Integrales de algunas funciones trigonométricas Integrales de algunas funciones trigonométricas Temas Integrales de potencias de algunas funciones trigonométricas. Capacidades Conocer algunos tipos de integrales de funciones trigonométricas y técnicas

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:

T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente

Más detalles

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple

DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple DERIVADAS Derivada de una constante K K F 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº nº 5 nº Derivada de una unción potencial Forma simple r r r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL es igual

Más detalles

Colegio Universitario Boston Trigonometría Trigonometría 262

Colegio Universitario Boston Trigonometría Trigonometría 262 262 Ángulos. Ángulos en posición estándar o posición normal. Son aquellos ángulo cuyo lado inicial esta sobre el semi-eje x positivo. Lado terminal Lado inicial Podemos tener ángulos en posición estándar

Más detalles

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula: Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera

Más detalles

INTEGRACIÓN INDEFINIDA

INTEGRACIÓN INDEFINIDA 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA

Más detalles

TRIGONOMETRÍA. Para el estudio de dichas relaciones entre lados y ángulos se utilizan triángulos rectángulos como el siguiente.

TRIGONOMETRÍA. Para el estudio de dichas relaciones entre lados y ángulos se utilizan triángulos rectángulos como el siguiente. TRIGONOMETRÍA La trigonometría es la rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente la palabra trigonometría proviene del griego Tri

Más detalles

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.

DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple. DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1

Más detalles

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe

El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función respecto de (x) es la función (se lee f prima de (x) y está dada por: lim El proceso de calcular la derivada se denomina derivación.

Más detalles

INTEGRACION POR PARTES

INTEGRACION POR PARTES INTEGRACION POR PARTES Se basa en la regla de derivación del producto de dos funciones derivables en un dominio común. Sean u(x)y v(x) común. Entonces: dos funciones derivables en un dominio udv = uv vdu

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

FUNCIONES ELEMENTALES.

FUNCIONES ELEMENTALES. Departamento de Análisis Matemático FUNCIONES ELEMENTALES.. Polinomios p : R R : p(x) = a n x n + +a x+a 0, x R, donde a 0,a,...,a n son constantes reales. Propiedades de los polinomios: a) p es continuo

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

GUÍA: INTEGRALES. Página 1 de 27

GUÍA: INTEGRALES. Página 1 de 27 GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La

Más detalles

Contenidos de los preliminares

Contenidos de los preliminares Preliminares del tema Contenidos de los preliminares Propiedades de los logaritmos Un par de primitivas elementales Algunas ideas sobre la función arcotangente Funciones hiperbólicas Descomposición en

Más detalles

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos: Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama

Más detalles

Cálculo Integral: Guía II

Cálculo Integral: Guía II 00 Cálculo Integral: Guía II Profr. Luis Alfonso Rondero García INSTITUTO POLITÉCNICO NACIONAL Departamento de Unidades de Aprendizaje del Área Básica /0/00 Integración de Potencias de Funciones Trigonométricas.

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : mvodnizz@cec.unap.cl url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes

Más detalles

FUNCIONES. Ejemplo: F(x) = 3x + 2

FUNCIONES. Ejemplo: F(x) = 3x + 2 FUNCIONES Una función es una regla que asocia a cada elemento de un conjunto, uno y solo un elemento de otro conjunto. Una función es un conjunto de parejas ordenadas de números (x, y) en el cual dos parejas

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales 1. Identifica la simbología propia de la geometría y la trigonometría. 2. Identifica las unidades para medir ángulos. 3. Clasifica adecuadamente las identidades

Más detalles

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo

Más detalles

IDENTIDADES TRIGONOMETRICAS

IDENTIDADES TRIGONOMETRICAS IDENTIDADES TRIGONOMETRICAS. ESTANDARES Modelar situaciones de variaciones de variación periódicas con funciones trigonométricas.. LOGROS.. Deducir las identidades trigonométricas fundamentales.. Demostrar

Más detalles

Los Modelos Trigonométricos

Los Modelos Trigonométricos Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,

Más detalles

Principios de graficación

Principios de graficación Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

Razones trigonométricas

Razones trigonométricas RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Función Logaritmo y exponencial. Función logaritmo natural

Función Logaritmo y exponencial. Función logaritmo natural Función Logaritmo y exponencial Función logaritmo natural En términos matemáticos la función logaritmo natural es una herramienta de mayor utilidad que el logaritmo del álgebra elemental, el cual está

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.

Más detalles

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2

Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2 Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR

Más detalles

Técnicas de Integración, preparado por: Gil Sandro Gómez

Técnicas de Integración, preparado por: Gil Sandro Gómez Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica

Más detalles

Teorema del Seno. Teorema del Coseno

Teorema del Seno. Teorema del Coseno Para ver una explicación de cada Teorema y algunos ejemplos de solución de triángulos y problemas de aplicación, haga Click sobre el nombre: Teorema del Seno Teorema del Coseno Teorema del Seno Para aclarar

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2

; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2 MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las

Más detalles

B. Cálculo de primitivas.

B. Cálculo de primitivas. 50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Presionand o este botón se borra la

Presionand o este botón se borra la ACTIVIDAD CON EL GRAFICADOR Tema: GRAFICAR FUNCIONES TRIGONOMETRICAS Introducción: En el GRAFICADOR que usarán a continuación, el objetivo es graficar las diferentes funciones trigonométricas. Presionando

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Fecha: 29/10/2013 MATEMÁTICAS

Fecha: 29/10/2013 MATEMÁTICAS Página: 1/5 MATEMÁTICAS Álgebra 1.- Conceptos y operaciones algebraicas fundamentales Terminología Operaciones fundamentales con monomios y polinomios o Reducción de términos semejantes o Suma, resta o

Más detalles

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como: TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto

Más detalles

Ejercicios resueltos Matemáticas Universitaras II

Ejercicios resueltos Matemáticas Universitaras II Ejercicios resueltos Matemáticas Universitaras II Genaro Luna Carreto Octubre 06 Profesor de la Benemérita Universidad Autónoma de Puebla, Méico. OBJETIVO La finalidad de éste documento es resolver problemas

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada Unidad 1 Integrales Indefinidas 1.1 Diferenciales 1.1.1 Aproximaciones 1.1. Anti derivada 1. Integración 1..1 Formulas 1.. Integrales Inmediatas 1..3 Cambio de variable 1.3 Métodos de integración 1.3.1

Más detalles

Métodos de integración

Métodos de integración Teóricas de Análisis Matemático (8) - Práctica 9 - Métodos de integración Práctica 9 - Parte Métodos de integración Esta parte de la materia está dedicada a estudiar distintos métodos que nos resultarán

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

x y = x x y = x

x y = x x y = x FUNCIONES ELEMENTALES: Indice: Algebraicas Polinómicas Racionales Irracionales Trascendentes Exponencial Logarítmica Trigonométrica Trigonométricas recíprocas Algebraicas Funciones polinómicas: X f(x)=

Más detalles

Uso de identidades trigonométricas para re escribir o simplicar una expresión

Uso de identidades trigonométricas para re escribir o simplicar una expresión Grado 10 Matematicas - Unidad 3 Un mundo de relaciones a partir del triángulo! Tema Uso de identidades trigonométricas para re escribir o simplicar una expresión Nombre: Curso: A continuación se presentan

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

GLOSARIO DE REGLAS DE DERIVACIÓN

GLOSARIO DE REGLAS DE DERIVACIÓN CÁLCULO GLOSARIO DE REGLAS DE DERIVACIÓN RESUMEN 1. Derivadas de funciones elementales o Derivada de una constante o Derivada de una función potencial (monomio) o Derivada de una raíz cuadrada (caso particular

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes.

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes. Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas nespinosa@colegioscompartir.org La trigonometría es la ciencia encargada de estudiar la relación que hay

Más detalles

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CCyTECN INTEGRACIÓN INDEFINIDA. Profesor: Fernando Ureña Portero 1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple que F'(x) = f(x), x. Dicho

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Que debo de saber antes de empezar el tema? -Concepto de derivada. -Reglas de derivación para funciones algebraicas. -Regla de la cadena. -Regla del producto. -Regla del cociente.

Más detalles

Funciones Trigonométricas Directas.

Funciones Trigonométricas Directas. 2.2. Funciones Trascendentes. 2.2.1. Funciones trascendentes: funciones trigonométricas y funciones eponenciales. Funciones Trascendentes No siempre se puede modelar con funciones del tipo algebraico;

Más detalles

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos 5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma

Más detalles

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)

Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b) FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.

Más detalles

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m

Más detalles

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B

U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B U.E CRUZ VITALE Prof.Zuleidi Zambrano Matemática 4to A Y B TEORIA PARA LA ELABORACIÓN DEL CUENTO. ( PERSONAS, DEFENSA) TRIGONOMETRÍA ETIMOLÓGICAMENTE: Trigonometría, es la parte de la matemática que estudia

Más detalles

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

Capítulo 5: Identidades Trigonométricas

Capítulo 5: Identidades Trigonométricas Capítulo 5: Identidades Trigonométricas Identidad Trigonométrica Una identidad trigonométrica es una relación de igualdad entre funciones trigonométricas, que se cumple cualquiera sea el valor o valores

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

Uso de identidades trigonométricas para reescribir o simplificar una expresión

Uso de identidades trigonométricas para reescribir o simplificar una expresión Grado 10 Matemáticas - Unidad 3 Un mundo de relaciones a partir del triángulo! Tema Uso de identidades trigonométricas para reescribir o simplificar una expresión relacionados (Pre clase) Objetivos Habilidad

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

Semana06[1/24] Trigonometría. 4 de abril de Trigonometría

Semana06[1/24] Trigonometría. 4 de abril de Trigonometría Semana06[1/4] 4 de abril de 007 Medida de ángulos en radianes Semana06[/4] Consideremos la circunferencia de radio 1 y centrada en el origen de la figura. P α A x Ángulo positivo Dado un punto P en la

Más detalles

INTEGRALES LECCIÓN 10

INTEGRALES LECCIÓN 10 INTEGRALES LECCIÓN 10 Índice: Integración por partes. Problemas. 1.- Integración por partes Si f y g son dos funciones derivables, tenemos lo siguiente: (f g)'=f' g+f g' (f g)'= f' g+ f g' f g= f' g+ f

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles