EJERCICIOS PROPUESTOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS PROPUESTOS"

Transcripción

1 EJERIIOS PROPUESTOS 0. Do l onjunto: = {4; 3; {6}; 8} y ls proposiions: * { 3} * { 4} * { 6} * { 6} * 8 * * * { 3 ; 8} Iniqu l númro proposiions vrrs: ) 7 ) 6 ) 5 ) 4 ) 3 0. Dos los onjuntos iguls: 3 ; y 3 ; 9 onsir y ntros. Iniqu l sum los vlors qu tom : + ) 6 ) 4 ) 30 ) ) Iniqu l sum los lmntos l onjunto: x / x Z 4 x 4 ) 44 ) 4 ) ) 8 ) uántos suonjuntos propios tin l onjunto? ; 3 ; {} ; 3 ; ; {} ; {3} ) 7 ) 63 ) 5 ) 7 ) Si: n() = 5 ; n() = 3 y n( - ) = 8 lul : n( ) n(' ' ) ) 36 ) 37 ) 5 ) 58 ) uántos suonjuntos tin l potni l onjunto, tl qu: = {; {3}; }? ) 4 ) 6 ) ) 8 ) D un grupo 30 prsons, 0 vn l ttro, 5 sólo vn l in, 8 vn l in o l ttro; pro no mos sitios. uántos vn mos sitios? ) 6 ) 7 ) 8 ) 5 ) Sino qu tin 8 suonjuntos n totl, qu l númro lmntos l intrsión y s 5 y qu tin 6 suonjuntos. Dtrminr l númro suonjuntos ) 04 ) 5 ) 56 ) 048 ) D un grupo 6 tlts, 5 lnzn l, 36 lnzn jlin y 30 lnzn iso, 3 lnzn los trs; 0 lnzn jlin y iso, 5 iso y l, 7 lnzn l y jlin. uántos no lnzn jlin ni iso? ) 4 ) 6 ) 7 ) 5 ) 3 0. L oprión qu rprsnt l rgión somr s: ) ( )' ( ) ) [ ( )] ( ) ) ( ) ) ( )' ) ( ' ' ) ( ). Si los onjuntos y son iguls, hllr si y son nturls. 3 { ; } = { ; 5} ) 8 ) 5 ) 9 ) ) 6. Do l onjunto: P = {5 ; 6 ; 7 ; 8 ; 9} y los onjuntos: M x P / x 50 N x P / x s impr Dtrminr : n(m) + n(n) x 9 6 x ) 3 ) 4 ) ) ) 5 3. Jéssi tomó hlos frs o oo urnt tos ls mñns n los mss vrno (nro, frro y mrzo) l 004. Si tomó hlos frs 53 mñns y tomó hlos oo urnt 49 mñns. uánts mñns tomó hlo los os sors? ) 9 ) 0 ) ) ) 5 4

2 4. En un iu s trminó qu l 46% l polión no l l rvist, 60% no l l rvist y l 58% l ó pro no ms. uánts prsons hy n l polión si prsons ln y? ) ) ) ) ) En un pñ rioll trjn 3 rtists. D éstos, 6 iln, 5 ntn y ntn y iln. El númro rtists qu no ntn ni iln s: ) 4 ) 5 ) ) ) 3 6. Si: = { ; ; { ; } ; 3} = {{ ; } ; { ; 3} ; 3} Hll ust : [( ) ] ( ) ) { ; 3} ) {{ ; }} ) ) {{ ; 3}} ) 7. Do l onjunto: = { ; {} ; { ; }} uál ls siguints proposiions s vrr? 8. Si: ) ) { } ) ) ) { } x / x (4m ), m N, m 5 Entons l onjunto srito por xtnsión s: ) {7 ; ; 5 ; 9} ) { ; 3 ; 4 ; 5} ) {4 ; 9 ; 6 ; 5} ) {49 ; ; 5 ; 36} ) {3 ; 4 ; 7 ; 9} 9. rlos lmorzr pollo o pso (o mos) n su lmurzo í l ms mrzo. Si n su lmurzo urnt 0 ís huo pollo y urnt 5 ís huo pso, ntons, l númro ís qu lmorzó pollo y pso s : ) 8 ) 6 ) 5 ) 4 ) 3 0. En un vión hy 00 prsons, ls uls 50 no fumn y 30 no n. uánts prsons hy qu ni fumn ni n o fumn y n, sino qu hy 0 prsons qu solmnt fumn? ) 30 ) 0 ) 0 ) 40 ) 50. Si: = {,,, } y {(m ) ; ; 5 ; (n 3) ; } Don : n m Z y 3 < n < 8 más y son quipotnts. Hllr l sum vlors n + m ) 6 ) 3 ) 0 ) 4 ) 3. En un nust rliz 90 prsons sor l prfrni lr ls rvists y, l rsulto fu l siguint : l númro prsons qu ls gust y s 4 los homrs qu sólo ls gust y l mit ls mujrs qu sólo ls gust. El númro homrs qu sólo ls gust s 3 l númro mujrs qu sólo ls gust. Los qu ln son 05, los qu ln son 70. Hll l númro prsons qu no ln ni ni. ) 30 ) 3 ) 36 ) 38 ) Si, y son trs suonjuntos un onjunto univrsl 98 lmntos y más: n[( ) ' ] 50, n() = 34 Hllr : n[( )' ] ) 3 ) 4 ) 5 ) 6 ) 7 4. El rsulto un nust sor prfrni jugos frut mnzn, frs y piñ s l siguint: 60% gustn mnzn. 50% gustn frs. 40% gustn piñ. 30% gustn mnzn y frs. 0% gustn frs y piñ. 0% gustn mnzn y piñ. 5% gustn los trs. Qu porntj ls prsons nusts no gustn lguno los jugos fruts mnionos? ) 5% ) 0% ) 50% ) % ) 0% 5. Dos los onjuntos: n / n N 0 n 0 n / n Z 4 n 500 uántos lmntos tin? ) 380 ) 400 ) 34 ) 800 ) 760 5

3 6. uántos lmntos tin l siguint onjunto? (5 ; 7 ; 9 ; ;... ; 83) ) 35 ) 40 ) 4 ) 60 ) S un onjunto on os lmntos y un onjunto on trs lmntos, l númro lmntos P() P() s: ) ) 4 ) 48 ) 64 ) 3 8. S, y suonjuntos un onjunto univrsl U. D ls firmions: I. Si ( ) y ntons II. Si, ntons III. Si ( = omplmnto ) y ; ntons. IV. Si U Entons ) Sólo II s vrr. ) Sólo I, II y IV son vrrs. ) Sólo I s vrr. ) Sólo I y II son vrrs. ) Tos son vrrs. 9. Dir uál los siguints nunios s flso: ) ) ) x x ) x x ) x x x 30. Dir uál los siguints nunios s flso: 3. Si: ), ), ) ) ) x N/x x R/x Entons 4 0 x 3x 0 s: s primo 3. En un ul 5 lumnos portists hy : 6 lumnos qu prtin ásqut 4 lumnos qu prtin fútol, lumnos qu prtin tnis, 6 lumnos qu prtin los trs ports, lumnos qu prtin fútol y ásqut pro no tnis, lumno qu prti ásqut y tnis pro no fútol, 3 lumnos qu prtin solo tnis. uántos lumnos prtin sólo un port? ) 7 ) 5 ) 5 ) 3 ) 33. D un grupo 45 himos, s s qu 4 lumnos no tinn 7 ños, 0 lumnos no tinn 6 ños, 8 lumnos y 3 lumns no tinn 6 ni 7 ños. uánts lumns tinn 6 ó 7 ños? ) 6 ) 6 ) 7 ) ) un mtrimonio sistiron 50 prsons, l númro homrs s l ol l númro mujrs. D los homrs : 3 no usn rloj pro si tinn trno, y 4 tin rloj. D ls mujrs : ls qu no usn minifl son tnts omo los homrs qu no usn trno ni rloj y 8 tinn minifl y rloj. uánts mujrs usn minifl, pro no rloj? ) 7 ) 6 ) 8 ) 5 ) Ls fihs tos prsonls llnos por 74 stuints qu ingrsron Sn Mros, rrojron los siguints rsultos: * 0 stuints son Lim. * 49 s prprron n mi. * 7 postulron por primr vz. * 3 Lim s prprron n mi. * 7 postulron por primr vz y s prprron n mi. * 7 Lim postulron por primr vz. * 8 provinis qu no s prprron n mi postulron por primr vz. Hllr rsptivmnt: I. uántos lumnos Lim qu s prprron n mi postulron por primr vz? II. uántos lumnos provinis qu no s prprron n mi postulron más un vz? ) 5 y ) 5 y 0 ) 3 y 0 ) 4 y 0 ) 4 y ) ) { } ) {} ) {} ) {-} 6

4 36. Dos los onjuntos: 3 ; ; ; ;; ; 3 x / x 3 y x /x 3x 0 El rsulto ( ) s: ) ;; ; 3 ) ;; ) ; ; 3 ) ; ;; ) { ; } 37. En un sul 35 lumnos, 90 prtin fútol, 55 ásktol y 75 ntión. Si 0 lumnos prtin los trs ports y 0 no prtin ninguno, uántos lumnos prtin un port y sólo uno? ) 50 ) 55 ) 60 ) 70 ) D un grupo 00 sñorits: 0 son solmnt flquits, solmnt morns, 5 son solmnt lts, más 8 tinn por lo mnos sts rtrístis. uánts sñorits l grupo no tinn ningun ls trs rtrístis? ) 50 ) 5 ) 55 ) Más 60 ) Mnos En un grupo 00 stuints, 49 no llvn l urso Soiologí y 53 no sigun l urso Filosofí. Si 7 lumnos no sigun Filosofí ni Soiologí, uántos lumnos llvn xtmnt uno tls ursos? ) 40 ) 44 ) 48 ) 5 ) D 500 postulnts qu s prsntron ls univrsis tóli o Lim, 300 postulron l tóli, igul númro l U Lim, ingrsno l mit l totl postulnts; los no ingrsnts s prsntron l univrsi Riro Plm, stos, 90 no s prsntron tóli y 30 no s prsntron l U Lim. uántos postulnts ingrsron l tóli y l U Lim? ) 0 ) 30 ) 80 ) 70 ) Sn los onjuntos no isjuntos ;, y D on s s qu l onjunto tin 4 lmntos, l onjunto tin 74 lmntos, l onjunto tin 5 lmntos y l onjunto D tin 8 lmntos. lulr l númro lmntos qu tin l intrsión los 4 onjuntos si s lo mínimo posil, más s s qu l unión los 4 onjuntos s 300. ) 68 ) 79 ) 87 ) 9 ) 4. Dos los onjuntos: = {3 ; 7 ; 8} = { ; 3 ; 6 ; 9} S fin: / y ls proposiions: I. En l lmnto myor s 7. II. n( ) III. L sum los lmntos s 7. uáls son vrrs? ) Sólo I ) Sólo II ) Sólo III ) Tos ) I y III 43. Sn los onjuntos: x N/30 x! x N/5 x 300 x N/0 x x 4000 Y ls proposiions: I. II. III. IV. V. Inir uánts son orrts ) ) 3 ) 5 ) ) Do los onjuntos: M x R / 4x 0 x N x Q / 4x 0 Hllr : ) ) ) M N ; x Q / x x Q / x ) ) { ; ; } 7

5 45. L igrmión orrt l siguint fórmul s: [( ) (' )] [ ( )] ) ) 50. D un grupo músios qu ton flut, qun o tu s s qu l otv prt to sólo flut, l sétim prt to sólo qun, l ifrni los qu ton sólo flut y los qu ton sólo qun s igul l nti músios qu ton sólo tu. Si más 80 ton por lo mnos los instrumntos mnionos. uántos ton sólo qun? ) ) ) 3 ) 4 ) 5 ) 6 ) 7 ) 46. Un instituión utiv nsit ontrtr 5 profsors Físi y 40 profsors Mtmáti. D stos ontrtos, s spr qu 0 rlin funions tnto profsor Físi omo profsor Mtmáti. uántos profsors rá ontrtr l instituión utiv? ) 40 ) 50 ) 65 ) 75 ) En un onurso llz, prtiipron 44 sñorits, ls uls 9 rn llo ruio, 9 rn morns y tnín ojos vrs. Tmién s osrvó qu 5 rn morns on llo ruio, 7 rn morns on ojos vrs y 6 tnín llo ruio y ojos vrs. Tmién hín os hrmns qu tnín ls trs rtrístis. uánts prgunts son nsris rlizr pr onor ihs hrmns? ) 0 ) ) ) 3 ) Si n un ómnius vijn 30 psjros ntr prunos y xtrnjros, on hy 9 sxo fmnino xtrnjro, 6 niños xtrnjros, 8 xtrnjros sxo msulino, 0 niños, 4 niñs xtrnjrs, 8 sñors y 7 sñors. uánts niñs pruns hy n l utoús? ) ) 3 ) 4 ) ) stuints iioms, qu hln inglés, frnés o lmán son somtios un xmn vrifiión, n l ul s trminó qu: * hln inglés y 0 solmnt inglés. * 3 hln frnés y 8 solmnt frnés. * 9 hln lmán y 5 solmnt lmán. uántos hln lmán, pro no inglés? 5. En un onjunto 30 prsons; 6 stuiron n l univrsi ; n l univrsi y 6 n l univrsi. Si sólo prsons stuiron n ls univrsis, y. uántos stuiron xtmnt n un sts univrsis, onsirno qu tos ls prsons stuiron l mnos n un ihs univrsis? ) 6 ) 7 ) 8 ) 9 ) 0 5. En un nust hh n un urnizión un grupo ms s sor l uso trs tipos trgnt (, y ) s otuviron los siguints tos. Dl totl : Usn sólo l 5%; pro no l %; y %; y 3%. L prfrni totl r l 38%, l 6% y ningun ls mrs mnions, l 4%. S prgunt :. Qué tnto por into prfirn sólo?. Qué porntj ms s prfirn xtmnt os tipos trgnt rspto ls qu no prfirn ningun mr? ) 5 y 66,66...% ) 4 y 60% ) 8 y 6,66...% ) 5 y 73,33...% ) 6 y 65% 53. Dos los onjuntos y on : {x R / x } {x R / x } {y R / y } {3} Entons l onjunto ontin: ) Un smirt isjunt n l trr urnt. ) Dos smirts isjunts n l urto urnt. ) No ontin ningun smirt isjunt. ) ontin os smirts isjunts, un n l sguno urnt y un n l primro. ) Dos smirts isjunts, un n l primr urnt y otr n l trro. ) 9 ) 0 ) ) ) 3 8

6 54., y son trs onjuntos tls qu stisfn ls oniions siguints:. stá ontnio n y stá ontnio n.. Si x s un lmnto ntons x tmién s un lmnto. Dir uál los siguints nunios s vrro? ) no stá ontnio n. ) no stá ontnio n. ) = pro no s igul. ) L intrsión on s l onjunto. ) L runión on tin lmntos qu no prtnn. 55. S lnzn os os juntos. uántos prs ornos s pun formr on los númros l r suprior? ) ) 6 ) 8 ) 36 ) El írulo ontin ls ltrs,,,,, f. El írulo ontin ls ltrs,, f, g, h. Ls ltrs l rtángulo qu no stán n son h, j, k y ls ltrs qu no stán n son, j, k. uáls son ls ltrs qu stán n l figur somr? ) { ; ; f ; g ; h} ) { ;, ; f ; h} ) { ; ; g ; h ; k} ) { ; ; g ; f ; k} ) { ; ; ; f} 60. El onjunto somro, mostro n l figur junt, rprsnt un oprión ntr los onjuntos: 56. Sn y os onjuntos ontnios n un univrso. Si : ( ) ( ) uál ls siguints proposiions s fls? ) ) ) ) ' ) ( )' 57. Pr stuir l li un prouto s onsirn 3 ftos:, y omo los más importnts. S nlizron 00 proutos on l siguint rsulto: 33 proutos tinn l fto. 37 proutos tinn l fto. 44 proutos tinn l fto. 53 proutos tinn xtmnt un fto. 7 proutos tinn xtmnt trs ftos. uántos proutos tinn xtmnt os ftos? L = uro M = írulo N = triángulo ) ( M L N) (L M) ) ( M L N) (N M) ) ( M L) (M N) ) ( N M) (L M) (L M N) ) ( L M) [M (L N)] (N M) ) 53 ) 43 ) ) 0 ) uál sts xprsions s inorrt? ( ini l omplmnto, y stán ontnios n un mismo onjunto univrsl) ) ( ) ) ( ) ( ) ) ( ) ( ) ) ( ) ( ) ) ( ) ( ) ( ) 9

7 0 lvs lvs

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 203 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv)

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - Vno 204 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii)

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones

Álgebra I Práctica 1 - Conjuntos, Relaciones y Funciones FEyN - U - uso Vno 206 onjuntos Álg I Páti - onjuntos, Rlions y Funions Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i)

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental

Encuesta sobre el uso de Internet para búsquedas de información sobre Salud Mental Enust sor l uso Intrnt pr úsqus inormión sor Slu Mntl Inormión gnrl 1. E: 2. Génro: Msulino (Pon un ruz n lo qu pro) Fmnino 3. Cuál s tu ár stuio? Art, Ltrs, Estuios Soils Cini, Ingnirí, Ténios Emprsrils,

Más detalles

CÍRCULO DE ESTUDIO HD 1. Tercer Año de Secundaria. Aplicaciones de la Teoría de Conjuntos TRIGONOMETRÍA. Ángulo Trigonométrico

CÍRCULO DE ESTUDIO HD 1. Tercer Año de Secundaria. Aplicaciones de la Teoría de Conjuntos TRIGONOMETRÍA. Ángulo Trigonométrico ÍRULO E ESTUIO H VERNO 0 ilo Nivelión Terer ño de Seundri GUI N O ÁLGER Produtos Notles RITMÉTI pliiones de l Teorí de onjuntos GEOMETRÍ Triángulos TRIGONOMETRÍ Ángulo Trigonométrio RZONMIENTO MTEMÁTIO

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Soluions los jriios prolms ustions Uni. El onjunto los númros rls Mtmátis plis ls inis Soils I NÚMEROS RIONLES E IRRIONLES. Hll l númro iml qu orrspon un ls siguints rions. omnt l rsulto: 0 00 0 0000 00

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

AISLADOR SOPORTE SERVICIO INTERIOR PARA MEDIA TENSION CARACTERISTICAS TECNICAS Y DIMENSIONES DE LA SERIE "ESTANDARD" N.B.A.I.

AISLADOR SOPORTE SERVICIO INTERIOR PARA MEDIA TENSION CARACTERISTICAS TECNICAS Y DIMENSIONES DE LA SERIE ESTANDARD N.B.A.I. ISLORS MI TNSION TULIZION 2014 RTRISTIS: ISLOR SOPORT SRVIIO INTRIOR PR MI TNSION RTRISTIS TNIS Y IMNSIONS L SRI "STNR" FRIOS SUN NORMS INTRNIONLS I.273 e I.660. MOLOS N POLISTR RFORZO ON FIR VIRIO (.M..),

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

0. x = 0. 0. x = b. x Solución:

0. x = 0. 0. x = b. x Solución: TEMA : ECUACIONES E INECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu l umpln tn solo un sri númros qu son ls soluions. Es ir, Ls soluions un uión son los vlors qu n tomr ls ltrs pr qu l igul

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Ie Io. Medidas absolutas y medidas relativas

Ie Io. Medidas absolutas y medidas relativas Mdids soluts y mdids rltivs Cómo otnr un mdi socición? Comprndo dos mdids d frcunci Mdids soluts (Difrnci) Mdids rltivs (Rzón) Supongmos qu un invrsión inicil d Euros s convirt n 2 Euros l co d un ño.

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.

Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro. MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -

Más detalles

DEPARTAMENTO P.M.C ORGANIZACIÓN ADMINISTRATIVA DIRECTOR. Misión. Dr. Juan Jóse Jáuregui Lomelí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA

DEPARTAMENTO P.M.C ORGANIZACIÓN ADMINISTRATIVA DIRECTOR. Misión. Dr. Juan Jóse Jáuregui Lomelí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA DEPARTAMENTO P.M.C Misión Apoyr n l formión lumnos n l quisiión omptnis y hilis línis DIRECTOR ORGANIZACIÓN ADMINISTRATIVA Dr. Jun Jós Jáurgui Lomlí DEPARTAMENTO ACADÉMICO Y DE SALUD PÚBLICA Dr. Frniso

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen.

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen. pítulo 1 ÁNGULS finiión : Es l figur gométri trmin por l runión os ryos no linos qu tinn l mismo orign. Elmntos 1. Vérti :. Los : y Notión : * Ángulo : ), Ô * i l ángulo : m ) =. gión Intrior un ángulo

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.

TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras. Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Tabla de Evaluación NIVEL DE DOMINIO INDICADORES

Tabla de Evaluación NIVEL DE DOMINIO INDICADORES LICEO SAN NICOLAS DE TOLENTINO TRABAJO EXTRACLASE # 2 III PERIODO DECIMO AÑO Prof. Jssia Mora Bolaños Indiaions gnrals ) Trabaj n parjas o n forma individual. 2) Rali l trabajo n hojas blanas bin grapadas.

Más detalles

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN

LÓGICA PROPOSICIONAL. Capítulo 1 INTRODUCCIÓN Cpítul LÓGIC PROPOSICIONL INTRODUCCIÓN L lógi stui l frm rzmit. Es u isipli qu s utiliz pr trmir si u rgumt s váli, ti pliió ts ls mps l sr; l filsfí, pr trmir si u rzmit s váli, y qu u frs pu tr ifrts

Más detalles

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente.

RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE., y 2. ) x 1.. Comprueba que es de equivalencia y calcula el conjunto cociente. Dprmno Mmái Apli. Ful Inormái. UPM. Rlions quivlni RELACIONES DE ORDEN. ÁLGEBRAS DE BOOLE ) En l onjuno N N s in l rlión (, ) R (, ). =.. Avrigu si s quivlni y si lo s lul l ls l lmno [(4, 8)]. 2) En l

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS TRILE pítulo MD Y MM DE POLINOMIOS FRAIONES ALGEBRAIAS Rgl pr lulr l MM y MD Poliomios :. S ftoriz los poliomios os.. El MD strá formo por l multipliió toos los ftors primos omus los poliomios os, osiros

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

REPARTO PROPORCIONAL. Capít ulo INTRODUCCIÓN. En general repartir N DP a los índices a ; a ;... ; a

REPARTO PROPORCIONAL. Capít ulo INTRODUCCIÓN. En general repartir N DP a los índices a ; a ;... ; a Cpít ulo REPARTO PROPORCIONAL INTRODUCCIÓN * El Junio furon ps Pro, Jun y Plo. Consiguiron 8, y 0 psos, rsptivmnt, qu omprtiron n prts iguls on Jsús, l ul muy onoso, ntrgó pns pr qu s rprtn ntr llos. Cuántos

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila.

Te vienes ya o esperas a tu hermana? Teníamos hambre, con que picamos cuatro tonterías. Haces las paces con él o no estarás tranquila. 1 Cs s oorns por tpos nt orón yuxtpust: oputvs syuntvs vrstvs onsutvs xptvs N m vn os otos n vo os prorms orzón. T vns y o sprs tu rmn? Sí qu rs vtrno, sí qu t prpro stán mpno. A mí m ustrí yurt, pro n

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1 Ejriios rlizos y prouios por Alro Aguilr Gutiérrz. Sions plns.. Diujr ls prts vists y oults ls sións qu proun los plnos P sor ls supriis s. P P g g P P Ejriios rlizos y prouios por Alro Aguilr Gutiérrz.

Más detalles

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES

BOLETIN DE EJERCICIOS 2: CIRCUITOS COMBINACIONALES : OBJETIVO Los ejeriios e este oletín tienen omo ojetivo onsolir los onoimientos reltivos los siguientes oneptos: - L implementión e ls uniones lógis meinte puerts lógis interonets. - Los istintos tipos

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Nudo Es todo punto de la red en que concurren tres o más conductores.

Nudo Es todo punto de la red en que concurren tres o más conductores. ltos 1 4.12-1 Rgls Kirhho Un iruito, n gnrl, stá ormo por un onjunto rsistnis y gnrors..m. ontos un orm ritrri, mnr qu no simpr s posil sustituir los onjuntos rsistnis por sus quivlnts, y qu no suln str

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.

A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR. Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden:

Salida. Matemática. Demostrando lo que aprendimos. 2. de secundaria. Nombre: Sección: Número de orden: Sli 1 Mtemáti Demostrno lo que prenimos 2. e seunri Nomre: Número e oren: Seión: Seguno gro e seunri 3 1 L erolíne INKA ontilizó l nti e vuelos nionles relizos ese Lim en el mes e iiemre. Oserv: Destino

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.

Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones. Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Nuevos Caminos. Lecciones de alfabetización con contenido bíblico. Preparado por autores en Las Américas y España

Nuevos Caminos. Lecciones de alfabetización con contenido bíblico. Preparado por autores en Las Américas y España Nuvs Cmins Lccins d lfbtizción cn cntnid bíblic Prprd pr utrs n Ls Américs y Espñ LECCIONES - PRIMERA PARTE 1., n, l, d 2., 3. s 4. rps 5. rps 6. r, -r- 7. rps 8. m, -r LECCION (Ordn d ls ltrs:) 9. rps

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES)

TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) TRABAJO MECÁNICO (FUERZA VARIABLE. RESORTES) En sicions rls l frz no s consn, sino q vri cndo l ojo s mv sor n lín rc. w = fd Δ w = f )( Δ w f )( Si l frz s mid n l. y l disnci n pis noncs Si l frz s mid

Más detalles

Matemática Discreta. Tema 1: 2. Pedro Reyes. Matemática Discreta. {2,4} arista múltiple Introducción a la Teoría de Grafos 1 2. Grafo plano Tema 1: 4

Matemática Discreta. Tema 1: 2. Pedro Reyes. Matemática Discreta. {2,4} arista múltiple Introducción a la Teoría de Grafos 1 2. Grafo plano Tema 1: 4 Tma : rafo: V conjunto d vértics A conjunto d aristas MATEMÁTICA DISCRETA Nocions básicas Subgrafos. Opracions con grafos Formas d dfinir un grafo A B F C vértics E D aristas V = {A,B,C,D,E,F} A = {{A,B},

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125

Los términos de una fracción son el NUMERADOR y el DENOMINADOR. Numerador. Denominador 5 5 = 5 5 5 5 5 = 3.125 Friones CONTENIDOS PREVIOS Reueres lo que es un frión y uáles son sus términos. Lo neesitrás omo punto e prti pr mplir tus onoimientos. Los términos e un frión son el NUMERADOR y el DENOMINADOR. Numeror

Más detalles

ACTIVIDAD:LA MATEMÁTICA COMO UNA ACTIVIDAD INTELIGENTE

ACTIVIDAD:LA MATEMÁTICA COMO UNA ACTIVIDAD INTELIGENTE TIVI:L MTMÁTI OMO UN TIVI INTLIGNT ONSTRUIÓN MTMÁTI PIS FUNMNTLS: -RZONMINTO Y MOSTRIÓN -OMUNIIÓN MTMÁTI Lo que te propongo es una actividad matemática en la que tú decides con qué elementos quieres trabajar

Más detalles

Curso: Principios de Controladores Lógicos Programables Código: ELE 2317 Tema: Elementos y Sistemas Básicos Lección: 2

Curso: Principios de Controladores Lógicos Programables Código: ELE 2317 Tema: Elementos y Sistemas Básicos Lección: 2 Curso: Prinipios d Controladors Lógios Programals Código: ELE 2317 Tma: Elmntos y Sistmas Básios Lión: 2 Su-Tma: Inputs & Outputs Profsor: Jams Rols INPUTS DE PLC: Los inputs d los PLC son snsors qu dtrminan

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles