Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R"

Transcripción

1 Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools CP DE - COMENIUS - C21 * Universidad de Sevilla ** Este proyecto ha sido desarrollado con ayuda parcial de la Unión Europea dentro del marco del programa Sócrates. El contenido no refleja necesariamente la posición de la Unión Europea ni implica ninguna responsabilidad por parte de la Unión Europea. 0

2 1. Introducción Este trabajo versa sobre el popular juego televisivo Quién quiere ser millonario? R. Formularemos un modelo matemático del juego y encontraremos la estrategia óptima de un participante del juego. Cuando se escribió este trabajo había 45 versiones del programa en 71 países. En más de 100 países, diferentes cadenas de televisión habían comprado la licencia y emitirían el programa antes o después. Quién quiere ser millonario? R debutó en el Reino Unido en Septiembre de 1998 y tuvo un gran éxito. Después se extendió por todo el mundo, llegando a España en el verano del año 2000, donde fue emitido por la cadena de televisión Telecinco. Aunque las reglas del juego son similares en todos los países, en este trabajo nos referiremos a las reglas seguidas en la versión española del juego. Se elige a un candidato de entre 10, y éste tiene la oportunidad de ganar un premio de 50 millones de pesetas (en adelante las cifras serán dadas en Euros). Para alcanzar dicha cantidad debe responder correctamente a 15 preguntas de respuesta múltiple seguidas. El concursante puede abandonar el juego y mantener sus ganancias. En cada etapa le proponen una pregunta y cuatro posibles respuestas antes de decidir si juega o no. Una vez que ha decidido seguir jugando, tiene que responder correctamente a dicha pregunta para poder seguir en el juego. Cada pregunta tiene un cierto valor monetario, dados en la siguiente tabla en Euros. El dinero que el concursante puede ganar si contesta correctamente a cada una de las preguntas viene dado en la tabla 1. Hay tres estados ( puntos de seguridad ) donde el dinero se acumula y no se puede perder aunque el concursante responda incorrectamente a una de las preguntas. Esas tres cantidades de seguridad son: 1800, y Euros. No hay tiempo límite para responder a una pregunta. Si el tiempo se agota con un jugador concreto, el siguiente programa continuará con el mismo jugador. En cualquier momento el concursante puede usar uno o más comodines. Estos son: Opción del 50 %: la computadora elimina dos de las cuatro posibles respuestas, dejando sólo la correcta y una de las incorrectas. Teléfono: el concursante puede consultar la pregunta por teléfono a un amigo o familiar, con un tiempo máximo de llamada de 30 segundos. Público: cada miembro del público tiene la opción de elegir la respuesta que considere correcta presionando un botón en su asiento. Los resultados de las elecciones del público se muestran al concursante en porcentajes. 1

3 pregunta n o valor monetario Cuadro 1: Recompensas inmediatas En adelante nos referiremos a esos comodines como: comodín 1 para el 50 %, comodín 2 para el Teléfono, comodín 3 para el Público. Cada concursante puede usar cada comodín sólo una vez durante el juego completo. El principal objetivo de este trabajo es mostrar como un problema real de toma de decisión difícil puede ser modelado y resuelto fácilmente mediante herramientas básicas de la Investigación Operativa, en nuestro caso mediante Programación Dinámica Discreta. Este objetivo se alcanzará después de tres fases: 1. modelado, 2. formulación matemática, 3. simulación del proceso real. 2

4 En la fase de modelado identificamos los elementos que describen el problema y los asociamos con elementos matemáticos. En la fase de formulación proponemos una descripción del problema como un proceso de decisión Markoviano, resuelto mediante programación matemática discreta. Se presentarán dos modelos que guiarán a los jugadores a encontrar estrategias óptimas que maximicen su ganancia esperada, modelo llamado estrategia de máxima esperanza, y estrategias óptimas que maximicen la probabilidad de alcanzar una cantidad de dinero fijada, estrategia llamada estrategia de máxima probabilidad. Al hacer esto estableceremos dos modelos matemáticos del juego, y encontraremos estrategias óptimas para un concursante cualquiera. Esto se consigue mediante la descripción matemática del juego como un proceso de decisión Markoviano discreto y su resolución mediante programación matemática discreta. El resto del trabajo se organiza de la siguiente forma: la segunda sección está dedicada a mostrar el modelo matemático general (estados, posibles acciones, recompensas, función de transición, probabilidades de contestar correctamente y sus estimaciones). En la tercera sección presentamos la descripción del primer modelo (estrategia de máxima esperanza). También en esta sección se presenta el caso en el que queremos maximizar la probabilidad de ganar una cierta cantidad de dinero (estrategia de máxima probabilidad), comenzando en un estado de partida. Después de esto, presentamos simulaciones de cómo jugar a este juego de forma dinámica. 2. El modelo general El juego real requiere que el participante tome decisiones cada vez que contesta a una pregunta correctamente. El horizonte es finito, es decir, tenemos N = 16 posibles estados, donde el 16 o estado corresponde a la situación después de contestar correctamente la pregunta número 15. Para tomar una decisión, el concursante tiene que conocer el número de la pregunta en la que está y el número de comodines que ha usado hasta ese momento. La historia del juego se resume con esa información. Definimos S como el conjunto de vectores de estado s = (k, l 1, l 2, l 3 ), donde k es el índice de la pregunta en la que nos encontramos y { 1 si el comodín i no ha sido utilizado, l i = 0 si el comodín i ha sido utilizado en una pregunta anterior. En cualquier estado s S siendo A(s) el conjunto de posibles acciones en ese estado. Si suponemos que estamos en el estado s = (k, l 1, l 2, l 3 ), A(s) dependerá del índice de la pregunta en la que estemos y de los comodines que nos queden por usar. Si k = 16 el juego se ha terminado y no hay posibles acciones. Si k 15, el concursante tiene varias posibilidades: 3

5 r 0 0 r r r r r r r r r r r r r r r r0 0 r1 0 r2 0 r3 0 r4 0 r r r r r r r r r r r Cuadro 2: Recompensas inmediatas y dinero asegurado Responder a la pregunta sin usar comodines. Responder a la pregunta utilizando uno o más comodines, si le queda alguno. En ese caso, el concursante debe especificar el comodín que va a usar. Plantarse y abandonar el juego Si el jugador decide no contestar, la recompensa inmediata que recibe es el valor monetario de la última pregunta contestada. Si decide contestar, la recompensa inmediata es una variable aleatoria y depende de la probabilidad de contestar correctamente. Si al responder lo hace incorrectamente, la recompensa inmediata es el último punto de seguridad alcanzado antes de fallar. Si el concursante contesta correctamente, no hay recompensa inmediata, pues pasará a la siguiente pregunta. Denotemos r k la recompensa inmediata que obtiene el concursante si decide dejar el juego después de responder correctamente la pregunta k-ésima, es decir, si decide pararse en el estado s = (k + 1, l 1, l 2, l 3 ), y denotemos por rk la recompensa inmediata si fallase en el estado s = (k + 1, l 1, l 2, l 3 ). Ver la tabla 2. 4

6 Después de tomar una decisión nos encontraremos en un nuevo estado del proceso. Si el concursante decide plantarse o falla la pregunta, el juego se termina. Si decide seguir jugando y responde correctamente, hay una transición a otro estado t(s, a) = (k, l 1, l 2, l 3) S, donde el índice k de la pregunta es igual a k + 1 y los indicadores de los comodines l i son: l i = { l i 1 l i si el concursante usa el comodín i en esa pregunta, en otro caso. El hecho de contestar correctamente viene definido por su probabilidad, dependiendo de la pregunta en la que estemos, siendo esas probabilidades iguales para todos los candidatos. Además supondremos que en dichas probabilidades influyen los comodines que usemos, que se supone que nos ayudan, es decir, aumentan la probabilidad de contestar correctamente. Denotemos por p a s la probabilidad de contestar correctamente en el estado s S si llevamos a cabo la acción a A(s). Nuestro análisis tiene en cuenta la posible habilidad del participante. Por ello, dividiremos a los concursantes en cuatro grupos, A, B, C, D. El hecho de que un concursante pertenezca a uno de los grupos quiere decir que sus probabilidades a priori de responder correctamente p a s se modifican por un factor, que es diferente para cada grupo. Matemáticamente quiere decir que dichas probabilidades se multiplican por un factor de corrección h G, G {A, B, C, D}, que las modifica de la siguiente forma: h G p a S, G {A, B, C, D}, donde h A = 1, h B = 0,9, h C = 0,8, h D = 0,7. Esto significa que cuanto menor es la habilidad del participante, menores son sus probabilidades de responder correctamente una pregunta. Uno de los principales problemas en la resolución del problema real es la obtención de una buena estimación de las probabilidades en el proceso de decisión. Para una estimación realista, se necesitarían datos de cada pregunta y cada posible combinación de comodines utilizados, un número de concursantes que contestaron correctamente y un número de concursantes que fallaron en cada pregunta y con cada combinación de comodines. Además, dicho número debería ser suficientemente grande para estimar las probabilidades. Como se mencionó antes, sólo hay disponibles datos reales de unos cuarenta programas y, por lo tanto, no tenemos observaciones reales para la mayoría de las combinaciones de 5

7 preguntas y comodines. Aún así, tenemos información suficiente para poder estimar las probabilidades de contestar correctamente sin utilizar comodines y utilizando un único comodín. Y con esa información, y ciertas suposiciones que ahora enunciaremos, podemos resolver el problema de la estimación de probabilidades. Sea p k la probabilidad de contestar correctamente sin usar comodines. Supongamos que existe una relación multiplicativa entre, la probabilidad de fallar una pregunta en un cierto estado utilizando el comodín i y la probabilidad de fallarla sin utilizar comodines. Esta relación es tal que la probabilidad de equivocarse disminuye por un factor c i, 0 < c i < 1, i = 1, 2, 3, o en otras palabras: p i k = 1 (1 p k)c i k, (1) donde p i k es la probabilidad de contestar correctamente la pregunta número k utilizando el comodín i ésimo (conocemos tanto p k como p i k para todo (k, i)). Además suponemos que la combinación de varios comodines modifica las probabilidades originales (1 p k ) multiplicando por las diferentes constantes c. Esta simplificación nos permite dar una expresión heurística de las probabilidades, lo que se puede justificar porque no teníamos suficientes datos para dar una estimación real para cada combinación de comodines. Con esta suposición, podemos usar la información que tenemos sobre los concursantes para estimar sus probabilidades de contestar correctamente con toda combinación posible de comodines. Ahora estimaremos las probabilidades de contestar correctamente sin usar comodines y las constantes c i k a partir de los datos disponibles. Para toda pregunta k, consideramos los concursantes que no emplearon comodines y los que emplearon solo uno. Entonces, para cada uno de esos grupos de concursantes, tendremos en cuenta el número de ellos que contestaron correctamente esta pregunta y aquellos que la fallaron. Esas probabilidades se estiman mediante las frecuencias observadas en los datos, y son las que se muestran en la tabla 3. Sea p k la probabilidad de responder correctamente la k-ésima pregunta sin utilizar comodines, p 1 k la probabilidad de responder correctamente utilizando el comodín 1 (comodín del 50 %), p 2 k la probabilidad de responder correctamente utilizando el comodín 2 (telefonear a un amigo) y p 3 k la probabilidad de responder correctamente utilizando el comodín 3 (consultar al público). En la tabla 3 tenemos las probabilidades de responder correctamente (dadas en %) 1. 1 valor original 100 % reemplazado por 99 % 6

8 pregunta n o k p k p 1 k p 2 k p 3 k Cuadro 3: Estimación de las probabilidades de responder correctamente En nuestro modelo utilizamos la ecuación (1) para estimar los valores de las constantes c. Por lo tanto, para cada pregunta k el factor c i k modifica la probabilidad de acertar cuando se usa el comodín i de la siguiente forma: La tabla 4 presenta los diferentes factores. c i k = 1 pi k. 1 p k 3. Formulación matemática En esta sección presentamos dos modelos diferentes. El primero está pensado para encontrar la estrategia que maximiza la recompensa esperada, y el segundo la que maximice la probabilidad de alcanzar una pregunta determinada. Ambos, además de dar la máxima probabilidad y la recompensa esperada, nos darán también las estrategias óptimas a seguir. 7

9 k c 1 k c 2 k c 3 k Cuadro 4: Factores de corrección 3.1. Modelo 1: recompensa esperada Sea p a s la probabilidad de responder correctamente si en el estado s S se lleva a cabo la acción a A(s). Supongamos que las probabilidades p a s sólo dependen del índice de la pregunta en la que estemos y de los comodines utilizados. Sea f(s) la recompensa máxima esperada que se puede obtener desde el estado s. Podemos evaluar f(s) de la siguiente forma: La máxima recompensa esperada a partir de s será el máximo de todas las recompensas esperadas que se pueden obtener eligiendo las diferentes acciones posibles en el juego a A(s). En ese punto, podemos o bien abandonar el juego, con lo que nos aseguraremos r k 1, o ir a la siguiente pregunta (supondremos que viene indexada por k). En el último caso, si elegimos la acción a A(s), entonces contestaremos correctamente con probabilidad p a s y fallaremos con probabilidad (1 p a s). La recompensa obtenida cuando fallamos una pregunta viene dada por las recompensas aseguradas citadas anteriormente, en nuestro caso, para la pregunta k, es decir, rk 1. Por otro lado, si contestamos correctamente a la pregunta k se produce una transición a la siguiente pregunta con los comodines no utilizados. Denotemos por t(s, a) a la función de transición que nos da el nuevo estado en el que nos encontramos si se elige la acción a en el estado s. Entonces, a partir de ese punto la 8

10 Estado f(estado) 15,1,1, ,0,0, ,0,1, ,0,1, ,1,1, ,1,0, ,1,0, ,0,0, Cuadro 5: Probabilidades en el estado de partida. recompensa esperada es f(t(s, a)). En resumen, la recompensa esperada bajo la acción a es: Por tanto, p a sf(t(s, a)) + (1 p a s)r k 1. f(s) = máx {r k 1, p a sf(t(s, a)) + (1 p a s)rk 1}. a A(s) Para obtener la máxima recompensa esperada tenemos que evaluar f(estado inicial). Si el concursante comienza desde la pregunta número 1 con los tres comodines, tenemos que calcular f(1, 1, 1, 1). Los valores de f se pueden calcular recursivamente mediante inducción inversa, ya que conocemos el valor de f en cada estado factible del estado final. En la tabla 5 se muestran dichos valores, calculados de forma sencilla. Por lo tanto, mediante la inducción inversa y a partir de los datos de la tabla 5, obtenemos f(1, 1, 1, 1) y las estrategias óptimas. En este proceso utilizamos las probabilidades estimadas y las constantes obtenidas en la sección 2. Todos los cálculos se realizaron mediante un programa informático desarrollado con MAPLE. La solución hallada por el programa es f(1, 1, 1, 1) = 2490,89, y la estrategia a seguir para obtener esa ganancia esperada es la que se muestra en la tabla Modelo 2: alcanzar una pregunta En esta sección abordamos una nueva situación. Hemos encontrado en la sección 3.1 la estrategia óptima a seguir si quisiéramos maximizar la recompensa esperada, y cuál es la 9

11 Pregunta Estrategia 1 Sin comodines 2 Sin comodines 3 Sin comodines 4 Sin comodines 5 Público 6 Sin comodines 7 Sin comodines 8 Sin comodines 9 50 % 10 Teléfono 11 Sin comodines 12 Sin comodines 13 Parar Recompensa esperada Cuadro 6: Solución del modelo 1. recomoensa máxima esperada. Ahora queremos encontrar la estrategia óptima a seguir si queremos maximizar la probabilidad de alcanzar una pregunta determinada y responderla correctamente. Además, también damos la probabilidad de conseguirlo si se sigue la estrategia óptima. Definamos el nuevo problema. Recordar que un estado s viene definido como un vector de cuatro componentes, como antes: s = (k, l 1, l 2, l 3 ). Sea k = 1, 2,, 15, un número fijo. Nuestro objetivo es responder correctamente la pregunta número k. Denotamos por f(s) la máxima probabilidad de llegar a la pregunta k y contestarla correctamente, comenzando desde el estado s. Evaluamos f(s) de la siguiente forma: La máxima probabilidad de alcanzar y contestar correctamente la pregunta número k, comenzando en el estado s que es el máximo de entre las probabilidades de contestar correctamente la pregunta actual, dependiendo de la acción a A(s) elegida, multiplicado por la máxima probabilidad de alcanzar nuestro objetivo desde el estado t(a, s), a A(s), donde t(a, s) es el estado en el que nos encontraremos si elegimos la acción a en s y respondemos correctamente. 10

12 Es decir, tenemos que: f(k, l 1, l 2, l 3 ) = máx 0 g i l i g i Z, i {p k,g1,g 2,g 3 f(k + 1, l 1 g 1, l 2 g 2, l 3 g 3 )}, donde p k,g1,g 2,g 3 es la probabilidad de contestar correctamente la k-ésima pregunta utilizando los comodines indicados, donde g i = 1, i = 1, 2, 3 si se utiliza el i-ésimo comodín y 0 en caso contrario. La función f es un funcional recursivo, por lo tanto para obtener sus valores por inducción inversa necesitamos conocer su valor en todos los estados de la etapa final. Notar que el objetivo en esta formulación es alcanzar el estado k. Por lo tanto, la probabilidad de haberlo hecho si estamos en el estado k + 1 es claramente 1. Así pues, tenemos que f(k + 1, l 1, l 2, l 3 ) = 1 l i {0, 1}, i = 1, 2, 3. Una vez que tenemos los valores de la función en la etapa final, la solución de este modelo es el cálculo de f(estado inicial). Si comenzamos desde la primera pregunta y tenemos todos los comodines, el estado de salida es (1,1,1,1). Pero si comenzamos en la tercera pregunta y solo tenemos el comodín del 50 % y el del público, el estado de salida sería (3,1,0,1). De cualquier modo, el algoritmo que proponemos resuelve el problema comenzando desde cualquier posible estado y teniendo como objetivo cualquier nivel del juego. Desarrollamos un programa informático en MAPLE en el que, utilizando las constantes c i calculadas antes, evaluamos el valor de la función f y encontramos las estrategias óptimas. En este modelo no tenemos una única solución, sino 15, ya que podemos tener 15 posibles objetivos: las quince preguntas del juego. Por motivos de brevedad, solo mostraremos la solución obtenida si partimos del estado (1,1,1,1) y queremos alcanzar y responder correctamente las preguntas 5,10,13 y 15. En la tabla 7 aparecen las estrategias óptimas y las probabilidades de alcanzar y contestar correctamente las preguntas mencionadas antes. La última fila de dicha tabla representa la probabilidad de alcanzar el objetivo propuesto. 4. Otras consideraciones del análisis del juego Hemos resuelto el problema de una forma estática, es decir, todas las probabilidades venían determinadas a priori, sin conocer realmente ni el enunciado de las preguntas, ni sus 11

13 Pregunta Objetivo: 5 Objetivo: 10 Objetivo: 13 Objetivo:15 1 Sin comodines Sin comodines Sin comodines Sin comodines 2 Sin comodines Sin comodines Sin comodines Sin comodines 3 50 % Sin comodines Sin comodines Sin comodines 4 Público Sin comodines Sin comodines Sin comodines 5 Teléfono Sin comodines Sin comodines Sin comodines 6 Público Sin comodines Sin comodines 7 Sin comodines Sin comodines Sin comodines 8 Sin comodines Sin comodines Sin comodines 9 50 % Público Sin comodines 10 Teléfono Sin comodines Sin comodines 11 Teléfono Teléfono % Sin comodines 13 Sin comodines Sin comodines 14 Público % Probabilidad Cuadro 7: Estrategias óptimas en el modelo 2. 12

14 posibles respuestas. En el concurso real, el juego se desarrolla de forma que las probabilidades de contestar una pregunta correctamente se modifican cada vez que el concursante lee su enunciado y ve las posibles respuestas. Por ejemplo, estando en la cuarta pregunta se puede estimar la probabilidad de acertarla sabiendo realmente cuál es esa pregunta. Lo que haremos será cambiar la probabilidad de acertar la pregunta y mantener las estimaciones realizadas para los siguientes estados. Este análisis quiere decir que el jugador modifica, en cada estado k, la probabilidad p k de contestar correctamente de acuerdo con su conocimiento de la pregunta. Esto sería una forma realista de jugar al juego dinámicamente. Esta característica ha sido incorporada a nuestro programa informático, por lo que en cada estado el jugador puede cambiar la probabilidad de responder correctamente la pregunta a la que se enfrenta en ese momento. Notar que este argumento no modifica nuestro análisis recursivo del problema. Sólo significa que permitimos cambiar la probabilidad p k en cada etapa del análisis Simulación Como ilustración de nuestro análisis del juego realizaremos una simulación del proceso para comprobar el comportamiento de las estrategias ganadoras propuestas en los modelos. Como mencionamos en la sección 2, clasificamos a los participantes en cuatro grupos de la siguiente forma: Los jugadores del grupo A tienen las probabilidades originales descritas con anterioridad. Las probabilidades de contestar correctamente para los jugadores del grupo B son las del grupo A multiplicadas por 0.9. Las probabilidades de contestar correctamente para los jugadores del grupo C son las del grupo A multiplicadas por 0.8. Los jugadores del grupo D tienen unas probabilidades de acertar que son las del grupo A multiplicadas por 0.7. Ahora presentamos dos tablas (tabla 8) con las estrategias que deben seguir los participantes, dependiendo del grupo al que pertenezcan, para maximizar su ganancia esperada (Modelo 1) y la probabilidad de ganar o al menos, la máxima ganancia esperada (Modelo 2). Por ejemplo, la última fila en la columna del participante A en el Modelo 1 muestra el dinero esperado que conseguiría siguiendo la estrategia descrita en dicha columna, y la última fila en el Modelo 2 es la probabilidad de ganar, al menos, dicha cantidad de dinero. Es decir, como para ganar al menos euros tenemos que contestar correctamente la pregunta número 7, nuestro 13

15 objetivo será alcanzar y contestar correctamente la pregunta número 7. Los otros casos son análogos. En ambas tablas, la última fila muestra la máxima recompensa esperada, en la columna del Modelo 1, o la probabilidad de tener éxito con la estrategia descrita en el Modelo 2. Para terminar esta sección vamos a mostrar una simulación del Modelo 1 del juego jugado dinámicamente. Es decir, supondremos que en cada pregunta la probabilidad de contestarla correctamente se modifica una vez que hemos leído su enunciado y las cuatro posibles respuestas. Supongamos que el concursante se enfrenta ahora a la pregunta k th. Tiene que decidir si la contesta, y en ese caso cómo, o no la contesta, dependiendo del grado de dificultad de la pregunta real. El modelo supone que las probabilidades de contestar correctamente las siguientes preguntas, es decir, de k + 1 en adelante, son las que estimamos originalmente. En la tabla 9 las estrategias de utilizar el comodín del 50 %, el Teléfono o el Público se denotan por 50, T y P respectivamente. Para simplificar la simulación supondremos que las probabilidades de contestar correctamente pueden ser: 1 si el concursante conoce la respuesta correcta. 0.5 si el concursante duda entre dos posibles respuestas si lo único que sabe es que una de las respuestas es incorrecta si no tiene ni idea de cuál de las respuestas puede ser la correcta. El lector puede notar que se puede incoporar al modelo cualquier tipo de información probabilística a priori, basada en el conocimiento del jugador. Esta incorporación se realiza mediante el cálculo posterior de las probabilidades usando la regla de Bayes. Está claro que las estrategias cambian dependiendo de las probabilidades de contestar correctamente la pregunta en la que estemos en este momento, que han sido elegidas aleatoriamente utilizando diferentes funciones de probabilidad para cada pregunta. El primer número en cada celda es la probabilidad real de contestar correctamente la correspondiente pregunta. Como se puede observar, dependiendo de la probabilidad simulada, las estrategias pueden variar, desde parar en la quinta pregunta hasta seguir jugando hasta la duodécima. 14

16 Grupo A Grupo B Pregunta Modelo 1 Modelo 2 Modelo 1 Modelo 2 1 Sin comodines Sin comodines Sin comodines Sin comodines 2 Sin comodines Sin comodines Sin comodines Sin comodines 3 Sin comodines Sin comodines Sin comodines 50 % 4 Sin comodines Sin comodines Público Público 5 Sin comodines Teléfono Teléfono Teléfono 6 Público 50 % Sin comodines Parar 7 Sin comodines Público Sin comodines 8 Sin comodines Parar Sin comodines 9 50 % Sin comodines 10 Teléfono 50 % 11 Sin comodines Sin comodines 12 Sin comodines Sin comodines 13 Parar Parar R.E / Prob Grupo C Grupo D Pregunta Modelo 1 Modelo 2 Modelo 1 Modelo 2 1 Sin comodines Sin comodines Sin comodines Sin comodines 2 Sin comodines Público Sin comodines Sin comodines 3 50 % 50 % 50 % 50 % 4 Público Teléfono Público Público 5 Teléfono Parar Teléfono Teléfono 6 Sin comodines Sin comodines Parar 7 Sin comodines Sin comodines 8 Sin comodines Parar 9 Parar R.E / Prob Cuadro 8: Soluciones óptimas dependiendo de la habilidad del concursante 15

17 Pregunta P1 P2 P3 P4 P5 P6 1 1/SC 1/SC 0.5/50-P 0.5/50-P 0.5/50-P 1/SC 2 0.5/50 0.5/T 1/SC 0.33/ T 1/SC 1/SC 3 1/SC 0.33/P 0.5/T 1/SC 1/SC 0.33/50 4 1/SC 0.5/50 0.5/SC 1/SC 0.5/T 1/SC 5 0.5/T 0.25/Parar 0.5/SC 0.33/SC 0.5/SC 1/SC 6 0.5/P 0.33/SC 0.5/SC 1/SC 0.5/P 7 0.5/SC 1/SC 0.5/SC 0.33/SC 1/SC 8 1/SC 0.5/SC 0.5/SC 1/SC 0.5/SC /Parar 0.33/Parar 0.33/Parar 0.25/Parar 1/SC /T /SC /Parar Cuadro 9: Simulación Referencias [1] Chlond M.J. (2001), The Travelling Space Telescope Problem, INFORMS Transactions on Education 2:1 (58-60). [2] Cochran J.J. (2001), Who Wants To Be A Millionaire R : The Classroom Edition, INFORMS Transactions on Education 1:3 ( ). [3] Rump C.M. (2001), Who Wants to See a $Million Error?. A Neglected Educational Resource, INFORMS Transactions on Education 1:3 ( ). [4] Heyman D. and Sobel M. (1984), Stochastic Models in Operations Research. Vol 2, McGraw-Hill, New York. [5] Sniedovich M. (2003),. A Neglected Educational Resource, INFORMS Transactions on Education 2:3, [6] Sniedovich M. (2002), Towers of Hanoi, INFORMS Transactions on Education 3:1 (34-51). 16

18 [7] Sniedovich M. (2000), Çounterfeit Coin Problem. INFORMS Transactions on Education 3:2 (32-41). [8] Tijms H.C. (1986), Stochastic modeling and analysis. A computational approach. WILEY, New York. 17

Un juego de cartas: Las siete y media

Un juego de cartas: Las siete y media Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

Introducción al Cálculo de Probabilidades a través de casos reales

Introducción al Cálculo de Probabilidades a través de casos reales MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Introducción al Cálculo de Probabilidades a través de casos reales Paula Lagares Barreiro * Federico Perea

Más detalles

Poder en el congreso de la Unión Europea

Poder en el congreso de la Unión Europea Poder en el congreso de la Unión Europea Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla ** Este

Más detalles

EDICIÓN DE ECUACIONES CON WORD y ÁLGEBRA LINEAL CON EXCEL

EDICIÓN DE ECUACIONES CON WORD y ÁLGEBRA LINEAL CON EXCEL EDICIÓN DE ECUACIONES CON WORD y ÁLGEBRA LINEAL CON EXCEL Autores: Ángel Alejandro Juan Pérez (ajuanp@uoc.edu), Cristina Steegmann Pascual (csteegmann@uoc.edu). ESQUEMA DE CONTENIDOS ECUACIONES Y ÁLGEBRA

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS)

ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) ECONOMIA DE LA INFORMACION Y DE LA INCERTIDUMBRE EJERCICIOS (TEORIA DE JUEGOS) Ejercicio 1. Aplicando el concepto de estrategias estrictamente dominadas al siguiente juego, qué estrategias podemos estar

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Población y muestra. Técnicas de muestreos

Población y muestra. Técnicas de muestreos MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Población y muestra. Técnicas de muestreos Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch **

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Problemas de conexión y de reparto de costes

Problemas de conexión y de reparto de costes Problemas de conexión y de reparto de costes Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla **

Más detalles

LAS NUEVAS HERRAMIENTAS DE PRODUCTIVIDAD INFORMÁTICA APLICADAS A LA RESOLUCIÓN DE LOS MODELOS DE PREVISIÓN DE ESTADOS CONTABLES

LAS NUEVAS HERRAMIENTAS DE PRODUCTIVIDAD INFORMÁTICA APLICADAS A LA RESOLUCIÓN DE LOS MODELOS DE PREVISIÓN DE ESTADOS CONTABLES LAS NUEVAS HERRAMIENTAS DE PRODUCTIVIDAD INFORMÁTICA APLICADAS A LA RESOLUCIÓN DE LOS MODELOS DE PREVISIÓN DE ESTADOS CONTABLES Juan Jesús Bernal García Juan Francisco Sánchez García Dpto. de Ciencias

Más detalles

INVESTIGACION OPERATIVA

INVESTIGACION OPERATIVA CAPITULO II ACTIVIDADES I. Introducción Generalmente la Simulación requiere la generación y el proceso de una gran cantidad de datos, por lo que resulta inevitable el uso de una computadora. Se han desarrollado

Más detalles

Teoría de juegos: análisis matemático de conflictos

Teoría de juegos: análisis matemático de conflictos Teoría de juegos: análisis matemático de conflictos Fernando Fernández Rodríguez Catedrático de Economía Aplicada Departamento de Métodos Cuantitativos en Economía y Gestión, Universidad de Las Palmas

Más detalles

Toma de decisiones en situación de certeza, riesgo e incertidumbre

Toma de decisiones en situación de certeza, riesgo e incertidumbre Toma de decisiones en situación de certeza, riesgo e incertidumbre Apellidos, nombre Departamento Centro Rueda Armengot, Carlos (crueda@doe.upv.es) Peris Ortiz, Marta (mperis@doe.upv.es) Organización de

Más detalles

CONTROL ÓPTIMO DE SISTEMAS DE INVENTARIOS. Joaquín Humberto López Borbón Departamento de Matemáticas Universidad de Sonora

CONTROL ÓPTIMO DE SISTEMAS DE INVENTARIOS. Joaquín Humberto López Borbón Departamento de Matemáticas Universidad de Sonora Memorias de la XVII Semana Regional de Investigación y Docencia en Matemáticas. Departamento de Matemáticas, Universidad de Sonora, México, Mosaicos Matemáticos, No. 20, Agosto, 2007, pp. 117 128. Nivel

Más detalles

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA

ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA ANÁLISIS DE UN JUEGO DE CARTAS: LAS SIETE Y MEDIA MaMaEuSch (Management Mathematics for European School) http://www.mathematik.uni-kl.de/~mamaeusch/ Modelos matemáticos orientados a la educación Clases

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

PROGRAMACIÓN ESTOCÁSTICA CON FUNCIÓN OBJETIVO FRACTIL. UNA APLICACIÓN A LA PLANIFICACIÓN DE TESORERÍA

PROGRAMACIÓN ESTOCÁSTICA CON FUNCIÓN OBJETIVO FRACTIL. UNA APLICACIÓN A LA PLANIFICACIÓN DE TESORERÍA PROGRAMACIÓN ESTOCÁSTICA CON FUNCIÓN OBJETIVO FRACTIL. UNA APLICACIÓN A LA PLANIFICACIÓN DE TESORERÍA Antonio Cardona Rodríguez - efpcaroa@lg.ehu.es Universidad del País Vasco (UPV/EHU) Reservados todos

Más detalles

SOLUCIONES AL BOLETÍN DE EJERCICIOS Nº 3

SOLUCIONES AL BOLETÍN DE EJERCICIOS Nº 3 Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology SOLUCIONES AL BOLETÍN DE EJERCICIOS Nº 3 1. a. FALSO Los bienes duraderos son más elásticos a corto plazo que a largo (esto

Más detalles

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a 350 MR Versión 1 1 Prueba Parcial 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA: INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Computación Evolutiva CÓDIGO: 350 MOMENTO: Primera Parcial VERSIÓN:

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Inversión. Inversión. Arbitraje. Descuento. Tema 5

Inversión. Inversión. Arbitraje. Descuento. Tema 5 Inversión Tema 5 Inversión Los bienes de inversión obligan a gastar hoy para obtener ganancias en el futuro Vamos a estudiar cómo se valoran los pagos futuros Por ejemplo, la promesa de recibir euro dentro

Más detalles

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S.

Técnicas De Conteo. En este caso si k es grande, no es tan sencillo hacer un conteo exhaustivo de los puntos o resultados de S. Técnicas De Conteo Si en el experimento de lanzar la moneda no cargada, se lanzan 5 monedas y definimos el evento A: se obtienen 3 caras, cómo calcular la probabilidad del evento A?, si todos los resultados

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones

Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Apuntes de Matemática Discreta 4. Permutaciones y Variaciones Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 4 Permutaciones y Variaciones

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS

SUCESOS. PROBABILIDAD. BACHILLERATO. TEORÍA Y EJERCICIOS SUCESOS 1 SUCESOS Experimento aleatorio. Es aquel que al repetirlo en análogas condiciones, da resultados diferentes, es decir, no se puede predecir el resultado que se va a obtener. Ejemplos: - Lanzar una moneda

Más detalles

17.- PARABRISAS RESOLUCIÓN

17.- PARABRISAS RESOLUCIÓN 17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas

Más detalles

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 27/8. PROBLEMA DEL PRIMER PARCIAL Se desea diseñar un sistema para jugar a Piedra, papel o tijera. Como se sabe, en este juego cada uno de los dos

Más detalles

HERRAMIENTAS FINANCIERAS. Tercera Versión. Rafael Valera Moreno

HERRAMIENTAS FINANCIERAS. Tercera Versión. Rafael Valera Moreno HERRAMIENTAS FINANCIERAS Tercera Versión Universidad de Piura Facultad de Ciencias Económicas y Empresariales 2013 HERRAMIENTAS FINANCIERAS. Tercera Versión. 2013. Universidad de Piura. Facultad de Ciencias

Más detalles

Tema 7: Capital, inversión y ciclos reales

Tema 7: Capital, inversión y ciclos reales Tema 7: Capital, inversión y ciclos reales Macroeconomía 2014 Universidad Torcuato di Tella Constantino Hevia En la nota pasada analizamos el modelo de equilibrio general de dos períodos con producción

Más detalles

Maestro Ing. Julio Rito Vargas Avilés. III cuatrimestre 2014

Maestro Ing. Julio Rito Vargas Avilés. III cuatrimestre 2014 Maestro Ing. Julio Rito Vargas Avilés. III cuatrimestre 2014 INVESTIGACIÓN DE OPERACIONES Introducción a las cadenas de Markov de primer orden 1. Definición de cadenas de Markov 2. Tipos de estados y de

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Juego Azar O Matemática?

Juego Azar O Matemática? Juego Azar O Matemática? Carlos Aragón Pérez Grado en Ingeniería en telecomunicaciones c.aragon@edu.uah.es Vamos a explicar las técnicas matemáticas que podremos utilizar para poder ganar en los juegos

Más detalles

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo.

Iniciaremos nuestro estudio de teoría combinatoria enunciando los principios aditivo y multiplicativo de conteo. COMBINATORIA Introducción a la Combinatoria Recuento A menudo se presenta la necesidad de calcular el número de maneras distintas en que un suceso se presenta o puede ser realizado. Otras veces es importante

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI)

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) ASIGNATURA DE GRADO: ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) Curso 2015/2016 (Código:7190105-) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura es una introducción a la Modelización probabilística, la Inferencia

Más detalles

Charla No 3: Fórmulas de mayor uso.

Charla No 3: Fórmulas de mayor uso. 1 Charla No 3: Fórmulas de mayor uso. Objetivos generales: Explicar el uso de las funciones de mayor uso en MS-Excel Objetivos específicos: Autosuma. Asistente de fórmulas. Max y Min. Buscarv Contar Si

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

MODELOS MATEMÁTICOS. Definición Propiedades MODELOS MATEMÁTICOS. Modelo de petróleo refinado

MODELOS MATEMÁTICOS. Definición Propiedades MODELOS MATEMÁTICOS. Modelo de petróleo refinado MODELOS MATEMÁTICOS Autores: Juan Alberto Rodríguez Velázquez (jrodriguezvel@uoc.edu), Cristina Steegmann Pascual (csteegmann@uoc.edu). ESQUEMA DE CONTENIDOS Definición Propiedades MODELOS MATEMÁTICOS

Más detalles

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL

Transformación de binario a decimal. Transformación de decimal a binario. ELECTRÓNICA DIGITAL ELECTRÓNICA DIGITAL La electrónica es la rama de la ciencia que se ocupa del estudio de los circuitos y de sus componentes, que permiten modificar la corriente eléctrica amplificándola, atenuándola, rectificándola

Más detalles

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 4. JUEGOS ALGEBRAICOS.

LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 4. JUEGOS ALGEBRAICOS. LAS MATEMÁTICAS DE ESO Y BACHILLERATO A TRAVÉS DE LOS JUEGOS 4. JUEGOS ALGEBRAICOS. MAURICIO CONTRERAS (EL MATERIAL QUE SE REPRODUCE AQUÍ ES PROPIEDAD INTELECTUAL DEL GRUPO AZARQUIEL Y ESTÁ EXTRAÍDO DEL

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

SIMULACIÓN DE MONTE CARLO CON EXCEL

SIMULACIÓN DE MONTE CARLO CON EXCEL SIMULACIÓN DE MONTE CARLO CON EXCEL Autores: Javier Faulín (ffaulin@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu). ESQUEMA DE CONTENIDOS La función ALEATORIO() Qué es la simulación MC? Simulación Monte Carlo

Más detalles

Representaciones de matrices

Representaciones de matrices LECCIÓN CONDENSADA 6. Representaciones de matrices En esta lección Representarás unos sistemas cerrados con unos diagramas de transición unas matrices de transición Usarás las matrices para organizar información

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

LAS APUESTAS EN EL FRONTÓN

LAS APUESTAS EN EL FRONTÓN Las Apuestas en el Frontón LAS APUESTAS EN EL FRONTÓN Alberto Bagazgoitia (*) En los frontones el juego de la pelota vasca se ha mantenido y se mantiene con fuerza a través de los años. Estos últimos años

Más detalles

Competencia espacial en redes

Competencia espacial en redes Dolores R. Santos Peñate drsantos@dmc.ulpgc.es Competencia espacial en redes Pablo Dorta González pdorta@dmc.ulpgc.es Rafael Suárez Vega rsuarez@dmc.ulpgc.es Resumen La competencia espacial estudia problemas

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS

PARTE III OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS MODELADO E IDENTIFICACIÓN ASPECTOS A TENER EN CUENTA MODELADO IDENTIFICACIÓN OBTENCIÓN DE MODELOS OBTENCIÓN DE MODELOS PARTE III OBTENCIÓN DE MODELOS 1. INFORMACIÓN SOBRE EL SISTEMA 1. EL PROPIO SISTEMA (OBSERVACIÓN, TEST) 2. CONOCIMIENTO TEÓRICO (LEYES DE LA NATURALEZA, EXPERTOS, LITERATURA, ETC.)

Más detalles

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCB - 0419 4-0-8. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de operaciones Ingeniería en Sistemas Computacionales SCB - 0419

Más detalles

Tema 2: Los números enteros (Z)

Tema 2: Los números enteros (Z) Tema 2: Los números enteros (Z) Por qué introducir los números enteros? Para dar respuesta a necesidades de cálculo en la práctica. Por necesidades propias de la aritmética (para hacerla completa ). Cómo

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Escritura de ecuaciones de problemas de algebraicos

Escritura de ecuaciones de problemas de algebraicos 1 Escritura de ecuaciones de problemas de algebraicos Herbert Mendía A. 2011-10-12 www.cimacien.org.gt Conocimientos previos necesarios Operaciones básicas: suma, resta, multiplicación y división. Jerarquía

Más detalles

Clase 3: Introducción a las Probabilidades

Clase 3: Introducción a las Probabilidades Clase 3: Introducción a las Probabilidades Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas

Más detalles

Integrador, realimentación y control

Integrador, realimentación y control Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular

Más detalles

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS

CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS CARTAS DE CONTROL: SU EFECTIVIDAD PARA DETECTAR CAMBIOS MEDIANTE UN ENFOQUE POR CADENAS DE MARKOV ABSORBENTES Lidia Toscana - Nélida Moretto - Fernanda Villarreal Universidad Nacional del Sur, ltoscana@criba.edu.ar

Más detalles

Probabilidad y sus aplicaciones en ingeniería informática

Probabilidad y sus aplicaciones en ingeniería informática Probabilidad y sus aplicaciones en ingeniería informática Víctor Hernández Eduardo Ramos Ildefonso Yáñez c Víctor Hernández, Eduardo Ramos, Ildefonso Yánez EDICIONES CDÉMICS Probabilidad y sus aplicaciones

Más detalles

Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional

Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional Filtrado de Imágenes y Detección de Orillas Utilizando un Filtro Promediador Móvil Multipunto Unidimensional Mario A. Bueno a, Josué Álvarez-Borrego b, Leonardo Acho a y Vitaly Kober c mbueno@cicese.mx,

Más detalles

Capítulo 5 Método Simplex

Capítulo 5 Método Simplex Capítulo 5 Método Simplex Cj 5-2 3 0 -M 0 0 V.B. b X1 X2 X3 X4 X5 X6 X7 5 X1 13/9 1 0 0-4/15 4/15 7/45 4/45 NO 3 X3 14/9 0 0 1 1/15-1/15 2/45 14/45 70/3-2 X2 1/3 0 1 0-3/15 3/15-2/15 1/15 NO Zj - Cj 101/9

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función Capítulo 2 Cadenas de Markov 21 Introducción Sea T R y (Ω, F, P ) un espacio de probabilidad Un proceso aleatorio es una función X : T Ω R tal que para cada t T, X(t, ) es una variable aleatoria Si fijamos

Más detalles

Tema I: Gestión de Proyectos Software: Planificación

Tema I: Gestión de Proyectos Software: Planificación Tema I: Gestión de Proyectos Software: Planificación Bibliografía Calvo-Manzano, J.A., Cervera, J., Fernández, L., Piattini, M. Aplicaciones Informáticas de Gestión. Una perspectiva de Ingeniería del Software.

Más detalles

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas

V.4 Incertidumbre, Métodos Probabilísticos de Análisis de Alternativas . Incertidumbre Nadie puede predecir el futuro. Sólo es posible formular hipótesis más o menos fundadas. Es un futuro que contiene un número indeterminado de resultados posibles, ninguno de los cuales

Más detalles

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K

2. Modelo de colas poissoniano con un servidor M/M/1. 3. Modelo con un servidor y capacidad finita M/M/1/K CONTENIDOS 1. Introducción a las colas poissonianas. 2. Modelo de colas poissoniano con un servidor M/M/1 3. Modelo con un servidor y capacidad finita M/M/1/K 4. Modelo con varios servidores M/M/c. Fórmula

Más detalles

INVESTIGACIÓN DE OPERACIONES

INVESTIGACIÓN DE OPERACIONES INVESTIGACIÓN DE OPERACIONES Teoría de Juegos MSc. Julio Rito Vargas A. Fecha: 06/11/2014 06/11/2014 Contenidos Conceptuales 1.- Definición de un juego. 2.- Elementos de un juego. 3.- Tipos de juegos:

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING

ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING ANÁLISIS DISCRIMINANTE APLICADO AL PROBLEMA DE CREDIT SCORING RESUMEN JUAN MANUEL RIVAS CASTILLO En este documento se emplea el análisis discriminante, que es una técnica del análisis multivariado utilizada

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA SILABO I. DATOS GENERALES 1. Nombre de la Asignatura : INVESTIGACIÓN OPERATIVA 2. Carácter : Obligatorio 3. Carrera Profesional : Administración de Empresas 4. Código : AD0602 5. Semestre Académico : 2014

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

ANEXO 5. RECURSOS Y MATERIALES

ANEXO 5. RECURSOS Y MATERIALES ANEXO 5. RECURSOS Y MATERIALES Materiales y tareas Acciones Fenomenología Sistemas Representación Estructura conceptual Expectativas aprendizaje Limitaciones aprendizaje SOFTWARE DIDÁCTICO (CLIC 3.0) Contexto:

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT)

Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) Fórmulas y enfoques utilizados para calcular el Tasa Efectiva de Interés (TEI) o Costo Anual Total (CAT) El propósito del Costo Anual Total (CAT) El precio verdadero del préstamo no solamente incluye los

Más detalles

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS TEMA 12: MODELADO CON VARIABLES BINARIAS 1.- MOTIVACIÓN 2.- INTRODUCCIÓN 3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS 5.- MODELADO

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP.

Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP. Optimización heurística y simulación de Montecarlo para la maximización de ingresos en hoteles Por José Manuel Martínez López, PMP Sinopsis El presente artículo muestra los resultados de un problema de

Más detalles

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría 2 Matrices 1. Tipos de matrices Piensa y calcula Escribe en forma de tabla el siguiente enunciado: «Una familia gasta en enero 400 en comida y 150 en vestir; en febrero, 500 en comida y 100 en vestir;

Más detalles

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

Registro contable de Supuesto 10 Determinación del derivados OTC valor de una prima de opción (2)

Registro contable de Supuesto 10 Determinación del derivados OTC valor de una prima de opción (2) Ejercicio 10 10 DETERMINACIÓN DE UNA PRIMA EN UNA OPCION (MODELO DE BLACK SCHOLES) Instrucciones Vamos a calcular cual es el importe al que asciende una prima en una opción aplicando el modelo más extendido

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

Práctica 1 - Pista de Carreras 12407 - Programación II

Práctica 1 - Pista de Carreras 12407 - Programación II 1. Introducción Práctica 1 - Pista de Carreras 12407 - Programación II En esta práctica el objetivo es implementar una matriz de adyacencia para el juego Pista de Carreras. Con tal fin, primero hay que

Más detalles

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Introducción al Data Mining Clases 5 Cluster Analysis Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Cluster Análisis 1 El término cluster analysis (usado por primera

Más detalles

EJERCICIOS DE PROGRAMACIÓN RELACIÓN VII (EJERCICIOS DE REPASO)

EJERCICIOS DE PROGRAMACIÓN RELACIÓN VII (EJERCICIOS DE REPASO) EJERCICIOS DE PROGRAMACIÓN RELACIÓN VII (EJERCICIOS DE REPASO) Luis José Sánchez 1. Realiza un programa que sume los 100 números siguientes a un número entero y positivo introducido por teclado. Se debe

Más detalles