2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima."

Transcripción

1 cos(3) - e + a 1. [ANDA] [EXT-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte. 2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. 3. [ANDA] [JUN-A] Sea f: definida por f() = 3 +a 2 +b+c. a) Halla a, b y c para que la gráfica de f tenga un punto de infleión de abscisa = 1 2 y que la recta tangente en el punto de abscisa = 0 tenga por ecuación y = 5-6. b) Para a = 3, b = -9 y c = 8, calcula los etremos relativos de f (abscisas donde se obtienen y valores que alcanzan). 4. [ANDA] [JUN-B] Se desea construir un depósito en forma de cilindro recto, con base circular y sin tapadera, que tenga una capacidad de 125 m 3. Halla el radio de la base y la altura que debe tener el depósito para que la superficie sea mínima [ARAG] [EXT-A] Considere la función: f() = 2-6 a) Determine el dominio y las asíntotas, si eisten, de esa función. b) Determine los intervalos de crecimiento y decrecimiento y los máimos y mínimos relativos, si eisten, de esa función. 2 si < 2 6. [ARAG] [EXT-B] a) Considere la función: f() = 2+a si b si > 4 Determine los valores de a y b para que la función sea continua. b) Supongamos ahora que a = 0. Usando la definición de derivada, estudie la derivabilidad de f() en = [ARAG] [JUN-A] Considere la función: f() = a) Determine las asíntotas, horizontales, verticales y oblicuas, que tenga la función f(). b) Determine los intervalos de crecimiento y decrecimiento de f() Tiene la función algún máimo o mínimo relativo? 8. [ARAG] [JUN-B] a) Determine, si eisten, los máimos y mínimos relativos y puntos de infleión de la función: g() = e +1. b) Determine: lim e -1 si 0 9. [ASTU] [EXT-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable cuando = 0, y en caso afirmativo halle f'(0). 10. [ASTU] [EXT-B] Considere la función f() = a b 2. a) Determine el valor de los números reales a y b para que en el punto de abscisa = 1 su gráfica admita como tangente la recta y = 3. b) Halle las asíntotas de la curva cuando a = 1 y b = [ASTU] [JUN-A] Dada la función f: definida por f() = 2 e -2 a) Calcule los intervalos de crecimiento y decrecimiento de la función. Página 1 de 5

2 b) Halle, si eisten, los máimos y mínimos de la función. c) Dibuje aproimadamente su gráfica. 12. [ASTU] [JUN-B] Un agricultor hace un estudio para plantar árboles en su finca. Sabe que si planta 24 árboles la producción media de cada uno de ellos será de 600 frutos. Estima que por cada árbol adicional plantado, la producción de cada árbol disminuye en 15 frutos. a) Cuál debe ser el número total de árboles que debe tener la huerta para que la producción sea máima? b) Cuál es esa producción? 13. [C-LE] [EXT-A] Sea la función f() = 2 e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica. 14. [C-LE] [EXT-B] Se desea construir un depósito de chapa (en forma de prisma recto, abierto y de base cuadrada) con una capacidad de litros. Cuáles han de ser las dimensiones del depósito para que se precise la menor cantidad de chapa posible en su construcción? 15. [C-LE] [JUN-A] Sea la función f() = e -2. Calcular sus intervalos de crecimiento y decrecimiento, etremos relativos, puntos de infleión y asíntotas. Esbozar su gráfica. 16. [C-LE] [JUN-B] Sea la función f() = +2. a) Hallar su dominio y sus intervalos de crecimiento y decrecimiento. b) Calcular el punto de la gráfica de f() más cercano al punto (4,0). 17. [C-MA] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la recta y = -2? 18. [C-MA] [EXT-B] Para la función f() = a) Estudia sus intervalos de crecimiento y decrecimiento, así como sus etremos relativos. b) Estudia si tiene asíntota oblicua cuando [C-MA] [JUN-A] a) Calcula los valores de los parámetros a,b para que la función f() = 2-2+a si 0 2 +be +3 si > 0 sea continua y derivable en = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f() en el punto de abscisa = [C-MA] [JUN-B] a) Calcula los etremos relativos y los intervalos de crecimiento y decrecimiento de la función f() = 1+ 2 e -2. b) Calcula las asíntotas de f(). 21. [CANA] [EXT-A] Sea la función f() = e 2 +a+b a) Calcular a y b para que f() tenga un etremo en el punto (1,1). b) Calcular los etremos de la función f() cuando a = 0 y b = 0. Página 2 de 5

3 22. [CANA] [EXT-B] En la figura siguiente se muestran la parábola de ecuación f() = 4-2 y la recta r que pasa por los puntos A y B de la parábola de abscisas respectivas -1 y 2. Hallar la ecuación de una recta s tangente a la parábola f() y paralela a r. 23. [CANA] [JUN-A] Se sabe que la gráfica de f() = a2 +b valores de a y b. tiene una recta tangente horizontal en el punto P(2,4). Hallar los 24. [CANA] [JUN-A] La fabricación de tabletas gráficas supone un coste total dado por la función C() = Cada tableta se venderá a un precio unitario dado por la función P() = Suponiendo que todas la tabletas fabricadas se venden, cuál es el número que hay que producir para obtener el beneficio máimo? 1 - cos() 25. [CANA] [JUN-B] a) Calcular lim b) Calcular lim 0 c) Calcular el valor de m de tal forma que lim (1-m)(2+3) 2 +4 = [CATA] [EXT] Sean las funciones f() = ea +b y g() = a) Determine el dominio y el recorrido de la función g. b) Calcule para qué valores de a y b las gráficas de las dos funciones son tangentes (es decir, tienen la misma recta tangente) en el punto de abscisa = [CATA] [JUN] Un nadador está en el mar en un punto N, situado a 3 km de una playa recta, y justo delante de un punto S, situado en la misma orilla el mar; y quiere ir a un punto A, situado también en la orilla y a 6 km del punto S, de manera que el triángulo NSA es rectángulo en el vértice S. El nadador nada a una velocidad constante de 3 km/h y camina a una velocidad constante de 5 km/h. a) Si P es un punto entre el punto S y el punto A que está a una distancia de S, demuestre que el tiempo, en horas, que necesita el nadador para nadar del punto N al punto P y caminar del punto P hasta el punto A viene dado por la epresión 2 +9 t() = b) Calcule el valor de que determina el mínimo tiempo necesario para ir del punto N al punto A, pasando por P. Cuál es el valor de ese tiempo mínimo? 28. [EXTR] [EXT-A] a) Estudie el dominio de definición, las asíntotas, los etremos relativos y los puntos de infleión de la función f() = (+1)3. 2 b) Represente la función f() anterior utilizando los datos obtenidos en el apartado a). 29. [EXTR] [EXT-B] a) Enuncie el teorema del valor medio de Lagrange. b) Aplicando el anterior teorema a la función f() = sen, pruebe que cualesquiera que sean los números reales a < b se cumple la desigualdad senb - sena b-a. Página 3 de 5

4 30. [EXTR] [JUN-A] a) Enuncie la condición que se debe cumplir para que una recta = a sea asíntota vertical de una función f(). b) Calcule las asíntotas verticales y horizontales ( en - y en + ) de la función f() = e +sen(3) 31. [MADR] [JUN-A] Calcular justificadamente: a) lim 0 2 ; b) lim (-6) 2-1 (2-1) a+ln(1-) si < [MADR] [JUN-B] Dada la función f() = 2 e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular lim f() y lim f(). - b) Calcular el valor de a para que f() sea continua en todo. c) Estudiar la derivabilidad de f y calcular f', donde sea posible. 33. [MURC] [EXT-A] Dada la función f() = a+b, determine los valores de los parámetros a y b sabiendo que f() cumple las siguientes propiedades: a) f() alcanza su máimo en el punto de abscisa = 100 b) La gráfica de f() pasa por el punto (49,91). 34. [MURC] [EXT-B] Calcule los siguientes límites: a) lim ln b) lim 1 (-1) [MURC] [JUN-A] Dada la función f() = e, se pide: a) Dominio de definición y cortes con los ejes. b) Estudio de las asíntotas (verticales, horizontales y oblicuas). c) Intervalos de crecimiento y decrecimiento. Etremos (máimos y mínimos). d) Representación gráfica aproimada. 36. [MURC] [JUN-B] Dada la función f() = ln -, se pide: a) Determine el punto de la gráfica de f para el cual la recta tangente es paralela a la bisectriz del primer cuadrante. Calcule la ecuación de dicha recta. b) Determine el punto de la gráfica de f para el cual la recta tangente es paralela al eje OX. Calcule la ecuación de dicha recta. 37. [RIOJ] [EXT-A] Sea f() = (-2)2-1. i) Determina el dominio de f. ii) Halla sus asíntotas. iii) Determina los etremos relativos y estudia la monotonía de f. iv) Dibuja la gráfica de f destacando los elementos hallados anteriormente. 38. [RIOJ] [EXT-B] Sean A una constante positiva y p() un polinomio de tercer grado tal que su derivada es p'() = A(-1), - < <. i) Determina la abscisa de los etremos relativos y estudia la monotonía de p. ii) Enuncia el teorema de Rolle. iii) Justifica que eiste b > 1 tal que p(b) = p(0). Página 4 de 5

5 39. [RIOJ] [JUN-A] Sea g() = 1 - ln i) Determina el dominio de g. ii) Halla sus asíntotas. iii) Determina los etremos relativos y estudia la monotonía de g. iv) Dibuja la gráfica de g destacando los elementos hallados anteriormente. 40. [RIOJ] [JUN-B] Sea h() = i) Enuncia el teorema de Bolzano. ii) Determina los etremos relativos y estudia la monotonía de h. iii) Utiliza el teorema de Bolzano pra probar que la ecución h() = 0 tiene eactamente dos soluciones reales. 41. [VALE] [EXT-B] Un club deportivo alquila un avión de 80 plazas para realizar un viaje a la empresa VR. Hay 60 miembros del club que han reservado su billete. En el contrato de alquiler se indica que el precio de un billete será 800 euros si solo viajan 60 personas, pero que el precio del billete disminuye en 10 euros por cada viajero adicional a partir de esos 60 viajeros que ya han reservado el billete. Obtener razonadamente: a) El total que cobra la empresa VR si viajan 61, 70 y 80 pasajeros. b) El total que cobra la empresa VR si viajan 60+ pasajeros, siendo c) El número de pasajeros, entre 60 y 80 que maimiza lo que cobra en total la empresa VR. 42. [VALE] [JUN-B] Se tiene un cuadrado de mármol de lado 80 cm. Se produce la rotura de una esquina y queda un pentágono de vértices A=(0,20), B=(20,0), C=(80,0), D=(80,80) y E=(0,80). Para obtener una pieza rectangular se elige un punto P=(,y) del segmento AB y se hacen dos cortes paralelos a los ejes X e Y. Así se obtiene un rectángulo R cuyos vértices son los puntos P=(,y). F=(80,y), D=(80,80) y G=(,80). Obtener razonadamente: a) El área del rectángulo R en función de, cuando b) El valor de para el que el área del rectángulo R es máima. c) El valor del área máima del rectángulo R. Página 5 de 5

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2 Derivadas. Dada la siguiente función, calcular, por la definición, la derivada que se indica:. f() = - ; f (-). f() = ; f (0). f() = ln ; f () 4. f() = - ; f (0) 5. f() = +, < 0, 0 ; f (0) 6. f() = sen,

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Problemas de selectividad. Análisis

Problemas de selectividad. Análisis Departamento de Matemáticas Página 1 Problemas de selectividad. Anális 14.01.- De entre todos los triángulos rectángulos de área 8 cm, determina las dimenones del que tiene la hipotenusa de menor longitud.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

sea paralela al plano

sea paralela al plano x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por

Más detalles

INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL DEFINIDA. APLICACIONES COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del

Más detalles

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh

Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

DERIVADA DE FUNCIONES REALES

DERIVADA DE FUNCIONES REALES . Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante

Más detalles

; f(x) = 3 x 5 2) Halla los límites laterales de las siguientes funciones en los valores de x que se indican: -5x + 4); f(x) = 2 ; f(x) =

; f(x) = 3 x 5 2) Halla los límites laterales de las siguientes funciones en los valores de x que se indican: -5x + 4); f(x) = 2 ; f(x) = º BT Mat II CNS PROBLEMAS ANALISIS 1) Halla los dominios de las siguientes funciones: f() = 9 ; f () = Ln ( -5 + ); f() = ; f() = Problemas Análisis Pág 1 + + ; f() = 5 ) Halla los límites laterales de

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4)

=lim h 0. )=lim h 0 h. (2+h 2)2 2+h 4 ( 4) Tema 4 Derivación Ejercicios resueltos Derivación Ejercicio Estudiar la continuidad y derivabilidad de la función: ½ f () = si ( ) en el punto =. 4 si > Estudiemos primero los límites laterales en =: f

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.

Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN. Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Funciones. Rectas y parábolas

Funciones. Rectas y parábolas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo.

Demuestra que el punto de tangencia, T, es el lugar de la recta r desde el que se ve el segmento AB con ángulo máximo. Matemáticas aplicadas a las Ciencias Sociales II Resuelve Página 7 Optimización Una persona se acerca a una estatua de m de altura. Los ojos de la persona están m por debajo de los pies de la escultura.

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

APELLIDOS Y NOMBRE:...

APELLIDOS Y NOMBRE:... 1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría

6 Funciones. 1. Estudio gráfico de una función. Piensa y calcula. Aplica la teoría 6 Funciones 1. Estudio gráfico de una función Piensa y calcula Indica cuál de las siguientes funciones es polinómica y cuál racional: 2 + 5 f() = f() = 3 5 2 + 6 4 2 4 Racional. Polinómica. Aplica la teoría

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

EJERCICIOS TEMA 1 CÁLCULO DIFERENCIAL EN UNA VARIABLE

EJERCICIOS TEMA 1 CÁLCULO DIFERENCIAL EN UNA VARIABLE EJERCICIOS TEMA CÁLCULO DIFERENCIAL EN UNA VARIABLE EJERCICIOS TEMA EJERCICIOS TEMA 3 CONJUNTOS NUMÉRICOS Ejercicio Demostrar, aplicando el principio de inducción, las siguientes propiedades a) + + 3 +

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

x -t si x 2 x 2-6x+8 si x > 2 x 2 +2x si x < -1 t si -1 x 1 x 2-2x si x > 1

x -t si x 2 x 2-6x+8 si x > 2 x 2 +2x si x < -1 t si -1 x 1 x 2-2x si x > 1 . [04] [C-MA] [JUN-B] Se considera la función f(x) = a) Halla el valor de t para que f sea continua en x =. b) Para t =, representa gráficamente la función f. x -t si x x -6x+8 si x >. [04] [C-MA] [ET-A]

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

b) B es el punto Medio de MN siendo M(8,-2) y N(4,12) c) El baricentro del Triangulo es (3,7) R. A(1,2) B(6,5) C(2,14) CÁLCULO I COMPLEMENTO GUIA # 1

b) B es el punto Medio de MN siendo M(8,-2) y N(4,12) c) El baricentro del Triangulo es (3,7) R. A(1,2) B(6,5) C(2,14) CÁLCULO I COMPLEMENTO GUIA # 1 CÁLCULO I COMPLEMENTO GUIA # 1 Ejercicios sugeridos para la semana 2. Cubre el siguiente material: Sistemas de coordenadas rectangulares, Ecuación de la recta, Rectas paralelas y perpendiculares, Distancia

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f representada en el margen, halla los máimos y los mínimos relativos y los intervalos de crecimiento

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página PARA EMPEZAR, REFLEIONA RESUELVE Problema Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. LUGARES GEOMÉTRICOS. CÓNICAS. 9.1 LUGARES GEOMÉTRICOS Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad. Llamando X(,) a las coordenadas del punto genérico aplicando analíticamente

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos de crecimiento y decrecimiento, de concavidad

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES b EJERCICIOS PROPUESTOS 6 Derivadas ACTIVIDADES INICIALES 6I Escribe la ecuación de las siguientes rectas: a) Horizontal y que pase por el punto A(, ) b) Decreciente y que pase por el punto A(, ) c) Creciente y que pase por el

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles