Capítulo 3 Metodología.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 3 Metodología."

Transcripción

1 Capíulo 3 Meodología Represenacón paramérca de la relacón enre el ngreso per cápa de los hogares y las caraceríscas soco-demográfcas de sus membros. La meodología ulzada en ese rabajo se basa en una represenacón paramérca de la forma en que el ngreso per cápa del hogar o los ngresos ndvduales esán relaconados con caraceríscas soco-demográfcas (o doacones de acvos ) de los ndvduos y hogares. Ese puno de vsa es muy smlar al méodo de Oaxaca-Blnder, excepo por dos punos: a) ene que ver con la dsrbucón oal en lugar de los ngresos medos y b) la represenacón paramérca de la generacón del ngreso famlar y posblemene ndvdual es más compleja. La represenacón paramérca ulzada esablece que el ngreso de cada hogar es la sumaora de: a) los ngresos por salaros de cada membro, b) los ngresos por auoempleo y c) oros ngresos. La especfcacón de lo aneror es: Y = n = 1 L w w + + Y 0 1,..., n = (22) Donde Y es el ngreso oal del hogar, w L son las horas de rabajo en un empleo remunerado salaralmene de cada membro del hogar, w es el salaro percbdo por cada membro, es el ngreso en caso de auoempleo, y Y 0 es el ngreso por oras fuenes. En esa especfcacón, los salaros por hora percbdos esán en funcón de las caraceríscas ndvduales de cada membro (escolardad y edad) y de la localzacón geográfca. El ngreso por auoempleo depende de los acvos del hogar, de la candad de Pág. 30 de 74

2 rabajo dedcada a la acvdad, de las caraceríscas de los membros del hogar dedcados a dcha acvdad de auoempleo y de la localzacón geográfca. La funcón de ofera laboral esá deermnada por las caraceríscas de los membros del hogar (número de membros con cero nvel de escolardad, edad y género). Se puede esmar un modelo economérco esándar con la forma reducda del ngreso del hogar de la ecuacón (22): τ τ τ Log y Ωτ X + ε = (23) donde Log τ y es el logarmo del ngreso per cápa y del hogar en el año τ ajusado para omar en cuena cambos en los precos enre regones, X es el vecor de caraceríscas del hogar, Ω es el vecor de reornos a ales caraceríscas y ε es el érmno de error de la 2 regresón, del cual se asume que ε ~ N(0, σ ). Enonces, los conrafacuales D( ) defndos anerormene en la ecuacón (21) son fáclmene calculados. Sn la dsncón (V,W), un conrafacual es ahora defndo como D(χ,π; Ω), donde χ( ) es la dsrbucón de las caraceríscas observables X y π( ) es la dsrbucón de caraceríscas nobservables ε. Pasando a una dsrbucón dscrea del ngreso τ { } ) y = y, y,..., en el perodo τ, donde Nτ es el número de observacones ( 1 2 y N τ en la muesra dsponble en el perodo τ =, ', para el año puede esablecerse: { y } = D, π, Ω ) ( χ (24) 3.2. Descomposcón de las conrbucones de los facores mcroeconómcos en los nveles de desgualdad. Una vez que se esma el ngreso para cada uno de los años ( y '), se calcula la conrbucón de los cambos en los reornos y en las caraceríscas observables e nobservables en el cambo oal de la dsrbucón del ngreso. Eso se hace smulando la Pág. 31 de 74

3 dsrbucón del ngreso que se hubera observado en s los reornos y las caraceríscas observables e nobservables huberan sdo los msmos que los obendos en (y vceversa). Ese méodo de smulacón descompone los cambos observados en la dsrbucón del ngreso en efeco precos, efeco acvos y efeco de nobservables. El efeco precos capura la conrbucón que enen los cambos en los reornos de las caraceríscas de los hogares, ales como la escolardad de sus membros; el efeco acvos mde la conrbucón de cambos en el nvel y dsrbucón de ales caraceríscas de los hogares en su conjuno; por úlmo, el efeco de nobservables capura el efeco de cambos en caraceríscas que no se pueden observar, como las habldades empresarales de los membros de cada hogar. Para medr el efeco precos oal se camban smuláneamene odos los coefcenes del vecor Ω, con lo que se genera un nuevo vecor smulado de ngresos per cápa de los hogares. Una vez que se esma la ecuacón (23) para y para, se susuyen los parámeros obendos en la ecuacón de en la ecuacón de (y vceversa): Log y = Ω' X + ε (25) El efeco precos oal se descompone en los efecos de cambos en reornos específcos, los cuales se calculan reemplazando uno por uno los coefcenes de por aquellos obendos en (y vceversa). Es decr, se repe el procedmeno susuyendo uno por uno los parámeros de un año en el oro para medr, ceers parbus, el efeco de cambos en los reornos de cada caracerísca de los hogares (caraceríscas demográfcas, de educacón, acvos fnanceros, ec.). Pág. 32 de 74

4 El efeco de nobservables se esma modfcando la dsrbucón de los resduales, susuyendo la dsrbucón de los resduales de con los de y vceversa. Eso se hace escalando los érmnos de error en un año por la desvacón esándar (σ) del oro año 1 : Log y = Ω X σ + ' ε (26) σ Fnalmene, el efeco acvos se calcula con la dferenca enre el cambo oal de la dsrbucón del ngreso per cápa de los hogares y los efecos precos y de nobservables obendos con anerordad. Tales smulacones producen un nuevo conjuno de vecores del ngreso per cápa de los hogares. Cada vecor smulado de ngreso per cápa represena los ngresos que los hogares puderon haber recbdo bajo dversos supuesos. Con cada vecor es posble calcular las meddas de desgualdad y llevar a cabo la descomposcón para esmar la conrbucón de efecos ndvduales. El ejercco de smulacón puede resumrse de la sguene manera: D(Ω, χ, π ) es la dsrbucón del ngreso de los hogares en el perodo, donde χ es la dsrbucón de las caraceríscas observables de los hogares, Ω los reornos de ales caraceríscas y π la dsrbucón de caraceríscas nobservables. El ejercco de descomposcón consse en esmar los efecos sobre la dsrbucón del ngreso per cápa de los hogares modfcando uno ó más componenes de D( ). El efeco precos oal se esma cambando odos los elemenos del vecor Ω. El efeco ndvdual de reornos específcos se calcula cambando sólo un elemeno del vecor Ω. El efeco de nobservables se calcula modfcando la dsrbucón de los resduales. Por úlmo, el efeco acvos se calcula como la dferenca enre el cambo oal en la dsrbucón del ngreso per cápa de los hogares y los efecos precos y efeco de nobservables smulados en los pasos anerores. 1 Juhn e al. (1993) calcularon resduales smulados basados en el percenl del ngreso acual de un hogar en un año en parcular y la dsrbucón de promedo acumulado en el empo. S se asume una dsrbucón normal, enonces eso es equvalene a escalar los érmnos de error en un año por la desvacón esándar del oro año. Ese es el procedmeno usado aquí. Pág. 33 de 74

5 El nerés radca en explcar el cambo en la dsrbucón del ngreso per cápa de los hogares ( D) enre los años y : D = D(Ω, χ,π ) - D(Ω, χ, π ) (27) Eso puede descomponerse en los res efecos que se han vendo menconando: efeco precos, efeco de nobservables (después de haber ajusado los precos), y efeco acvos (después de haber calculado los efecos precos y de nobservables ). Eso puede esablecerse como: D = [D(Ω, χ,π ) - D(Ω, χ, π )] + [D(Ω, χ,π ) - D(Ω, χ, π )] + [D(Ω, χ,π ) - D(Ω, χ, π )] (28) Smplfcando: D = D Ω (χ,π ) + D π (Ω, χ ) + D χ (Ω, π ) (29) Donde cada subíndce represena el cambo en la dsrbucón de ngresos como consecuenca de haber cambado la varable señalada en dchos subíndces. Esa es una descomposcón secuencal de los efecos precos, nobservables y acvos. Sn embargo, esa descomposcón no manene las condcones fnales (correspondenes a ) consanes en cada paso de la smulacón. La descomposcón secuencal mde: a) el efeco precos usando las caraceríscas observables e nobservables de los hogares en el perodo, b) el efeco de nobservables usando los reornos en y las caraceríscas observables de los hogares en, y c) el efeco acvos usando los reornos y las caraceríscas nobservables en. Pág. 34 de 74

6 Para manener las condcones fnales consanes y medr odos los efecos usando varables del perodo, se aplca una ransformacón reacomodando los érmnos, obenendo: D = D Ω (χ,π ) + D π (Ω, χ ) + D χ (Ω,π ) + [D π (Ω, χ ) - D π (Ω, χ )] (30) ef. precos + ef. de nobservables + ef. acvos + remanene O alernavamene, para manener las condcones ncales (en ) consanes: - D = D Ω (χ,π ) + D π (Ω, χ ) + D χ (Ω,π ) + [D π (Ω, χ ) - D π (Ω, χ )] (31) Las ecuacones (30) y (31) ndcan que el cambo oal en la dsrbucón del ngreso per cápa puede expresarse como la suma de los efecos precos y de nobservables dadas las condcones fnales (ncales) más el efeco acvos dadas las condcones ncales (fnales) más un remanene. Los érmnos remanenes son la neraccón enre dferenes facores sendo smulados, es decr, muesran que el efeco combnado de modfcar dos ó más facores al msmo empo dígase reornos y caraceríscas de los hogares no es gual a la suma de los componenes por separado, que en ese caso son el efeco de cambar reornos manenendo consanes las caraceríscas de los hogares y el efeco de cambar ales caraceríscas manenendo los reornos consanes. 2 S se esablece el supueso razonable de monooncdad de la descomposcón en cambos en reornos, caraceríscas de los hogares y facores nobservables, los resulados de las descomposcones (30) y (31) represenan los límes superor e nferor de las esmacones. Tomando ese supueso, el análss de los resulados se basa en el promedo de los límes superor e nferor. 3 2 El msmo procedmeno se aplca para descomponer el efeco precos oal en efecos precos específcos. El efeco combnado de modfcar dos o más reornos al msmo empo por ejemplo los reornos de caraceríscas de los hogares y reornos regonales no será gual a la suma de modfcar cada reorno manenendo los demás consanes. Por lo ano, la descomposcón del efeco precos oal en sus componenes ncluye un érmno remanene que refleja el hecho de que esa descomposcón no fue hecha de manera secuencal para manener las condcones ncales (fnales) consanes. 3 Eso se refere a que s, por ejemplo, omamos el perodo , se calculan prmero las conrbucones omando como año base 1984 (líme nferor), y poserormene se obenen las conrbucones omando como año base 2002 (líme superor), para así poder calcular las conrbucones promedo enre 1984 y Pág. 35 de 74

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo

Caracterís cas de la Metodología para calcular Rentabilidad Ajustada por Riesgo P S 2015 M C P S 2015 Inroduccón El Premo Salmón es hoy el prncpal reconocmeno enregado a los Fondos Muuos en Chle. Movo de orgullo y cenro de campañas publcaras, ese reconocmeno ha cambado su foco hace

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( )

El efecto traspaso de la tasa de interés en el Perú: Un análisis a nivel de bancos ( ) El efeco raspaso de la asa de nerés en el Perú: Un análss a nvel de bancos (2002-2005) Rocío Gondo Erck Lahura Dona Rodrguez Marzo, 2006 CONTENIDO Objevo Imporanca Trabajos Prevos Trabajos Prevos Perú

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

SISTEMAS DE ECUACIONES SIMULTANEAS

SISTEMAS DE ECUACIONES SIMULTANEAS Apunes de eoría Economérca I. Profesor: Vvana Fernández SISEMAS DE ECUACIONES SIMULANEAS I INRODUCCION A la fecha, nos hemos cenrado en modelos unecuaconales, eso es, aquellos que nvolucran sólo una ecuacón

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ Ê Ð Ò ÒØÖ Ð ÈÖ Ó Ð È ØÖ Ð Ó Ý ÐÓ Ê ØÓÖÒÓ Ð ÓÒ ÐÓ Ø ÒØÓ Ë ØÓÖ ÓÒ Ñ Ó Ð ÒÓ Æ Ø Ð Á Ð ÐÐ Ö Ó Ë

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX

VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX VERIFICACIÓN DE LOS SUPUESTOS DEL MODELO DE COX Rafael E. Borges P. Escuela de Esadísca, Unversdad de Los Andes, Mérda 511, Venezuela. e-mal: borgesr@ula.ve Temáca: Méodos Esadíscos en Epdemología. Resumen

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Físca General Proyeco PMME - Curso 8 Insuo de Físca Faculad de Inenería UdelaR M O V I M I E N T O E P R O Y E C T I L M O V I M I E N T O R E L A T I V O Vanessa íaz Florenca Clerc Un olero Juan paea

Más detalles

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV)

Dinero, precios, tasa de interés y actividad económica: un modelo del caso colombiano (1984:I 2003:IV) Dnero, precos, asa de nerés y acvdad económca: un modelo del caso colombano (984:I 23:IV) José Fernando Escobar. y Carlos Eseban osada. esumen A parr de un esquema de ofera y demanda de dnero se esmó un

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

Pronóstico con Modelos Econométricos

Pronóstico con Modelos Econométricos Pronósco con Modelos conomércos Hldegar A. Ahumada UD A common complan (n he UK): When weaher forecass go awr, meeorologss ge a new supercompuer When economs ms-forecas, we ge our budges cu (Hendr, 200)

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Evaluación de posturas estáticas: el método WR

Evaluación de posturas estáticas: el método WR Año: 9 47 Evaluacón de posuras esácas: el méodo WR Evaluaon of sac orkng posures: WR mehod L évaluaon des posures de raval saques: le méhode WR Alfredo Álvarez Ingenero ndusral CENTRO NACIONAL DE CONDICIONES

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen

Nélida Diaz, Francisco Jiménez y Mauricio López División de Tiempo y Frecuencia. Resumen Nuevo esquemade generacón de laescalade empo UTCCNM Nélda Daz, Francsco Jménez y Maurco López Dvsón de Tempo y Frecuenca Resumen La escala de Tempo Unversal Coordnado del CENAM, UTCCNM, se genera desde

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model Unversy of Exremadura Deparmen of Economcs Macroeconomc Effecs of Fscal Shocks n he European Unon: A GVAR Model Ths verson: February 212 Alejandro RICCI RISQUETE Julán RAMAJO HERNÁNDEZ Unversdad de Exremadura

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

El Modelo IS-LM. El modelo IS-LM

El Modelo IS-LM. El modelo IS-LM El Modelo IS-LM El modelo IS-LM 4. Introduccón 4.2 La demanda agregada: La funcón de nversón 4.3 Equlbro del mercado de benes: La curva IS 4.4 Equlbro del mercado de dnero: La curva LM 4.5 Equlbro de la

Más detalles

Una relación no lineal entre inflación y los medios de pago

Una relación no lineal entre inflación y los medios de pago BANCO DE LA REPUBLICA Subgerenca de Esudos Económcos Una relacón no lneal enre nflacón y los medos de pago Munr A. Jall Barney Lus Fernando Melo Velanda * Sanafé de Bogoá, Dcembre de 999 * Los resulados

Más detalles

Economía Aplicada. Estimador de diferencias en diferencias. Ver Wooldridge cap.13. Departamento de Economía Universidad Carlos III de Madrid 1 / 19

Economía Aplicada. Estimador de diferencias en diferencias. Ver Wooldridge cap.13. Departamento de Economía Universidad Carlos III de Madrid 1 / 19 Economía Aplcada Estmador de dferencas en dferencas Departamento de Economía Unversdad Carlos III de Madrd Ver Wooldrdge cap.13 1 / 19 Análss de Polítca: Dferencas-en-Dferencas En muchos casos la varable

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes DOCUMENTO CEDE 2002-02 ISSN 1657-7191 (Edcón elecrónca) ABRIL DE 2002 CEDE EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Aras UCLA Albero Carrasqulla Unversdad de los Andes Aruro Galndo Banco

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

En España operaron empresas en 2014, un 0,4% más que el año anterior. En 2014 se crearon empresas y desaparecieron 277.

En España operaron empresas en 2014, un 0,4% más que el año anterior. En 2014 se crearon empresas y desaparecieron 277. 25 de novembre de 2016 Indcadores de Demografía Empresaral Año 2014 En España operaron 3.432.072 empresas en 2014, un 0,4% más que el año aneror En 2014 se crearon 347.605 empresas y desapareceron 277.327

Más detalles

Metodología de Selección y Cálculo. de Índices Bursátiles

Metodología de Selección y Cálculo. de Índices Bursátiles Bolsa de Comerco de Sanago» Índces Bursáles Meodología de Seleccón y Cálculo de Índces Bursáles Gerenca de Planfcacón y Desarrollo Dcembre 2007 Gerenca de Planfcacón y Desarrollo» 399-3854 Bolsa de Comerco

Más detalles

Cálculo del area de intercambio del rehervidor y del condensador.

Cálculo del area de intercambio del rehervidor y del condensador. M.M.J. Págna 1 de 16 0 Sepembre 005 Revsón (0) Cálculo del area de nercambo del rehervdor y del condensador. Rehervdor. Procedmeno de dseño: En ese rabajo se preende proporconar un procedmeno sencllo,

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS

INTERPOLACIÓN CURVA DE TASAS DE INTERÉS www.quan-radng.co INTERPOLACIÓN CURVA DE TASAS DE INTERÉS El rendmeno hasa el vencmeno de un bono es una medda úl para eecos de comparacón. Sn embargo hay oras meddas que conenen mucha más normacón como

Más detalles

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX

PREDICCIÓN DE VOLATILIDAD CON LOS ÍNDICES DE VOLATILIDAD VIX Y VDAX PREDICCIÓN DE VOLILIDD CON LOS ÍNDICES DE VOLILIDD VIX Y VDX El objevo de ese rabajo es esudar la capacdad predcva de los índces de volaldad. Para el perodo 99-0, analzamos daos de los índces amercanos

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

DIVISIÓN DE PLANIFICACIÓN Y NORMATIVA DI

DIVISIÓN DE PLANIFICACIÓN Y NORMATIVA DI DIVISIÓN DE PLANIFICACIÓN Y NORMATIVA DI-2007-02 PROPUESTA DEL CÁLCULO DEL VALOR EN RIESGO (VaR) PARA LOS FONDOS ADMINISTRADOS EN EL SISTEMA NACIONAL DE PENSIONES (Borrador para dscusón) Mayo 2007 Clasfcacón

Más detalles

Ser keynesiano en el corto plazo y clásico en el largo plazo*

Ser keynesiano en el corto plazo y clásico en el largo plazo* Ser keynesano en el coro plazo y clásco en el largo plazo* Gérard Duménl** y Domnque Lévy*** Inroduccón * Traducdo por Davd A. Turpn jr., Deparameno de Economía de la UAM-A. ** CE: gerard. dumenl@u-pars0.fr

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales

2. Métodos Numéricos Aplicados a Ecuaciones Diferenciales ... Méodo de Euler Haca Adelane Anexo -4. Méodos Numércos Aplcados a Ecuacones Dferencales Párase del más smple po de ecuacón dferencal ordnara, que la de po lneal de prmer orden, el clásco Problema de

Más detalles

Tema 3: Números índice

Tema 3: Números índice Tema : Números índce Los números ndce son ndcadores ue nos ermen ver la evolucón de una o más magnudes a ravés del emo, esaco, ec. Índce smle Dada una varable o magnud X, se defne el número índce de X

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541

En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desaparecieron 334.541 25 de novembre de 2014 Indcadores de Demografía Empresaral Año 2012 En España operaron 3.466.110 empresas en 2012. Ese año se crearon 287.311 y desapareceron 334.541 Las empresas creadas represenaron el

Más detalles

Impuestos óptimos con entradas y salidas de empresas

Impuestos óptimos con entradas y salidas de empresas Impuesos ópmos con enradas y saldas de empresas Mayo 24 Rodrgo A. Cerda 1 Ponfca Unversdad Caólca de Chle JEL: H21, H25 Palabras Claves: Impuesos dsorsonadores, recaudacón fscal. Absrac Ese rabajo analza

Más detalles

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código.

Ingeniería Económica y Análisis Financiero Finanzas y Negocios Internacionales Parcial 3 Diciembre 10 de Nombre Código. Ingenería Económca y Análss Fnancero Fnanzas y Negocos Internaconales Parcal 3 Dcembre 0 de 20 Nombre Códgo Profesor: Escrba el nombre de sus compañeros Al frente Izquerda Atrás Derecha Se puede consultar

Más detalles

PRODUCTO INTERNO BRUTO TRIMESTRAL

PRODUCTO INTERNO BRUTO TRIMESTRAL PRODUCTO INTERNO BRUTO TRIMESTRAL Prmer Trmesre 2010 La Paz - Bolva Pr o d u c o Inerno Br u o Tr m e s r a l Prmer Trmesre 2010 Elaborado por el Insuo Naconal de Esadísca Depóso Legal Nº 4-4 - 227-10

Más detalles

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO L INNOVCION EN L LITERTUR RECIENTE DEL CRECIMIENTO ENDOGENO Carlos Borondo rrbas Unversdad de Valladold Revsón: sepembre 28 Resumen Ese arículo presena un repaso de los prncpales modelos recenes que hacen

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Autor: Jorge Mauricio Oviedo 1

Autor: Jorge Mauricio Oviedo 1 odelos Economércos ulecuaconales de Esmacón de Demandas Auor: Jorge aurco Ovedo Resumen: En ese arículo se efecúa una revsón de los prncpales éodos Economércos para esmar ecuacones smuláneas de demanda

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España Fac. CC. Económcas y Empresarales Unversdad de La Laguna Fac. CC. Económcas y Empresarales Unv. de Las Palmas de Gran Canara Análss de la compeenca en un mercado mayorsa de elecrcdad: el caso de España

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

ESTRUCTURA DE LAS SIMILARIDADES

ESTRUCTURA DE LAS SIMILARIDADES ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, rgonzale@esad.ucm.es 2 DISIA. Faculad de Informáca. UCM, lgarmend@fd.ucm.es 3 Unversa

Más detalles

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO)

Tema 8: DESIGUALDAD, Xisco Oliver Economía del Bienestar (2º GECO) Tema 8: DESIGUALDAD, REDISTRIBUCIÓN Y POBREZA Xsco Olver 20610 - Economía del Benestar (2º GECO) Motvacón Benestar: el objetvo últmo del Estado es maxmzar el benestar El benestar se obtene a partr de las

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

Texturas Dinámicas y Segmentación

Texturas Dinámicas y Segmentación Deparameno de Compuacón Faculad de Cencas Exacas y Naurales Unversdad de Buenos Ares Tess de Lcencaura Texuras Dnámcas y Segmenacón Juan Manuel Rodríguez Drecora: Mara E. Mejal Buenos Ares, 23 de Marzo

Más detalles

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características

MMII_L1_c2: Ecuaciones casi lineales de primer orden: Método de las características MMII_L_c: Ecacone ca lneale de prmer orden: Méodo de la caraceríca Gón de la clae: En ea clae e dearrolla la búqeda de olcone paramérca del problema de Cach defndo por ecacone ca lneale de prmer orden.

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

METODOLOGÍA ENERGÍA ELECTRICA

METODOLOGÍA ENERGÍA ELECTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCION DE OPERACIONES Subdeparameno. Esadíscas Secorales METODOLOGÍA ENERGÍA ELECTRICA Sanago, 26 Dcembre de

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay

Un Modelo Macroeconómico del Riesgo de Crédito en Uruguay Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanes Aleandro Pena Andrés Sosa 002-204 688-7565 Un Modelo Macroeconómco del Resgo de Crédo en Uruguay Gabrel Illanesª, Aleandro Pena b**,

Más detalles

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO Deparameno de Economía Aplcada Faculad de Cencas Económcas y Empresarales e-mal: ecoapl@eco.uva.es Avda. del Valle de

Más detalles

Héctor Maletta. Análisis de panel con variables categóricas

Héctor Maletta. Análisis de panel con variables categóricas Hécor Malea Análss de panel con varables caegórcas Buenos Ares, 2012 CONTENIDO 1. Inroduccón al análss de panel... 1 1.1. El desarrollo hsórco del análss de panel... 1 1.2. El prsma de daos... 3 1.3. Clasfcacón

Más detalles

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk

Determinación de las garantías para el contrato de futuros de soja en pesos. Value at Risk Deerminación de las garanías para el conrao de fuuros de soja en pesos. Value a Risk Gabriela acciano inancial Risk Manager gfacciano@bcr.com.ar Direcora Deparameno de Capaciación y Desarrollo de Mercados

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100 Manual Meodológco Índce de Cosos del Transpore Base 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Deparameno de Esadíscas de Precos Febrero de 200 Índce. INTRODUCCIÓN...5 2. DEFINICIÓN DEL

Más detalles

ECONOMETRÍA APLICADA I

ECONOMETRÍA APLICADA I FRANCISCO PARRA RODRÍGUEZ (Docor en Economía. Unversdad Naconal de Educacón a Dsanca) ECONOMETRÍA APLICADA I Economera Aplcada I by Francsco Parra Rodríguez s lcensed under a Creave Commons Reconocmeno-NoComercal-ComparrIgual

Más detalles

Ilustración 1.1 Esquema del flujo sobre rugosidad

Ilustración 1.1 Esquema del flujo sobre rugosidad Concepos eórcos Ecuacones de Conservacón. Ecuacones de conservacón: La solucón de los problemas de hdráulca se basa en la resolucón de las ecuacones de Naver-Sokes, que son las de conservacón de momeno

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y obnas 4. Inroduccón 4. ondensadores 4. Energía almacenada en un condensador 4.4 socacón de condensadores 4. obnas 4.6 Energía almacenada en una bobna 4.7 socacón de bobnas ( E r

Más detalles