PREPROCESADO DE DATOS PARA MINERIA DE DATOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PREPROCESADO DE DATOS PARA MINERIA DE DATOS"

Transcripción

1 Ó / PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado de datos. Sin embargo, una actuación adecuada sobre los datos antes de su inserción en el algoritmo de minería de datos puede producir una mejora sobre el rendimiento del algoritmo. En este documento se presenta una revisión de las técnicas más usuales para el preprocesado de datos en minería de datos. Objetivos: Entender, en líneas generales, las actividades de procesamiento de datos en minería de datos. 1 Introducción El preprocesado de datos es el primer paso en muchos procesos de toma de decisión y de algoritmos de minería de datos 1. Un correcto preprocesado de los datos puede ser necesario o simplemente mejorar el rendimiento del algoritmo. Sin embargo, en muchos ejemplos, el preprocesado de datos no recibe la atención que requiere. Las operaciones realizadas durante la fase de preprocesado pueden agruparse en dos categorías. Por un lado, están aquellas técnicas destinadas a detectar y manipular datos considerados imperfectos; y por otro lado, se consideran aquellas técnicas cuya finalidad es transformar los datos para hacerlos más manejables. Este documento puede contener imprecisiones o errores. Por favor no lo utilice para citarlo como una fuente fiable. 1 Cristóbal Romero, José Raúl Romero, and Sebastián Ventura. A survey on pre-processing educational data. In Alejandro Peña Ayala, editor, Educational Data Mining, volume 524 of Studies in Computational Intelligence, pages Springer International Publishing, ISBN URL 2 Agrupamiento de Datos El agrupamiento de datos es una acción que permite reunir todos los datos disponibles para la resolución del problema. Este agrupamiento permite establecer lo que se suele denominar como instancias. Estas instancias son ejemplos individuales de unos de los conceptos que tienes que ser aprendidos por el algoritmo de minería de datos. En este paso también se agrupan datos provenientes de distintas fuentes. El preprocesado de datos en minería de datos no es diferente que el procesado de datos en otras disciplinas y tareas. 3 Integración de Datos El objetivo de la integración de los datos es agrupar juntos todos los datos provenientes de diferentes fuentes. Los datos que provienen de diferentes fuentes puede tener diferentes formatos. La recopilación de datos tiene que ser coherente. Frecuentemente esta integración de datos se realiza en una base de datos. Agregación e integración de datos son diferentes términos para referirse a la agregación del mismo tipo de datos a través de diferentes plataformas, y la integración de diferentes tipos de datos.

2 Ñ 2 Ñ 4 Limpieza de Datos La limpieza de datos consiste en detectar los datos erróneos o irrelevantes y descartarlos. Una de las actividades dentro de la limpieza de datos es el tratamiento de datos ausentes. Esto sucede cuanto falta el valor de un atributo. Para rellenar este valor se pueden tomar diversas estrategias, algunas de las cuales son: utilizar la media o la moda de los valores del entorno, generar un valor aleatorio basándose en una distribución gausiana, algún tipo de interpolación, etc. Un problema más difícil es la eliminación de los datos ruidosos. Estos casos corresponden con ejemplos que son significativamente diferentes o son inconsistentes con el conjunto de datos. El tratamiento de los datos ruidosos es una de las tareas más difíciles del conjunto de actividades que engloba la minería de datos. Para detectar qué es un dato ruidoso y qué no, pueden utilizarse diversas estrategias, basándose algunas de ellas en umbrales de probabilidad de determinadas distribuciones de probabilidad. Muchos algoritmos de minería de datos tratan de minimizar el impacto de los datos ruidosos en el modelo final, o incluso eliminarlo. Los datos ruidosos pueden provenir de errores en los aparatos de medidas, de medidas reales y correctas pero altamente improbables, o de casos excepcionales. Por lo tanto, el rechazo de este tipo de datos debe realizarse con mucha precaución. 5 Selección de Variables y Atributos 2 Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, ISBN En esta fase del preprocesado de datos, se descartan atributos que no son relevantes para la toma de decisión. En general, el volumen de datos original suele exceder de lo deseable y de lo práctico para su aplicación en la minería de datos. Además está bien estudiado que gran parte de la información es redundante, principalmente debido a que muchas variables están correlacionadas. Por lo tanto, una importante reducción de atributos puede aplicarse a los datos sin pérdida significativa de información. El objetivo de la selección de atributo es encontrar el conjunto mínimo de atributos de forma que la distribución resultante de probabilidad de las clases de datos es tan próxima como sea posible a la distribución original usando todos los atributos 2. Para N atributos hay 2 N posibles subconjuntos. Por lo tanto una búsqueda exhaustiva del subconjunto óptimo es computacionalmente costoso si N es grande. Por lo tanto, son necesarios métodos heurísticos que exploren el espacio de soluciones. Estas técnicas se denominan attribute subset selection o feature subset selection.

3 Ô Ö Ô Ö Ó Ó Ø Ó Ô Ö Ñ Ò Ö Ø Ó 3 En general, estos métodos suelen ser tipo codicioso (greedy), lo que significa que mientras buscan a través del espacio de atributos, toman la decisión de selección sobre una sola mejor elección. Esta estrategia produce óptimos locales con la idea subyacente de que estos sean soluciones globales. Los mejores y los peores atributos son determinados usando tests de significancia estadística, lo que asume que los atributos son independientes unos de otros. Otra opción es usar medidas de ganancia de la información para construir un árbol de decisión para la clasificación de los atributos. Los métodos más básicos para encontrar un subconjunto de atributos incluyen las siguientes técnicas: Selección hacia adelante: el procedimiento comienza con un conjunto vacío de atributos. A continuación se determina cual es el mejor de los atributos originales y se añade al conjunto reducido. En cada iteración, el mejor atributo entre los restantes es añadido al conjunto. Eliminación: el procedimiento comienza con el conjunto de todos los atributos. En cada paso, se elimina el peor de los atributos que aún quedan en el conjunto. Combinación de selección y eliminación: los dos métodos anteriormente descritos pueden ser combinados de forma que en cada paso, el procedimiento selecciona el mejor atributo para incorporarlo al conjunto reducido, al mismo tiempo que elimina el peor atributo del conjunto original. Induccióndeunárboldedecisión.Enunárboldedecisión,unnodo interno (sin hojas) representa un test sobre un atributo y cada rama corresponde con el resultado del test. Por el contrario, un nodo externo (con hojas) indica una predicción. En cada nodo el algoritmo escoge el mejor atributo para dividir los datos en clases individuales. Cuando el árbol de decisión es usado para la selección de un subconjunto de atributos, el árbol es construido desde los datos originales. Todos los atributos que no aparecen en el árbol se consideran irrelevantes, mientras que los que sí aparecen se consideran el conjunto de atributos reducidos. El criterio de parada puede ser muy variado, por ejemplo emplear un umbral sobre alguna medida del subconjunto de atributos para determinar cuando parar.

4 Ñ 4 Ñ 6 Reducción de la Dimensionalidad En la reducción de la dimensionalidad se aplica una transformación para obtener una representación reducida o comprimida de los datos originales. Si los datos datos originales pueden ser reconstruidos desde los datos comprimidos sin pérdida de información, entonces la reducción se denomina sin pérdida de datos. Por el contrario, si se puede reconstruir los datos solo de forma aproximada entonces se denomina lossy. Un ejemplo muy popular de reducción de la dimensionalidad es el análisis de componentes principales. 7 Filtrado de Datos Durante el filtrado de datos un subconjunto de datos son usados para representar un conjunto de datos más amplio y frecuentemente inmanejable. De forma similar a la selección de atributos, el filtrado de datos trata de eliminar información redundante para obtener buenos modelos con un volumen de datos manejable. Un caso diferente, aunque también puede considerarse como un caso de filtrado de datos, es cuando el investigador está interesado en un subconjunto de los mismos. 8 Transformación de Datos El último paso en el procesado de datos es la transformación de los mismos. En este paso se construyen nuevos atributos a partir de los atributos originales. Esta transformación puede facilitar una mejor interpretación de la información. Algunos ejemplos de transformación de datos son: Normalización El atributo es escalado a un rango específico, normalmente de -1 a 1, o de 0 a 1. En la ecuación 1 se presenta el caso más general. ν = ν min A max A min A (newmax A newmin A )+newmin A (1) La normalización es empleada cuando se tienen atributos con órdenes de magnitud muy diferentes. Gracias a la normización se evita que los atributos con valores más altos ganen un peso significativamente más importante en el modelo final que aquellos con valores más bajos. Discretización El atributo es transformado de valores numéricos en valores categóricos. De esta forma se reduce el número de posibles

5 Ô Ö Ô Ö Ó Ó Ø Ó Ô Ö Ñ Ò Ö Ø Ó 5 valores. La discretización suaviza el efecto del ruido y permite modelos más simples; y por lo tanto, menos propensos al sobreajuste. Algunos algoritmos de minería de datos solo trabajan con datos categóricos. Por lo tanto en estos casos es necesario transformar los datos contínuos en categóricos. Derivación La derivación permite crear nuevos atributos partiendo de otros anteriores. Esto se realiza a través de alguna transformación matemática: por ejemplo agrupamiento de valores de tiempo en unidades de orden superior(segundos en minutos), agrupamiento de valores (meses en cuatrimestres), reemplazar valores por medias (suavización), etc. En esta categoría podría incluirse cualquier tipo de codificación de los datos de forma diferente a los datos originales. Esto incluye el cambio de formato de los datos. Referencias [1] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, ISBN [2] Cristóbal Romero, José Raúl Romero, and Sebastián Ventura. A survey on pre-processing educational data. In Alejandro Peña Ayala, editor, Educational Data Mining, volume 524 of Studies in Computational Intelligence, pages Springer International Publishing, ISBN Ó / URL

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

Data Mining: Conceptos y Técnicas Preprocesamiento de Datos

Data Mining: Conceptos y Técnicas Preprocesamiento de Datos Cap. 3: Preprocesamiento de Datos Data Mining: Conceptos y Técnicas Preprocesamiento de Datos (Basado en material de Jiawei Han and Micheline Kamber) Intelligent Database Systems Research Lab School of

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

Otros aspectos. Procesado de la entrada Procesado de la salida. Carlos J. Alonso González Departamento de Informática Universidad de Valladolid

Otros aspectos. Procesado de la entrada Procesado de la salida. Carlos J. Alonso González Departamento de Informática Universidad de Valladolid Otros aspectos Procesado de la entrada Procesado de la salida Carlos J. Alonso González Departamento de Informática Universidad de Valladolid Contenido 1. Procesado de la entrada 1. Motivación y tareas

Más detalles

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata

v.1.0 Clase 5 Docente: Gustavo Valencia Zapata v.1.0 Clase 5 Docente: Gustavo Valencia Zapata Temas Clase 5: Conceptos de Minería de Datos Herramientas de DM Referencias Minería de datos Proceso de DM www.gustavovalencia.com Minería de datos La minería

Más detalles

No se requiere que los discos sean del mismo tamaño ya que el objetivo es solamente adjuntar discos.

No se requiere que los discos sean del mismo tamaño ya que el objetivo es solamente adjuntar discos. RAIDS MODO LINEAL Es un tipo de raid que muestra lógicamente un disco pero se compone de 2 o más discos. Solamente llena el disco 0 y cuando este está lleno sigue con el disco 1 y así sucesivamente. Este

Más detalles

BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES

BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES BASES DE DATOS TEMA 4 DISEÑO DE BASES DE DATOS RELACIONALES El modelo relacional se basa en dos ramas de las matemáticas: la teoría de conjuntos y la lógica de predicados de primer orden. El hecho de que

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

NOTAS TECNICAS Nº 5. Clasificación del Sistema Educacional Chileno para efectos de comparabilidad internacional

NOTAS TECNICAS Nº 5. Clasificación del Sistema Educacional Chileno para efectos de comparabilidad internacional MINISTERIO DE EDUCACION DIVISON DE PLANIFICACION Y PRESUPUESTO NOTAS TECNICAS Nº 5 Clasificación del Sistema Educacional Chileno para efectos de comparabilidad internacional Departamento de Estudios y

Más detalles

EPB 603 Sistemas del Conocimiento!"#$ %& $ %'

EPB 603 Sistemas del Conocimiento!#$ %& $ %' Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM EPB 603 Sistemas del Conocimiento!"#$ %& $ %' Modelos de proceso para proyectos de Data Mining (DM) Son diversos los modelos de

Más detalles

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i.

Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. Filtros Digitales Un filtro general de respuesta al impulso finita con n etapas, cada una con un retardo independiente d i y ganancia a i. En electrónica, ciencias computacionales y matemáticas, un filtro

Más detalles

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS

TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 1 1 BASES DE DATOS DISTRIBUIDAS TEMA 3 PROFESOR: M.C. ALEJANDRO GUTIÉRREZ DÍAZ 2 3. PROCESAMIENTO DE CONSULTAS DISTRIBUIDAS 3.1 Metodología del procesamiento de consultas distribuidas 3.2 Estrategias de

Más detalles

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones.

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. 2.1 Revisión sistema reconocimiento caracteres [9]: Un sistema de reconocimiento típicamente esta conformado por

Más detalles

Tema 6: Morfología. Primera parte

Tema 6: Morfología. Primera parte Tema 6: Morfología Primera parte Morfología La morfología matemática se basa en operaciones de teoría de conjuntos. En el caso de imágenes binarias, los conjuntos tratados son subconjuntos de Z 2 y en

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Sistema Inteligente de Exploración

Sistema Inteligente de Exploración Observatorio Municipal de Estadística Sistema Inteligente de Exploración Capítulos 1. Consideraciones iniciales y requerimientos... 2 2. Navegación... 3 3. Consulta de indicadores... 5 3.1. Elaboración

Más detalles

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización Minería de Datos Preprocesamiento: Reducción de Datos - Discretización Dr. Edgar Acuña Departamento de Ciencias Matemáticas Universidad de Puerto Rico-Mayaguez E-mail: edgar.acuna@upr.edu, eacunaf@gmail.com

Más detalles

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad.

La calidad de los datos ha mejorado, se ha avanzado en la construcción de reglas de integridad. MINERIA DE DATOS PREPROCESAMIENTO: LIMPIEZA Y TRANSFORMACIÓN El éxito de un proceso de minería de datos depende no sólo de tener todos los datos necesarios (una buena recopilación) sino de que éstos estén

Más detalles

Guía docente de la asignatura

Guía docente de la asignatura Guía docente de la asignatura Asignatura Materia Minería de Datos Complementos de Computación Módulo Titulación Grado en Ingeniería Informática Plan 463 45220 Periodo de impartición 1 er Cuatrimestre Tipo/Carácter

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013 Objetivo Idear una clasificación o esquema de agrupación

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

El ABC de Big Data: Analytics, Bandwidth and Content

El ABC de Big Data: Analytics, Bandwidth and Content Documento técnico El ABC de Big Data: Analytics, Bandwidth and Content Richard Treadway e Ingo Fuchs, NetApp, Noviembre de 2011 WP-7147 RESUMEN EJECUTIVO Las empresas entran en una nueva era en la que

Más detalles

SIC 32 Activos Intangibles Costos de Sitios Web

SIC 32 Activos Intangibles Costos de Sitios Web SIC 32 Activos Intangibles Costos de Sitios Web La Interpretación SIC-32 Activos Intangibles Costos de Sitios Web se encuentra en los párrafos 7 a 10. La SIC-32 viene acompañada de Fundamentos de las Conclusiones

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II BASE DE DATOS Comenzar presentación Base de datos Una base de datos (BD) o banco de datos es un conjunto

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Master en Gestion de la Calidad

Master en Gestion de la Calidad Master en Gestion de la Calidad No Conformidades y Acciones Correctoras No Conformidades y Acciones Correctoras 1 / 11 OBJETIVOS Al finalizar esta unidad didáctica será capaz de: Conocer con claridad la

Más detalles

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 5 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Data Warehouse Modelo multidimensional Diagrama

Más detalles

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología La metodología para el desarrollo de software es un modo sistemático de realizar, gestionar y administrar un proyecto

Más detalles

Capítulo 2. Las Redes Neuronales Artificiales

Capítulo 2. Las Redes Neuronales Artificiales Capítulo 2. Las Redes Neuronales Artificiales 13 Capitulo 2. Las Redes Neuronales Artificiales 2.1 Definición Redes Neuronales Artificiales El construir una computadora que sea capaz de aprender, y de

Más detalles

Optimización de consultas Resumen del capítulo 14

Optimización de consultas Resumen del capítulo 14 Optimización de consultas Resumen del capítulo 14 Libro: Fundamentos de Bases de Datos Silberschatz et al. 5ed. Dr. Víctor J. Sosa Agenda 1. Visión general 2. Estimación de las estadísticas de los resultados

Más detalles

TÓPICOS AVANZADOS DE BASES DE DATOS

TÓPICOS AVANZADOS DE BASES DE DATOS TÓPICOS AVANZADOS DE BASES DE DATOS 1. DATOS DE LA ASIGNATURA. Nombre de la asignatura: TÓPICOS AVANZADOS DE BASES DE DATOS Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: Modulo

Más detalles

Microsoft Access proporciona dos métodos para crear una Base de datos.

Microsoft Access proporciona dos métodos para crear una Base de datos. Operaciones básicas con Base de datos Crear una Base de datos Microsoft Access proporciona dos métodos para crear una Base de datos. Se puede crear una base de datos en blanco y agregarle más tarde las

Más detalles

Introducción general a la compresión de datos multimedia

Introducción general a la compresión de datos multimedia Introducción general a la compresión de datos multimedia Necesidad de la compresión La mayoría de las aplicaciones multimedia requieren volúmenes importantes de almacenamiento y transmisión. CD-ROM 640

Más detalles

Capítulo III. Manejo de Incidentes

Capítulo III. Manejo de Incidentes Manejo de Incidentes Manejo de Incidentes Tabla de contenido 1.- En qué consiste el manejo de incidentes?...45 1.1.- Ventajas...47 1.2.- Barreras...47 2.- Requerimientos...48 3.- Clasificación de los incidentes...48

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

Retiro de activos y el stock de capital bruto

Retiro de activos y el stock de capital bruto From: Medición del capital - Manual OCDE 2009 Segunda edición Access the complete publication at: http://dx.doi.org/10.1787/9789264043695-es Retiro de activos y el stock de capital bruto Please cite this

Más detalles

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005

Universidad Nacional de Quilmes Ing. en Automatización y Control Industrial Cátedra: Visión Artificial Agosto de 2005 Extracción de Frontera (Boundary Extraction) La frontera de un conjunto A, escrita como β(a), se puede obtener erosionando A por B y luego calcular la diferencia entre A y su erosión. Esto es β ( A) =

Más detalles

Creación y administración de grupos de dominio

Creación y administración de grupos de dominio Creación y administración de grupos de dominio Contenido Descripción general 1 a los grupos de Windows 2000 2 Tipos y ámbitos de los grupos 5 Grupos integrados y predefinidos en un dominio 7 Estrategia

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta En estas notas revisaremos los conceptos de reputación desde la perspectiva de información incompleta. Para ello usaremos el juego del ciempiés. Además, introduciremos los conceptos de juegos de señales,

Más detalles

CAPÍTULO 6 SIMULACIONES Y RESULTADOS

CAPÍTULO 6 SIMULACIONES Y RESULTADOS CAPÍTULO 6 SIMULACIONES Y RESULTADOS 6.1 Proceso de Simulación Las simulaciones fueros llevadas a cabo empleando como herramienta la Versión 6.5 Release 13 de Matlab. Para lo cual fue empleado un banco

Más detalles

Calibración y control de calidad de instrumentos de análisis

Calibración y control de calidad de instrumentos de análisis Calibración y control de calidad de instrumentos de análisis cĺınico. María Cecilia San Román Rincón Monografía vinculada a la conferencia del Dr. Horacio Venturino sobre Instrumental para laboratorio

Más detalles

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Ricardo Köller Jemio Departamento de Ciencias Exactas e Ingeniería, Universidad

Más detalles

GUÍA DOCENTE TITULACIONES DE GRADO

GUÍA DOCENTE TITULACIONES DE GRADO GUÍA DOCENTE TITULACIONES DE GRADO TITULACIÓN: GRADO EN INGENIERIA INFORMATICA DE SISTEMAS DE INFORMACIÓN CURSO 2015/2016 ASIGNATURA: MINERÏA DE DATOS Nombre del Módulo o Materia al que pertenece la asignatura.

Más detalles

Sin embargo el proceso de gestión de riesgos aplicado a cualquier actividad consta de las siguientes etapas:

Sin embargo el proceso de gestión de riesgos aplicado a cualquier actividad consta de las siguientes etapas: EL PROCESO DE GESTIÓN DE RIESGO La gestión de riesgo se puede definir como el proceso de toma de decisiones en un ambiente de incertidumbre sobre un acción que va a suceder y sobre las consecuencias que

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP

CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP CAPÍTULO 4. EL EXPLORADOR DE WINDOWS XP Características del Explorador de Windows El Explorador de Windows es una de las aplicaciones más importantes con las que cuenta Windows. Es una herramienta indispensable

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Activos Intangibles Costos de Sitios Web

Activos Intangibles Costos de Sitios Web SIC-32 Interpretación SIC-32 Activos Intangibles Costos de Sitios Web Esta versión incluye las modificaciones procedentes de las NIIF nuevas y modificadas emitidas hasta el 31 de diciembre de 2006. La

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

Diseño de un estudio de investigación de mercados

Diseño de un estudio de investigación de mercados Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,

Más detalles

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del 33 En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del sistema de procesamiento de imágenes para controlar un robot manipulador y se describen en la forma como serán

Más detalles

Tutorial - Parte 2: Scoring

Tutorial - Parte 2: Scoring Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.

Más detalles

Aprendizaje automático mediante árboles de decisión

Aprendizaje automático mediante árboles de decisión Aprendizaje automático mediante árboles de decisión Aprendizaje por inducción Los árboles de decisión son uno de los métodos de aprendizaje inductivo más usado. Hipótesis de aprendizaje inductivo: cualquier

Más detalles

Aprendizaje Automatizado

Aprendizaje Automatizado Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto

Más detalles

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles

Cuando se escribe un documento, una de las cosas más importantes que puedes hacer es formatear el documento.

Cuando se escribe un documento, una de las cosas más importantes que puedes hacer es formatear el documento. Informáticas I 5. Office Técnicas En esta lección cubriremos las técnicas, características y usos de productos Windows Office tales como Microsoft Word 2013 y 2013 de Microsoft Excel. 5.1 Word Microsoft

Más detalles

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO 2014-2015 Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7 Página 1 de 7 1 CRITERIOS DE EVALUACIÓN 1.1 SECUENCIA POR CURSOS DE LOS CRITERIOS DE EVALUACION PRIMER CURSO 1. Utilizar números naturales y enteros y fracciones y decimales sencillos, sus operaciones

Más detalles

Documento diseño de evaluación en términos de comparabilidad entre grupos de tratamiento y control

Documento diseño de evaluación en términos de comparabilidad entre grupos de tratamiento y control SEPTIEMBRE 2012 Tercer Informe Documento diseño de evaluación en términos de comparabilidad entre grupos de tratamiento y control ÍNDICE 1. Introducción...4 2. La base de datos del PRONABES....5 3. Selección

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo Laboratorio de Redes de Neuronas Artificiales y Sistemas Adaptativos Universidade

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

INTRODUCCIÓN A LA CALIDAD DE DATOS APLICADO A LA VINCULACION DE LA INFORMACION CATASTRAL Y REGISTRAL

INTRODUCCIÓN A LA CALIDAD DE DATOS APLICADO A LA VINCULACION DE LA INFORMACION CATASTRAL Y REGISTRAL INTRODUCCIÓN A LA CALIDAD DE DATOS APLICADO A LA VINCULACION DE LA INFORMACION CATASTRAL Y REGISTRAL Septiembre de 2012 Presentación Las organizaciones, ya sean públicas o privadas, se preocupan cada vez

Más detalles

Técnicas empleadas. además de los discos las controladoras.

Técnicas empleadas. además de los discos las controladoras. RAID Introducción En los últimos años, la mejora en la tecnología de semiconductores ha significado un gran incremento en la velocidad de los procesadores y las memorias principales que, a su vez, exigen

Más detalles

ANEXO 26-A COMITÉ PERMANENTE DE INTERPRETACIÓN SIC N 32 ACTIVOS INTANGIBLES COSTOS DE SITIOS WEB. (Modificada en 2008) (IV Difusión)

ANEXO 26-A COMITÉ PERMANENTE DE INTERPRETACIÓN SIC N 32 ACTIVOS INTANGIBLES COSTOS DE SITIOS WEB. (Modificada en 2008) (IV Difusión) ANEXO 26-A COMITÉ PERMANENTE DE INTERPRETACIÓN SIC N 32 ACTIVOS INTANGIBLES COSTOS DE SITIOS WEB (Modificada en 2008) (IV Difusión) Interpretación SIC-32 Activos Intangibles - Costos de Sitios Web Referencias

Más detalles

Capítulo 6. Modificar archivos de datos. Ordenar casos

Capítulo 6. Modificar archivos de datos. Ordenar casos Capítulo 6 Modificar archivos de datos Los archivos de datos no siempre están organizados de forma idónea. En ocasiones podemos desear cambiar el orden de los casos, o transponer las filas y las columnas,

Más detalles

Unidad 1. Fundamentos en Gestión de Riesgos

Unidad 1. Fundamentos en Gestión de Riesgos 1.1 Gestión de Proyectos Unidad 1. Fundamentos en Gestión de Riesgos La gestión de proyectos es una disciplina con la cual se integran los procesos propios de la gerencia o administración de proyectos.

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

árbol como un conjunto de nodos y líneas

árbol como un conjunto de nodos y líneas ÁRBOLES CAPÍTULO 6 ÁRBOLES Desde el punto de vista conceptual, un árbol es un objeto que comienza con una raíz (root) y se extiende en varias ramificaciones o líneas (edges), cada una de las cuales puede

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo

Algoritmos de minería de datos incluidos en SQL Server 2008 1. Algoritmo de árboles de decisión de Microsoft [MIC2009a] Cómo funciona el algoritmo 1 Algoritmos de minería de datos incluidos en SQL Server 2008 Los algoritmos que aquí se presentan son: Árboles de decisión de Microsoft, Bayes naive de Microsoft, Clústeres de Microsoft, Serie temporal

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

Propiedad Colectiva del Código y Estándares de Codificación.

Propiedad Colectiva del Código y Estándares de Codificación. Propiedad Colectiva del Código y Estándares de Codificación. Carlos R. Becerra Castro. Ing. Civil Informática UTFSM. Introducción. n. En este trabajo se presentan específicamente dos prácticas de XP: Collective

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 013 Prof. Ramón Mahía ramon.mahia@uam.es Qué se entiende por Multicolinealidad en el marco

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

Random Forests. Felipe Parra

Random Forests. Felipe Parra Applied Mathematics Random Forests Abril 2014 Felipe Parra Por que Arboles para Clasificación PERFIL DE RIESGO: definir con qué nivel de aversión al riesgo se toman decisiones Interpretación intuitiva

Más detalles

App para realizar consultas al Sistema de Información Estadística de Castilla y León

App para realizar consultas al Sistema de Información Estadística de Castilla y León App para realizar consultas al Sistema de Información Estadística de Castilla y León Jesús M. Rodríguez Rodríguez rodrodje@jcyl.es Dirección General de Presupuestos y Estadística Consejería de Hacienda

Más detalles

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación

Contenido del Curso. Descubrimiento de Conocimiento a partir de datos. Introducción. Motivación Contenido del Curso Descubrimiento de Conocimiento a partir de Datos ISISTAN UNCPBA sschia@exa.unicen.edu.ar http://www.exa.unicen.edu.ar/catedras/dbdiscov/ Introducción al KDD Etapas Pre-procesamiento

Más detalles

Análisis de Datos. Práctica de métodos predicción de en WEKA

Análisis de Datos. Práctica de métodos predicción de en WEKA SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation

Más detalles

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0])

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Regresión logística Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Se trata de calcular la probabilidad en la que una

Más detalles

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR

opinoweb el poder de sus datos Descubra LA NECESIDAD DE PREDECIR opinoweb SOFTWARE FOR MARKET RESEARCH LA NECESIDAD DE PREDECIR Actualmente las empresas no sólo necesitan saber con exactitud qué aconteció en el pasado para comprender mejor el presente, sino también

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

White Paper: Responsive Design para Email

White Paper: Responsive Design para Email El Responsive Design o diseño adaptativo es una técnica de diseño y desarrollo html que permite que con una sola versión del HTML, se cubran todas las resoluciones de pantalla. El email o página web en

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Guía de utilización de la Plantilla para la inserción de Unidades Didácticas para Microsoft Word 2007 y 2010

Guía de utilización de la Plantilla para la inserción de Unidades Didácticas para Microsoft Word 2007 y 2010 Guía de utilización de la Plantilla para la inserción de Unidades Didácticas para Microsoft Word 2007 y 2010 Desde la herramienta de contenidos de PoliformaT es posible generar de manera sencilla unidades

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles