1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8)."

Transcripción

1 ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul ntro rio ih irunfrni. N MitrizB n n ( ) B tr minn un triángulo. Lirunfrni us slirunsritstriángulo ntro s untoonsor tnlsmitrisstriángulo. lulmos os lstrsmitris M unto mio B M, MitrizB m B m untomiob N, B (, ) ( ) ntro ( ) slirtr sión rioslis tnintro ulquirosuntos ( ) ( ) (, 7) (, ) s vtornormlm ( ) 7 m (, ) n irunfrni s vtornormln stsosmitris r (, ) (, ) ) omru qu ls siguints irunfrnis son onéntris lul ár l oron irulr qu trminn: ; ( ) ( ) r B B r ; ; ; (, ) ( ) r r r ; ; ; ( ) r r r (,) Ár ( R r ) π ( ) 7π u π R π r π

2 ) Euión l irunfrni qu s or los untos (, ) B (, ) tin su ntro n l rt s ntro stánlmitrizb M untomiob M, (, ) MitrizB m B s vtornormlm m m (, ) ( ) ntro sl intr siónsrts ; (, ), (, ) ( ) ( ) ( ) ( ) r ( (, ) ) Euión l irunfrni qu tin su ntro n (-,) s tngnt l rt s. r (, s) ( ) ( ) ( ) ( ) ) Euión l irunfrni qu tin su ntro n (-,) s tngnt l j siss. Dirtmnt Mint l l figur fórmul r (, jox ) ( ) ( ) ( jox u ) 7) lul l istni ntro l irunfrni l rt s. uál s l osiión s rsto l irunfrni ; ; s ; qu r (,) r r r (, s) ( ) < l rt s snt l irunfrni ) Los vértis l is son (,); (,) ; B (, ) ; B (, ) uión l is, l ntrii los foos. (, ) ; B(, ) ; ; Euión : (, ) ; (, ). Dtrmin l

3 ) Si s s qu B (,) B (, ) son vértis un is qu l istni fol s, lul l uión l is toos sus mntos. B, ; ( ) Euión : (, ) ; (, ) ; (, ) ; (, ) ) Euión l is sino qu s or unto P(,-) qu su j mor s igul l ol mnor. P(, ) Euión : ) Euión l is uo j mor, qu stá sor j OY, vl l ntrii, j mor stá sor j OY,, s is invrti,7 (,),,7 Euión : ) Euión l is foos (,) (,-) u onstnt s igul. Por l osiión los foos s u qu l is stá invrti no ntr. L istni ntr los foos s unto mio j fol s ntro l is Euión : ( ) ) D un is uo ntro s (,) s onon los vértis B(,) (,). Dtrmin rsto los mntos su uión. (, ) Por l osiión, B s un los vlors ; (,) (, ) ; (, ) (, ) (, ) (, ) B (, ) (, ) ( ) ( ) Euión :

4 ) Dtrmin l uión l is foos (, ) (,) onoino más qu unto B(,-) s uno sus vértis. Por l osiión los foos s u qu l is no stá ntr. L istni ntr los foos s unto mio j fol s ntro l is. L osiión vérti B rmit lulr omo l istni B l ntro l is Euión : ) lul toos los mntos l is E (, ) (,) ( ) ( ), (,) E (, ) ; (, ) ; B(, ); B (, ); (, ); ( ; ) ) Hll toos los mntos l hiérol H 7 H (, ) ; (, ) ; B(, ) ; B (, ) ; (, ); ( ; ) síntots ± 7) Los foos l hiérol son (,) (,) smij r mi, trmin su uión toos sus mntos. (, ) ; smij r Euión (, ); (, ); B(, ); B (, ); síntots ± ±,7

5 ) Euión l hiérol síntots ± qu s or unto P(,) síntots ± P(,) Euión : ) Euions l hiérol quilátr uos foos son (,) (,). Esri ls os uions: rfri los js rfri sus síntots. (, ) ; K or sr Euión Euión ) lul ls uions ls ráols toos sus mntos, n los siguints sos: ) Su foo s (,) su irtriz s l rt uión vérti s j ) D foo (,) irtriz l quilátr s s l rt l l unto is tni ntr j uión ( rt hiérol qu ( is tni ntr qu hiérol mio foo ontin vérti ( unto mio rfri rfri ntr l foo foo ls ( ) ( ) foo ontin uión los js síntots l irtriz ntr l foo l irtriz V (, ) l vérti foo l irtriz) l irtriz) V (, ) l vérti) ) D vérti V(,) irtriz L is tni L is tni j ( rt ntr vérti l irtriz s ntr vérti foos ) D vérti V(,) foo (,) j ( rt ( ) ( ) (, ) quontin l foo l vérti) uión ( ) ( ) L is tni ntr vérti foos L is tni ntr vérti l irtriz s quontin l foo l vérti) uión

6 ) L ráol tin or foo unto (,). Enuntr su irtriz. ( k ) ( h) k k h ) Dsri ls ónis siguints otén toos sus mntos: ) ( ) ( ) ( ) ( ) ELIPSE ; B k k ( ) onntron (, ) (, ) ; (, ) (, ) (, ) (, ) ; B (, ) (, ) ( ; ) ( 7, ) ; (, ) (, ) h k k k k k h V, k h h h L irtriz stá un is tni vérti L uión ráol s (, ) ) ( ) ( ) ( ) ( ) ; B ) ( ) ( ) ) ELIPSE (, ) (, ) ; (, ) (, 7) (, ) ( ) ; B (, ) (, ) ( ; ) (, ) ; (, ) (, ) invrtionntron (,) (, ) B(, ) B (, ) HIPÉRBOL uión rfri ( ) ( ) ; B EQUILÁTER (, ) (, ) ( 7, ) ; (, ) (, ) (, ) (, ) ; B (, ) (, ) ( ; ) ; (, ) síntots ± ( los js HIPÉRBOL ( rfri ls síntots k ; onntron ( ) ±,( ) ; (, ) ; (, ) B(, ); B (, ) ( ; ) ; (, ) síntots ± ) ) (, )

7 ) ; ELIPSE (, ) ; (, ) ; B(, ); B (, ); (, ); (, ) ntr n orign f) PRÁBOL onvértinv (, ) n osiión vrtil : irthi smij (, ); ositivooy irtriz ; g) ( ) ( ) j ( ) ( ) PRÁBOL onvértinv (, ) n osiión horizontlirthi smij ositivo OX, irtriz ; j h), ; ( k) ( h) k k h k k k k k k k h V (, ) k h h h Lirtriz stá unis tni vérti foostá unis tni vérti,, ; j L uión ráols ( ) ( ) h ) Hll lugr gométrio los untos lno qu quiistn l rt r unto (,) S trt l finiión un ráol foo unto irtriz l rt r rámtro ráols L irtrizs un rt rniulr ( oo, Dirtriz) ljox l ráolstá nosiiónhorizontl foo stálrhirtrizl vérti stá un istni js l uión foov ráol stá irtl (, ) (, ) smij ositivoox

8 ) Hllr vérti, foo, irtriz j ls ráols ) (r vitr l frión multili l uión or ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,, V ) 7 ( ) ( ) ( ) ( ) ( ),,, 7 7 V ) ) Euión l is qu s or (,) su ntrii s ( ) ;, P ) Estui l osiión rtiv ntr l rt l irunfrni qu s n n so. (u: Rsuv sistm r lulr los untos ort) ) r ; ( ) nt soluions os s > ) r ; ( ) ( ) trior soluión < sin ) r ; ( ) ( ) nt soluions os s > ( ) ( ) ( ),,, j OX hi horizontl osiión n V

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11 MATEMÁTICAS II Cónis en oordends olres Curso -.- L Lun es el stélite nturl de l Tierr y tiene un órit elíti on el entro de l Tierr en uno de sus foos. Est órit tiene los siguientes dtos: = 800 km, e=0.05.

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1 Ejriios rlizos y prouios por Alro Aguilr Gutiérrz. Sions plns.. Diujr ls prts vists y oults ls sións qu proun los plnos P sor ls supriis s. P P g g P P Ejriios rlizos y prouios por Alro Aguilr Gutiérrz.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES

CONICAS ESTUDIO DE SUS FORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE 2º GRADO EN DOS VARIABLES CONICAS ESTUDIO DE SUS ORMAS REDUCIDAS. ESTUDIO DE LA ECUACIÓN GENERAL DE º GRADO EN DOS VARIABLES Lug Goétio: Consios l plno oo onjunto puntos llos lug goétio n l plno too suonjunto puntos l iso finio

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 1 LA ELIPSE Y LA HIPÉRBOLA Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivos espeífios: 1. Reordrás

Más detalles

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos

Más detalles

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica Cundo ls orgniziones de vuelos espiles desen poner en órit un stélite deen lnzrlos on un veloidd proimd de 8 km/s. Pero undo quieren que slg de l órit terrestre deen lnzrlo on un veloidd 8 km/s l tretori

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO TRILCE Cpítulo 0 ECUACIONES DE PRIMER Y SEGUNDO GRADO Euions Son iguls oniionls, n ls qu l mnos istir un ltr llm inógnit : Ejmplo : - = 7 + Es un uión inógnit "". Soluión un uión Es l vlor o vlors l inógnit

Más detalles

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado.

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado. UNIVERSIDDES ÚBLICS DE L COUNIDD DE DRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuso -5 TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dsués l tntnt tos ls gunts, l luno á sog un ls

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B Colegio de Bhilleres Plntel No. 5 Contrers Guí de Estudio pr presentr Emen de Evluión de Reuperión 05B Elborr en hojs blns mno solo los ejeriios propuestos, indindo pr d serie l págin de los mismos. Entregr

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen.

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen. pítulo 1 ÁNGULS finiión : Es l figur gométri trmin por l runión os ryos no linos qu tinn l mismo orign. Elmntos 1. Vérti :. Los : y Notión : * Ángulo : ), Ô * i l ángulo : m ) =. gión Intrior un ángulo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

Distancia de un punto del espacio a un punto en el plano de un triángulo

Distancia de un punto del espacio a un punto en el plano de un triángulo Distni de un unto del esio un unto en el lno de un triángulo onstnti Rusu RESUEN En este rtíulo dmos fórmuls r l distni de un unto del esio S l unto del interior del triángulo Tmién lulmos es distni en

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

Sobre la matemática del Problema de

Sobre la matemática del Problema de Soe l teáti el Pole e Kele Clos S Chine Soe l teáti el Pole e Kele Clos Sánhe Chine Intouión Johnnes Kele Weil e St, Aleni, 7 e iiee e 57 - Rtison, Aleni, 5 e noviee e 63, ulió ls tes leyes que esien el

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{}

β (t) = (1) 2 + ( t 1 t 2 dt = + 1 dt = 1 t 2 + t 1 f(β(ϕ(t))) β (ϕ(t)) ϕ (t)dt = }{{} Vmos lulr ls siguientes integrles de tryetori ) Se α(t) = (os(t), sin(t)) on t [, π ] y f(x, y) = x + y Sol. Tenemos que f(α(t)) = os(t) + sin(t) por otro ldo α (t) = ( sin(t), os(t) α (t) = ( os(t)) +

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Recta que intersecta a la circunferencia en un solo punto (TM). T punto de tangencia.

UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Recta que intersecta a la circunferencia en un solo punto (TM). T punto de tangencia. u r s o : Matemática Material N 16 GUÍ TÓRI RÁTI Nº 13 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3 TEMA : ECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu solo s umpl pr irtos vlors trminos. A stos vlors qu hn irt l uión s ls llm soluions. 0 tin omo soluión X.. Un igul lgri qu s váli pr ulquir

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

Aquí tienes ahora, representados mediante flechas, los vuelos que permiten viajar el martes desde el país B anterior hasta otro país C: C 1

Aquí tienes ahora, representados mediante flechas, los vuelos que permiten viajar el martes desde el país B anterior hasta otro país C: C 1 Uni. Álgr mtris Mtmátis II Rsulv Págin Vuls intrninls Aquí tins hr, rrsnts mint lhs, ls vuls qu rmitn vijr l mrts s l ís B ntrir hst tr ís C: B C B B C B C B Rrsnt, mint un tl similr l ntrirmnt srit, l

Más detalles

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones.

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones. Tem V Cpítulo Cónis Álgebr Deprtmento de Métodos Mtemátios de Representión UDC Tem V Cónis Cuádris Cónis En todo este pítulo trbjremos en el plno fín eulídeo E 2 on respeto un refereni retngulr {O; ē,

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 6 L semejnz sus pliiones Reuerd lo fundmentl urso:... Fe:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... sus distnis... Por ejemplo, si ls figurs F F' son semejntes,

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

matemáticas 4º ESO radicales

matemáticas 4º ESO radicales teátis º ESO riles. Fíjte e el prier ejeriio reliz los eás e l is for: ) ) ) ) riió Se ll riió l operió ivers l poteiió; propie fuetl e los riles Si se ultipli el íie el epoete el rio por u iso úero, el

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

1. Conceptos previos. Traslación gráficas en los ejes de coordenadas

1. Conceptos previos. Traslación gráficas en los ejes de coordenadas Tem 8. Cónis. Coneptos previos. Trslión gráfis en los ejes de oordends.... L irunfereni... 3.. Definiión euión de l irunfereni... 3.. Euión de l rets tngentes normles l irunfereni.... 6.3 Posiiones reltivs

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO.

1. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. TEMA 9 Integrl Definid. INTEGRAL DEFINIDA DE UNA FUNCIÓN CONTÍNUA Y POSITIVA EN UN INTERVALO. y = f() Un trpeio urvilíneo (o mitilíneo) T es un figur pln omo l que pree en l figur: T O Está limitd por:

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

MATEMÁTICA Proporcionalidad de segmentos Guía Nº: 3

MATEMÁTICA Proporcionalidad de segmentos Guía Nº: 3 MATEMÁTICA Proporionlidd de segentos Guí Nº: 3 APELLIDO: Prof. Krin G. Rizzo 1. TEOREMA DE THALES Trzr ls rets perfetente prlels y edir on uh preisión los segentos indidos ontinuión A B P Q e f C g D d

Más detalles

b sen A = a sen B = b sen C = c sen B =

b sen A = a sen B = b sen C = c sen B = T3: TRIGONOMETRÍ 1º T 9. TEOREM EL SENO emstrión: 2R sen sen R Trzms l ltur rrespndiente l vértie : En el triángul se verifi: h h h En el triángul se verifi: h sen h sen Igulnd ms expresines result l iguldd:

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

Los Números Racionales ( ) son todos aquellos que se pueden escribir como fracciones. a b

Los Números Racionales ( ) son todos aquellos que se pueden escribir como fracciones. a b 0.1 TRAB AJ O DE DOCU MENTACI ON FRACCI ONES Los Números Rionles ( ) son toos quellos que se pueen esriir omo friones. = /,, 0} Too número rionl siempre se puee esriir o omo frión o omo eiml Rionl Frión

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 UNIVERSIDADES ÚBLICAS DE LA COMUNIDAD DE MADRID RUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 20-202 MATERIA: TECNOLOGÍA INDUSTRIAL II MODELO INSTRUCCIONES Y CRITERIOS GENERALES

Más detalles

Universidad de Puebla

Universidad de Puebla Univrsi Pul Mnul Imgn Instituionl Introuión Como prt l rnovión qu stá tnino lugr n l Univrsi Pul, s h rlizo un risño su imgn instituionl, on l fin unifirl y trnsformrl n un mio omuniión sólio y ftivo,

Más detalles

b=c hipotenusa cateto

b=c hipotenusa cateto 1. nstruir un triángul equiláter nid l ltur. 2. nstruir un triángul isóseles nid l ltur y ls lds igules y.. 1. Diujr un triángul equiláter ulquier n ld ulquier 2. Prlngr l ltur st 50 mm (punt ) 3. Prlngr

Más detalles