Sistemas de Ecuaciones Diferenciales Ordinarias.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de Ecuaciones Diferenciales Ordinarias."

Transcripción

1 E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales ordinarias. 2. Solución general de un sistema de ecuaciones diferenciales lineales 3. Sistemas lineales homogéneos con coeficientes constantes. 4. Reducción de un sistema de dos ecuaciones de primer orden a una ecuación de segundo orden 5. Ejercicios 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales ordinarias. Las ecuaciones diferenciales ordinarias de orden superior al primero siempre se pueden reducir a sistemas de ecuaciones diferenciales de primer orden. Para hacer esto no hay más que dar nombre a las sucesivas derivadas de la incógnita (por ejemplo, u(x) = f (x), v(x) = f (x), w(x) = f (x), etc.), de forma que la derivada más alta pasa a ser una derivada primera. Después sólo queda expresar estas igualdades en términos de derivadas primeras solamente (es decir: u(x) = f (x), v(x) = u (x), w(x) = v (x), etc.), y utilizar esos nombres en lugar de las correspondientes derivadas de la incógnita en la ecuación dada. Así, una ecuación tal como 2(y ) 2 5 sen(y ) + xyy = 0 se sustituiria por el sistema y = u u = v xyv = 2v sen u. 2. Solución general de un sistema de ecuaciones diferenciales lineales Un sistema de dos ecuaciones diferenciales lineales de primer orden para las funciones x(t), y(t) tiene la forma general: x = a 1 (t)x + b 1 (t)y + f 1 (t) y = a 2 (t)x + b 2 (t)y + f 2 (t). o, en forma vectorial, r (t) = A(t)r(t) + f(t). (1) donde r(t) es el vector formado por las funciones incógnitas y f(t) es el vector formado por los términos independientes, ( ( ) x f1 r =, f =. y) f 2 Si las funciones f 1 (t) y f 2 (t) son ambas idénticamente cero (son ambas la función cero) entonces el sistema es un sistema homogéneo. Una solución de este sistema en el intervalo [a, b] es un par de funciones x(t), y(t) tales que para todo punto t de dicho intervalo cumplen dichas ecuaciones. Por ejemplo, el par de funciones x = e 2t, y = 2e 2t es una solución en toda la recta real, [, + ], del sistema homogéneo: x = 4x y y = 2x + y. 1

2 Usando una expansión en serie de Taylor es fácil demostrar que dado t 0 en [a, b] y dados dos números cualesquiera x 0, y 0, existe a lo sumo una solución del sistema (1) en [a, b] y tal que x(t 0 ) = x 0 e y(t 0 ) = y 0. La linealidad del sistema implica (exactamente igual que para los sistemas de ecuaciones lineales algebraicas) que los sistemas homogéneos cumplen el Principio de Superposición: Toda combinación lineal de soluciones de un sistema homogéneo es de nuevo una solución del sistema. Por último, la solución general de un sistema como (1) es una solución particular cualquiera sumada a la solución general del sistema homogéneo asociado. La solución general de un sistema de dos ecuaciones diferenciales lineales homogéneas consiste en las combinaciones lineales de dos soluciones independientes. Esta independencia lineal la mide el siguiente determinante Wronskiano de las dos soluciones: ( ) x1 (t) x W (t) = det 2 (t) = det[r y 1 (t) y 2 (t) 1 (t) r 2 (t)]. Al igual que ocurría con el wronskiano de dos soluciones de una ecuación diferencial de segundo orden definidas en un intervalo [a, b], esta función wronskiano tiene la propiedad de ser o bien idénticamente cero en [a, b] o bien ser distinto de cero en todo punto de [a, b]. Nuestro siguiente objetivo es estudiar la forma de hallar la solución general de los sistemas homogéneos, de los cuales un caso que aparece con mucha frecuencia es el de los sistemas con coeficientes constantes. 3. Sistemas lineales homogéneos con coeficientes constantes. En esta sección vamos a estudiar la solución general de un sistema de dos ecuaciones diferenciales de primer orden lineales y homogéneas. Según hemos visto, tal sistema es de la forma: x = a 1 x + b 1 y y = a 2 x + b 2 y (2) donde los coeficientes a 1, a 2, b 1, b 2 son constantes. Para resolverlo ensayamos una solución de la forma: x = Ae mt, y = Be mt, x = mae mt y = mbe mt (3) Lo cual nos lleva ( a la conclusión de que esto sólo es posible si m es un valor propio de la matriz de A coeficientes y es un vector propio de m. Los valores propios de la matriz de coeficientes son las B) raices del polinomio característico ( ) a1 m b det 1 = m 2 (a b 2 m 1 + b 2 )m + a 1 b 2 a 2 b 1 a 2 y conviene distinguir tres casos: Caso 1: Autovalores reales distintos, (a 1 + b 2 ) 2 4(a 1 b 2 a 2 b 1 ) > 0. En este caso se obtienen los autovalores m 1,2 = 1 ( a1 + b 2 ± (a 1 + b 2 ) 2 4(a 1 b 2 a 2 b 1 ) ) y basta hallar un autovector para cada uno de ellos, lo cual nos proporciona dos soluciones independientes: x = A 1 e m1t x = A 2 e m2t, y = B 1 e m1t y = B 2 e m2t, y co ellas podemos dar la solución general: x = c 1 A 1 e m1t + c 2 A 2 e m2t y = c 1 B 1 e m1t + c 2 B 2 e m2t 2

3 Caso 2: Autovalores complejos conjugados, (a 1 + b 2 ) 2 4(a 1 b 2 a 2 b 1 ) < 0. En este caso se obtienen dos autovalores complejos m 1,2 = 1 2( a1 + b 2 ± i 4(a 1 b 2 a 2 b 1 ) (a 1 + b 2 ) 2) = a ± bi. Si elegimos uno cualquiera de ellos, m = a + bi, podemos calcularle un autovector, cuyas componentes serán en general números complejos: ( ) A1 + A 2 i B 1 + B 2 i Esto nos proporciona una solución compleja: x = (A 1 + A 2 i)e (a+bi)t = (A 1 + A 2 i)e at e ibt = e at (A 1 + A 2 i)(cos bt + i sen bt) y = (B 1 + B 2 i)e (a+bi)t = (B 1 + B 2 i)e at e ibt = e at (B 1 + B 2 i)(cos bt + i sen bt) Si separamos las partes real e imaginaria de esta solución: x = e at (A 1 + A 2 i)(cos bt + i sen bt) = e at( ) (A 1 cos bt A 2 sen bt) + i(a 2 cos bt + A 1 sen bt) y = e at (B 1 + B 2 i)(cos bt + i sen bt) = e at( ) (B 1 cos bt B 2 sen bt) + i(b 2 cos bt + B 1 sen bt) se puede comprobar que éstas nos proporcionan dos soluciones reales independientes: x = e at (A 1 cos bt A 2 sen bt) y = e at (B 1 cos bt B 2 sen bt) x = e at (A 2 cos bt + A 1 sen bt) y = e at (B 2 cos bt + B 1 sen bt) Caso 3: Autovalores reales iguales, (a 1 + ( b 2 ) 2 4(a 1 b 2 a 2 b 1 ) = 0. En este caso sólo tenemos un A autovalor m = 1 2 (a 1 + b 2 ) y un autovector, lo que nos proporciona una solución: B x = Ae mt, y = Be mt. Para obtener una segunda solución independiente, ensayamos una de la forma: x = (p 1 + q 1 t)e mt, y = (p 2 + q 2 t)e mt. Al sustituir estas expresiones en las ecuaciones de nuestro sistema, se obtienen ecuaciones lineales para los coeficientes p 1, p 2, q 1, q 2. Vamos a ver cómo funciona esto con un ejemplo: Ejemplo: Consideremos el sistema: Al calcular la ecuación característica se obtiene: x = 3x 4y y = x y m 2 2m + 1 = 0 la cual tiene una sola solución: m = 1. Un autovector asociado a este autovalor es cualquier solución no trivial de A 2B = 0, por ejemplo A = 2, B = 1. Esto nos da la solución x = 2e t, y = e t. Para obtener una segunda solución independiente, ensayamos una de la forma: x = (p 1 + q 1 t)e t, y = (p 2 + q 2 t)e t. x = q 1 e t + (p 1 + q 1 t)e t = (q 1 + p 1 + q 1 t)e t, y = q 2 e t + (p 2 + q 2 t)e t = (q 2 + p 2 + q 2 t)e t. 3

4 Al sustituir estas expresiones en las ecuaciones de nuestro sistema, se obtienen ecuaciones q 1 + p 1 + q 1 t = 3(p 1 + q 1 t) 4(p 2 + q 2 t), q 2 + p 2 + q 2 t = (p 1 + q 1 t) (p 2 + q 2 t), (4) que deben ser válidas para todo t. Igualando los coeficientes de t se obtiene: q 1 = 3q 1 4q 2, q 2 = q 1 q 2. De aquí: q 1 = 2, q 2 = 1. Teniendo en cuenta estos valores e igualando los términos independientes en (4) se obtiene: 2 + p 1 = 3p 1 4p 2, 1 + p 2 = p 1 p 2. De aquí: p 1 = 1, p 2 = 0, con lo que la segunda solución es: x = (1 + 2t)e t y = te t y la solución general es: x = (2c 1 + c 2 + 2c 2 t)e t, y = (c 1 + c 2 t)e t. 4. Reducción de un sistema de dos ecuaciones de primer orden a una ecuación de segundo orden Consideremos un sistema general de dos ecuaciones diferenciales lineales de primer orden: x = a(t)x + b(t)y + f(t) y = c(t)x + d(t)y + g(t). (5) Este sistema se puede reducir a una ecuación diferencial lineal de segundo orden de la siguiente forma: Primero despejamos el término b(t)y de la primera ecuación y calculamos la derivada de la expresión resultante: b(t)y = x a(t)x f(t), b y + by = x a x ax f (t) (donde, por claridad, hemos omitido el argumento de las funciones a, a, b y b ). De esta forma obtenemos una expresión para b(t)y y otra para b(t)y que podemos introducir en la segunda ecuación previamente multiplicada por b(t), y obtenemos una ecuación lineal de segundo orden para x(t), x ( a + d + b b ) x + ( ad bc + ab a b b ) x = g(t) + f (t) ( ) d + b b f(t) El caso en el que b(t) es constante, b = 0 y la ecuación para x(t) se simplifica: x ( a + d ) x + ( ad bc a ) x = g(t) + f (t) df(t) Si el sistema de partida tenía cofeicientes constantes, entonces esta ecuación también tiene coeficientes constantes y podemos resolverla por los métodos ya estudiados. (Obsérvese que también resultaría esta ecuación con coeficientes constantes para cualquier sistema con a (t) y b(t) constantes siempre que la matriz de coeficientes tenga traza y determinante constantes.) Ejemplo: Vamos a aplicar este método al siguiente sistema: x = 2x + y y = x + 2y + e 2t. 4

5 Despejando en la primera ecuación y = x 2x y sustituyendo y e y = x 2x en la segunda ecuación: x 2x = x + 2x 4x + e 2t o sea: x 4x + 3x = e 2t. La ecuación característica tiene raíces: m 12 = 2 ± 4 3, m 1 = 3, m 2 = 1. Dos soluciones independientes de la homogénea son x 1 = e 3t e x 2 = e t. Usando coeficientes indeterminados, una solución particular es de la forma x p = Ae 2t y operando se encuentra que A tiene que ser A = 1, con lo que la solución es x = c 1 e 3t + c 2 e t e 2t y = c 1 e 3t c 2 e t. 5. Ejercicios 1. Resuelve los siguientes sistemas de ecuaciones diferenciales: x = 2x y = 3y. x = 4y y = x + 4y. x = x 2y y = 5x y. 2. Resuelve el siguiente problema de valores iniciales: y = 3x y x(0) = 1 y(0) = Halla la solución general de cada uno de los siguientes sistemas: x = 3x 4y y = x y. x = 3x + 4y y = 2x + 3y. y = 5x + 2y. d) x = 5x + 4y y = x + y. 4. Usa el método de reducción a una ecuación de segundo orden para hallar la solución general de los siguientes sistemas de ecuaciones diferenciales: x = 2x + y y = 4x + 3y. x = x + 5y y = 2x 5y. y = 3x y. 5. (Variación de parámetros para sistemas) Considera el sistema general x = a(t)x + b(t)y + f(t) y = c(t)x + d(t)y + g(t). Demuestra que si r 1 (t) = ( x 1 (t), y 1 (t) ) y r 2 (t) = ( x 2 (t), y 2 (t) ) son dos soluciones independientes del sistema homogéneo asociado, entonces dos funciones de la forma x = v 1 (t)x 1 (t) + v 2 (t)x 2 (t) y = v 1 (t)y 1 (t) + v 2 (t)y 2 (t) serán una solución particular del sistema completo si y sólo si las funciones v 1 (t) y v 2 (t) son una solución del sistema v 1(t)x 1 (t) + v 2(t)x 2 (t) = f(t) v 1(t)y 1 (t) + v 2(t)y 2 (t) = g(t). 5

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 81 Introducción Denominamos sistema de ecuaciones a toda ecuación de la forma x (t) F ( t, x(t) ), (S) donde F : (a, b) R n R n La expresión anterior es muy general en el

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: 2x 3y 4z

Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: 2x 3y 4z 1. Ecuación lineal Es una ecuación polinómica de grado uno con una o varias incógnitas. Por ejemplo, son ecuaciones lineales: x y 4z 8 x 6y z 5 7y z 1. Sin embargo, no son, ecuaciones lineales: x y z 1,

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal

Conferencia clase. Al desacoplar las ecuaciones se tiene. Sistemas de ecuaciones diferenciales lineales usando álgebra lineal Conferencia clase Al desacoplar las ecuaciones se tiene stemas de ecuaciones diferenciales lineales usando álgebra lineal Contenido. 1. stemas de ecuaciones diferenciales de primer orden. 2. Forma matricial

Más detalles

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden

3. Ecuaciones Diferenciales Lineales Homogéneas de Orden Superior con Coeficientes Constantes. Ecuaciones Diferenciales de Segundo Orden 3. Lineales Homogéneas de de Segundo Orden Sabemos que la solución general de una ecuación diferencial lineal homogénea de segundo orden está dada por por lo que se tiene dos soluciones no triviales, en

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =

y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Apuntes Tema 11 Sistemas de ecuaciones 11.1 Definiciones Def.: Se llama sistema de ecuaciones lineales a un conjunto de igualdades dadas de la siguiente forma: a 11 x 1 + a 12 x 2 + a 1n x n = b 1 a 21

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Sistemas lineales homogéneos

Sistemas lineales homogéneos Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 1 Sistemas lineales homogéneos Estudiaremos los sistemas de la forma x (t) = Ax(t) + b(t) Sistemas homogéneos: x = Ax

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial.

Tema 3.- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas. Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial. Tema 3- SISTEMAS DIFERENCIALES LINEALES Ampliación de Matemáticas Ingeniería Técnica Industrial Especialidad en Electrónica Industrial Índice General 1 Introducción 1 2 Sistemas lineales de primer orden

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas

TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,

Más detalles

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden

CAPÍTULO 4. Sistemas de ecuaciones lineales de primer orden CAPÍTULO 4 Sistemas de ecuaciones lineales de primer orden Hasta ahora hemos considerado únicamente ecuaciones diferenciales aisladas Sin embargo, en muchas aplicaciones aparecen situaciones en las que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos)

PROPUESTA A. b) Para el valor de a obtenido, calcula los puntos de inflexión de la función f(x). (1 25 puntos) PROPUESTA A 1A. a) Determina el valor del parámetro a R, para que la función f(x) = (x a) e x tenga un mínimo relativo en x = 0. Razona, de hecho, es un mínimo absoluto. (1 25 puntos) b) Para el valor

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

SISTEMAS LINEALES DE PRIMER ORDEN

SISTEMAS LINEALES DE PRIMER ORDEN CAPÍTULO 7 SISTEMAS LINEALES DE PRIMER ORDEN 7.1. INTRODUCCION Estudiaremos el sistema de n ecuaciones lineales de primer orden: x 1 = a 11 (t)x 1 +a 12 (t)x 2 +...+a 1n (t)x n +f 1 (t) x 2 = a 21 (t)x

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

RESUMEN DE LOS ALGORITMOS.

RESUMEN DE LOS ALGORITMOS. RESUMEN DE LOS ALGORITMOS. 1.- REDUCCIONES DE ÓRDENES. Caso (1): () = (,, ) DEPENDE DE SOLO VARIABLE INDEPENDIENTE. = () = (). Caso (): (, ) = (,, ) DEPENDE DE DERIVADA DE y Y VARIABLE INDEPENDIENTE. CAMBIO

Más detalles

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ARIEL M. SALORT asalort@dm.uba.ar Marzo de 2016 1. Teoría general Una ecuación diferencial ordinaria lineal de segundo orden puede ser escrita

Más detalles

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial.

1. Ecuaciones lineales con coeficientes constantes. Ecuaciones de primer orden. 2. Encontrar la solución de los siguientes problemas de valor inicial. . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes problemas de valor inicial. ẋ =5x, x0) =.. ẋ + x =0, x) =.. ẋ + x = te t, x0) =. si

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =.

ECUACIONES. Una igualdad algebraica está formada por dos expresiones algebraicas (una de ellas puede ser un número), separadas por el signo =. ECUACIONES IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Una igualdad algebraica está formada por dos epresiones algebraicas (una de ellas puede ser un número), separadas por el signo. Ejemplos.- ( ) ;

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.7. Variación de parámetros para E de orden n escripción del método general Una vez discutido el método de variación de parámetros para ecuaciones

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

TEMA 5. RECTAS Y PLANOS. INCIDENCIA.

TEMA 5. RECTAS Y PLANOS. INCIDENCIA. TEMA 5. RECTAS Y PLANOS. INCIDENCIA. SISTEMA DE REFERENCIA EN EL ESPACIO. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora

Más detalles

Base y Dimensión de un Espacio Vectorial

Base y Dimensión de un Espacio Vectorial Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León

Ecuaciones de 1er Grado 2. Incógnitas. Ing. Gerardo Sarmiento Díaz de León Ecuaciones de 1er Grado 2 Incógnitas Ing. Gerardo Sarmiento Díaz de León 2009 Teoría sobre ecuaciones de primer grado con 2 icognitas solución por los 3 metodos CETis 63 Ameca, Jalisco Algebra Área matemáticas

Más detalles

Se distinguen tres métodos algebraicos de resolución de sistemas:

Se distinguen tres métodos algebraicos de resolución de sistemas: MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Lista de ejercicios # 4

Lista de ejercicios # 4 UNIVERSIDAD DE COSTA RICA MA-5 FACULTAD DE CIENCIAS Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Primer Ciclo del 5 Lista de ejercicios # 4 Sistemas de ecuaciones diferenciales. EPII-II-

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción A Reserva

Más detalles

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

02. Resolver sistemas de ecuaciones lineales por el método de Gauss. 3.6 Criterios específicos de evaluación. 01. Conocer lo que significa que un sistema sea incompatible o compatible, determinado o indeterminado, y aplicar este conocimiento para formar un sistema de un

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles