DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE"

Transcripción

1 Lbortorio de Físic Generl (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 0/0/03. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid.. Mteril Vsij de vidrio isld térmicmente (3 litros) Mnómetro de gu (5 mm) ligermente colored y sistem ntiduch Mnómetro electrónico (hst 0 4 ) Llves de vidrio de cierre hermético Bomb de ire (perill de gom con válvuls) Mnómetro de gu Vsij de vidrio Mnómetro electrónico Aislmiento de l vsij de vidrio Bomb (per de gom) Expnsión dibátic, de 0

2 3. Teorí 3.. Expnsión dibátic Ddo un sistem termodinámico culquier, se define como trnsformción dibátic idel quéll en l que el sistem no intercmbi clor con el exterior. Ls trnsformciones dibátics proximds juegn un ppel importnte en muchos procesos industriles (por ejemplo en l Industri del Frío) y en fenómenos fundmentles en l Nturlez (por ejemplo en el enfrimiento del ire con l ltur). Si expresmos el primer principio de l Termodinámic medinte l ecución du + dw dq = 0 () donde du es l vrición de energí intern y dw y dq son respectivmente los intercmbios de trbjo y clor que reliz el sistem, pr un trnsformción dibátic (en l que por definición dq = 0) se verific que: du + dw = 0 () En el cso prticulr de los gses ideles, l relción entre l presión y el volumen V de un gs que experiment un proceso dibático, siempre que se reversible, viene dd por (vése culquier libro de Físic Generl, por ejemplo l referenci []): V = cte (3) donde es el denomindo coeficiente dibático, definido como l relción entre los clores específicos molres presión constnte y volumen constnte, C p y C v : Cp (4) C v 3.. rincipio del método El método utilizdo pr medir en est práctic fue idedo por Clement y Desormes (vése l ref. [], por ejemplo), y el principio básico del mismo se describe esquemáticmente en l Fig.. En un recipiente de vidrio de volumen inicil V y con l yud de un bomb se introduce un liger sobrepresión de ire respecto l presión tmosféric, de modo que se tiene un presión = +. El volumen V está determindo por l posición en l que se h fijdo el pistón de cierre C y el ire se supone l tempertur mbiente T, de modo que el sistem se encuentr en l situción,v,t (Fig. ). Expnsión dibátic, de 0

3 istón fijo istón libre C llve biert V bomb llve cerrd ire istón fijo ire,v,t,v,t () (b) C llve cerrd ire,v,t (c) Figur. rincipio del método utilizdo pr medir el coeficiente dibático. Si en ests condiciones se liber el pistón (de ms desprecible), l presión se equilibr bruscmente con l tmosféric medinte el umento de volumen hst el vlor V (Fig. b). Entonces, lo más rápidmente posible, se vuelve fijr el pistón en el nuevo volumen V. Debido l rpidez de l expnsión, el intercmbio de clor del ire con el exterior es desprecible, de modo que se puede considerr un proceso proximdmente dibático. Tmbién se puede considerr proximdmente reversible si V = V V es pequeño. Al mismo tiempo se produce enfrimiento del ire interior hst l tempertur T = T T. or tnto, justo después de l expnsión el sistem se encuentr en,v,t (Fig. b). En unos minutos el ire interior recuper l tempertur mbiente T, pero como el pistón quedó fijdo en V, l presión sube hst un cierto vlor = + y l situción finl del sistem es Expnsión dibátic, 3 de 0

4 ,V,T (Fig. c). or tnto, podremos plicr ls siguientes relciones. Durnte l expnsión dibátic se cumple l (3), es decir V = V (5) luego: V V (6) Y entre ls condiciones iniciles (,V ) y finles (,V ) debe cumplirse l ley de Boyle-Mriote pr ls trnsformciones isoterms porque en mbs se tiene l mism tempertur mbiente T, es decir: V = V (7) Substituyendo este vlor en l ecución (6) podemos eliminr los volúmenes y nos qued: (8) o tomndo logritmos: ln ln (9) De modo que se puede clculr el vlor de prtir de ls presiones observds, y. Como ls sobrepresiones = y = respecto l presión tmosféric son muy pequeñs, es conveniente hcer ls medids con respecto usndo un mnómetro como se explic más bjo, y result cómodo expresr l (9) en l form: ln ln (0) 3.3. Vrición de tempertur Tmbién se puede clculr el descenso de tempertur del ire del recipiente teniendo en cuent ls condiciones ntes (,V,T ) y después (,V,T ) de l expnsión dibátic. Si combinmos l ecución (3) con l ecución de estdo de los gses perfectos Expnsión dibátic, 4 de 0

5 nr V T () V T (donde n es el número de moles de ire y R l constnte de los gses perfectos) es fácil llegr l siguiente relción entre ls presiones y ls temperturs en un proceso dibático: T T () or tnto, l tempertur T inmeditmente después de l expnsión dibátic es T T (3) Otro modo de clculr el descenso de tempertur es utilizr ls etps finles (,V,T ) y (,V,T ). Tendremos un trnsformción volumen constnte y el cmbio de presión está relciondo con el cmbio de tempertur T T por l relción T T (4) 4. Método experimentl 4.. Clibrción del mnómetro electrónico Como los cmbios y son muy pequeños frente, se mejor mucho l precisión finl utilizndo un mnómetro electrónico cuy sensibilidd ( ) es ún myor que l del mnómetro de gu ( mm H O 9,8 ). Debido est sensibilidd, el mnómetro electrónico debe ser clibrdo ntes de usrlo medinte el propio mnómetro de gu que, unque menos sensible, proporcion un clibrción bsolut fible. El mnómetro electrónico requiere unos minutos de clentmiento, y se debe descontr el vlor que indic cundo está bierto (deberí indicr cero ), (tención l signo, si es hy que sumrlo). r l clibrción se procederá según se indic continución (Fig. ):. Se bren ls llves B (de l bomb) y A (del mnómetro de gu) y se cierr l C (de expnsión). De este modo se mide l presión interior de l vsij con los dos mnómetros simultánemente y se pueden comprr mbs medids. Bombendo ire (con l per de gom) hci dentro se ument l presión in- Expnsión dibátic, 5 de 0

6 terior hst 500 y se not el vlor en l Tbl junto con l diferenci de lturs h en ls columns de gu. Durnte l compresión el ire se client un poco, por lo que conviene esperr unos minutos hst que su tempertur se igule con l mbiente T de modo que l presión se estbilice (bst que vríe con suficiente lentitud) y se pued medir mejor. or est rzón, pr conseguir 500 se debe de comprimir hst unos 600. ' C columns de gu bomb ire ',V,T ire,v,t () (b) = 0 ire,v,t ire,v,t (c) (d) Figur. Representción esquemátic de los psos que hy que dr pr relizr l medid. Expnsión dibátic, 6 de 0

7 . Se continú el proceso umentndo l presión en 500 cd vez hst unos (no se debe llegr porque el gu podrí slir expulsd de los tubos) y se notn los resultdos en l Tbl. 3. L presión del mnómetro de gu tmbién se not en l Tbl (vendrá dd por g = g g h siendo g l densidd del gu y g l celerción de l grvedd). 4. Representndo gráficmente g en función de l corregid por el cero, se obtiene l pendiente de l rect que d el fctor de clibrción del mnómetro electrónico y su error (primero visulmente y después por mínimos cudrdos). 4.. Sistem experimentl de expnsión dibátic r simplificr el sistem experimentl de medid, el método usdo quí difiere ligermente del representdo en l Fig., y se h ilustrdo en l Fig.. En vez del pistón se h colocdo un llve C.. Con l llve C cerrd, se impele ire con l bomb (per de gom) hst un ciert presión (Fig. ); l tempertur sube hst T por el clor generdo durnte l pequeñ compresión. Cerrndo hor l llve de l bomb, se espern unos minutos pr que vuelv tempertur mbiente T otr vez (Fig. b). Durnte este proceso l presión bj hst el vlor = + y el ire qued (,T ).. Ahor se reliz l expnsión dibátic briendo l llve C durnte un intervlo breve de tiempo ~ s (Fig. c), el mínimo posible pr recuperr l presión ( = 0). Como consecuenci el ire interior se enfrí ligermente. Con este sistem experimentl, l brir C, el volumen de ire V = V V sle l exterior y se pierde, mientrs que en l Fig. quedb trpdo por el émbolo. El ire interior qued (,T ). 3. Después de unos minutos, el ire interior recuper l tempertur mbiente y l presión sube hst el vlor finl = + (Fig. d). El ire interior qued (,T ). Comprndo con el esquem de l Fig., el umento de presión corresponde l clentmiento del volumen V en vez del volumen V de l Fig., pero l diferenci V = V V es inferior l % de V por lo que el error que se comete l desprecirl es menor que otros errores experimentles. A cmbio de este pequeño error se h simplificdo mucho el montje experimen- Expnsión dibátic, 7 de 0

8 tl, y se evitn otros errores experimentles como el peso y el rozmiento del émbolo. NOTA. Ls medids experimentles en termodinámic, cso de est ráctic, implicn procesos nturles y por tnto irreversibles. En cmbio, ls fórmuls que se suelen usr, ls de los gses perfectos en este cso, están bsds en procesos reversibles. r que l medid se relice próxim l reversibilidd se deben usr vriciones de presión, volumen y tempertur lo más pequeñs posible con tl de que se puedn medir con l precisión desed. 5. Resultdos A) r determinr el coeficiente dibático del ire, se debe repetir el experimento cinco veces, tomndo cinco presiones iniciles diferentes entre 300 y.500. Se notn los diferentes vlores en l Tbl y se representn en función de ln ln El vlor de y su error se tom del brómetro de mercurio del Lbortorio. De cuerdo con l relción (0), l pendiente de l rect que mejor se juste l conjunto de puntos será el vlor de. Se debe estimr el error prtir de est mism gráfic. B) En ls cinco medids del prtdo nterior, hy que clculr el enfrimiento (disminución de tempertur T = T T ) experimentdo por el ire durnte l trnsformción dibátic, utilizndo tnto l expresión (3) como l (4). Se notn los vlores en l Tbl y se comentn los resultdos. C) Tmbién se pide determinr los clores específicos molres volumen y presión constnte, C v y C p, prtir del vlor medido de, y sbiendo que C p = C v + R (donde R es l constnte de los gses perfectos). RECAUCIONES: - Al impeler ire presión con l bomb de mno: l column de gu de l derech del mnómetro no debe sobrepsr el codo más bjo, porque en Expnsión dibátic, 8 de 0

9 ese cso sldrá expelid por rrib (l column de l izquierd no tendrá suficiente longitud de gu pr compensr l presión de l vsij). Aunque se h instldo un sistem que evit que el lumno se duche, l vuelt del gu conllev burbujs de ire que trdn en eliminrse y flsen l medid. - Los tubos del mnómetro son muy frágiles y no se deben forzr. Bibliogrfí Culquier libro de Físic Generl, por ejemplo:.. A. Tipler y G. Mosc, Físic pr l cienci y l tecnologí, Volumen C. Ed. Reverté (00).. F. W. Sers, M. W. Zemnsky, H. D. Young y R. A. Freedmn, Físic Universitri, Volumen. Ed. Addison Wesley (009). Expnsión dibátic, 9 de 0

10 Tbl. Clibrción del mnómetro electrónico con ls columns de gu (Resolución mnómetro: ; recisión regls mm), (mnóm. electr.), (cero corregido) h gu, (mm) gu, ( ) () Tbl. Vlores experimentles pr clculr y el cmbio de tempertur T (Brómetro de Hg: = ) ( ) () ln ln (T E)ºK ec. (3) (T F)ºK ec. (4) Expnsión dibátic, 0 de 0

COEFICIENTE ADIABÁTICO DEL AIRE

COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic de rocesos Biológicos COEFICIENTE ADIABÁTICO DEL AIRE Fech: 3//006. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid.. Mteril Vsij de vidrio isld

Más detalles

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 6

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 6 ÁRE DE INGENIERÍ QUÍIC Prof. Isidoro Grcí Grcí Operciones Básics de Trnsferenci de teri Tem 6 Operciones Básics de Trnsferenci de teri INTRODUCCIÓN Como se sbe, ls operciones en columns de relleno son

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

EL EXPERIMENTO FACTORIAL

EL EXPERIMENTO FACTORIAL DISEÑO DE EXPERIMENTOS NOTAS DE CLASE: SEPTIEMBRE 2 DE 2008 EL EXPERIMENTO FACTORIAL Se utiliz cundo se quiere nlizr el efecto de dos o más fuentes de interés (fctores). Permite nlizr los efectos de ls

Más detalles

I. Modelos de la Atmósfera II. La atmósfera como sistema dinámico. Tem a 1. I. Modelos de la Atmósfera

I. Modelos de la Atmósfera II. La atmósfera como sistema dinámico. Tem a 1. I. Modelos de la Atmósfera Modelizción Atmosféric y Predicción I. Modelos de l Atmósfer II. L tmósfer como sistem dinámico Tem 1 I. Modelos de l Atmósfer Modelizción Atmosféric y Predicción Modelizción Atmosféric y Predicción Modelizción

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Unidad 2 Efectos Térmicos Carta de Humedad

Unidad 2 Efectos Térmicos Carta de Humedad Termodinámic 2 Versión 2009 Unidd 2 Efectos Térmicos Crt de Humedd Contenidos 2.15 Crt de Humedd Humedd bsolut y humedd reltiv Volumen específico Tempertur del bulbo seco y del bulbo húmedo Tempertur de

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a):

Qué se puede hacer? Plan de clase (1/2) Escuela: Fecha: Profr. (a): Qué se puede hcer? Pln de clse (1/) Escuel: Fech: Profr. (): Curso: Mtemátics 1 secundri Eje temático: FEyM Contenido: 7..6 Justificción de ls fórmuls de perímetro y áre de polígonos regulres, con poyo

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA

PRÁCTICA Nº 1: DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA PRÁCTICA Nº : DINÁMICA DE DOS CUERPOS UNIDOS POR UNA CUERDA º Cálculo teórico y experimentl de l celerción del sistem 2º Cálculo del coeficiente de rozmiento del sistem DATOS: Sensor: Pole linel inteligente

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Nturles Con los números nturles contmos los elementos de un conjunto (número crdinl). O bien expresmos l posición u orden que ocup un elemento en un conjunto (ordinl). El conjunto de los números

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

PRÁCTICA VI VARIACIÓN VERTICAL DE LA VELOCIDAD EN CONDUCTOS A FLUJO LIBRE

PRÁCTICA VI VARIACIÓN VERTICAL DE LA VELOCIDAD EN CONDUCTOS A FLUJO LIBRE UNIERSIDAD DEL CAUCA I.1 PRÁCTICA I I ARIACIÓN ERTICAL DE LA ELOCIDAD EN CONDUCTOS A FLUJO LIBRE I.1 OBJETIOS Determinr l vrición verticl de l velocidd en flujo libre. Comprr gráficmente el perfil de velocidd

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID Tempertur (ºC) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Modelo Tecnologí Industril II. 21-211 Opción A Cuestión nº1 (2 puntos)

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Cambio de Variables en las Integrales Dobles

Cambio de Variables en las Integrales Dobles E.E.I. CÁLCULO II Y ECUACIONES DIFEENCIALES Curso 20-2 Clse 3 (7 fe. 202) Cmio de Vriles en ls Integrles Doles. Ejemplo: Áre de l elipse. 2. Cmio de Vriles I. Punto de ist de l trnsformción. 3. Cmio de

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

DETERMINANTES. Cálculo. Menor de una matriz.

DETERMINANTES. Cálculo. Menor de una matriz. DETERMINNTES Tods ls mtrices cudrds tienen erminnte. El erminnte de un mtriz ermin si los elementos de está tienen o no solución únic. Un erminnte de un mtriz de orden n se obtiene medinte el sumtorio

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero.

De preferencia aquella que tenga algún 1 como elemento. Mejor aún si conteniendo el 1 también tiene elementos iguales a cero. DETERMINANTE DE UNA MATRIZ DE ORDEN O MÁS PREGUNTA Clculr los determinntes siguientes ) ) c) RESOLUCIÓN Pr resolver el determinnte de un mtriz cudrd de orden o más es recomendle plicr el método de Reducción

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2010-2011 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 200-20 MATERIA: TECNOLOGÍA INDUSTRIAL II INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE

MEDIDA DE LA DISTANCIA FOCAL DE UNA LENTE CONVERGENTE Y UNA LENTE DIVERGENTE MEDIDA DE LA DISTANCIA FCAL DE UNA LENTE CNVERGENTE Y UNA LENTE DIVERGENTE BJETIV El objetivo de l práctic es l medid de l distnci focl de un lente convergente delgd de otr divergente. Se utilizrán distintos

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa.

Qué es la aceleración? Es una magnitud vectorial que nos permite determinar la rapidez con la que un móvil cambia de velocidad. www.fisicaa. Qué es el movimiento rectilíneo uniformemente vrido? Es un movimiento mecánico que experiment un móvil donde l tryectori es rectilíne y l celerción es constnte. Qué es l celerción? Es un mgnitud vectoril

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

Fórmulas de cuadratura.

Fórmulas de cuadratura. PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Capítulo 7: El Modelo de OA-DA

Capítulo 7: El Modelo de OA-DA Cpítulo 7: El Modelo de OA-DA Jesús Rodríguez López Universidd Pblo de Olvide Sevill, 2009-2010 Jesús Rodríguez () Cpítulo 7: El Modelo de OA-DA Sevill, 2009-2010 1 / 41 7.1 L ofert gregd L relción de

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Robot sacapuntas. Materiales suministrados

Robot sacapuntas. Materiales suministrados 108.535 Robot scpunts Mteriles suministrdos Cntidd Medids (mm) Bloque de mder 1 50x50x50 Bloque de mder 1 40x40x40 Listón de mder 1 250x15x15 Contrchpdo de mder 1 200x200x4 Scpunts doble 1 25x25x15 Rueds

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Estabilidad de los sistemas en tiempo discreto

Estabilidad de los sistemas en tiempo discreto Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Ficha 4. Funciones lineales y cuadráticas

Ficha 4. Funciones lineales y cuadráticas Fich 4. Funciones lineles y cudrátics ) Deinición de unción linel Sen A y B dos conjuntos no vcíos y un unción deinid de A hci B ( : A B ), entonces se le llm un unción linel si su criterio es de l orm

Más detalles

Determinantes de una matriz y matrices inversas

Determinantes de una matriz y matrices inversas Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles